

CELLULAR RESPIRATION:

Oxidative Phosphorylation and the Electron Transport Chain

Objectives

- Oxidative Phosphorylation and the Electron Transport Chain
 - <u>Electron transport chain (The Pathway of Electron</u> Transport).
 - o <u>Chemiosmosis</u> (the Oxidative Phosphorylation)
- Fermentation and anaerobic respiration: enable cells to produce ATP without the use of oxygen:
 - Types of Fermentation.
 - Comparing Fermentation (Anaerobic Respiration) with Aerobic Respiration

3- Electron transport chain: (oxidative

phosphorelation)

- Only 4 of 38 ATP ultimately produced by respiration of glucose are derived from substrate-level phosphorylation (2 from glycolysis and 2 from Krebs Cycle).
- The vast majority of the ATP (90%) comes from the energy in the electrons carried by NADH and FADH₂.
- The energy in these electrons is used in the electron transport chain to power التدعم ATP synthesis.
- Thousands of copies of the electron transport chain are found in the extensive surface of the cristae (the inner membrane of the mitochondrion).
- Electrons drop in free energy as they pass down the electron transport chain.

Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Electron transport chain

- Electrons carried by NADH are transferred to the first molecule in the electron transport chain (the flavoprotein; FMN).
- The electrons continue along the chain which includes several <u>Cytochrome</u> proteins and one lipid carrier.
- The electrons carried by FADH₂ have lower free energy and are added to a later point in the chain.
- Electrons from NADH or FADH₂ ultimately pass to oxygen.
- The electron transport chain generates no ATP directly. Rather, its function is to <u>break</u> the <u>large</u> free energy drop from food to oxygen into <u>a series</u> of <u>smaller</u> steps that release energy in manageable amounts ⁵ ______ Zaujin animatic steps

Electron transport chain

- ATP-synthase, in the cristae actually makes ATP from ADP and P_i.
- ATP used the energy of an existing proton gradient to power ATP synthesis.
 - This proton gradient develops between the inter-membrane space and the matrix.
 - This concentration of H⁺ is the proton-motive force.
- The ATP synthase molecules are the only place that will allow H⁺ to diffuse back to the matrix (exergonic flow of H⁺).
- This flow of H⁺ is used by the enzyme to generate ATP in a process called "Chemiosmosis".
- Chemiosmosis: (osmos = puch)

It is the oxidative phosphorelation that results in ATP production in the inner membrane of mitochondria.

Energy carried by <u>NADH</u> and <u>FADH₂</u> give a maximum yield of <u>34 ATP</u> is produced by <u>oxidative phosphorylation</u>.

Cellular respiration generates many ATP molecules for each sugar molecule it oxidizes

- During respiration, most energy flows from glucose —NADH → electron transport chain —proton-motive force —ATP.
- Some ATP is produced by substrate-level phosphorylation during glycolysis and the Krebs cycle, but most ATP comes from oxidative phosphorylation (through electron transport chain).
- Energy produced in Glycolysis and Krebs cycle gives a maximum yield of <u>4 ATP</u> by substrate-level phosphorylation.
- Energy produced in electron transport chain gives a maximum yield of <u>34 ATP</u> by oxidative phosphorylation via ATP-synthase.
- Substrate-level phosphorylation and oxidative phosphorylation give a bottom line of 38 ATP.

Summary of Cellular Respiration

- Glycolysis occurs in the cytosol and breaks glucose into two pyruvates
- Krebs Cycle takes place within the mitochondrial matrix, and breaks a pyruvate into CO₂ and produce some ATP and NADH.
- Some of ATP is produced at these two steps via (substrate-levelphosphorylation).
- <u>Electron Transport Chain</u> accepts *e*⁻ from NADH and passes these *e*⁻
 from one protein molecule to another.
- At the end of the chain, e^- combine with both H^+ and O_2 to form H_2O and <u>release energy</u>.
- These energy are used by mitochondria to synthesis 90% of the cellular ATP via ATP-synthase, a process called Oxidative Phosphorylation, in the inner membrane of mitochondria.

Summary of cell respiration

تعريفات :Definitions

- <u>Chemiosmosis</u>: a process *via* which <u>oxidative phosphorylation</u> takes place at the end of the Electron Transport Chain to produce 90% of ATP *via* ATP-synthase.
 - Or, is the process in which ATP synthesis powered by the flow of H+ back across ATP synthase.
- <u>ATP-synthase</u>: an enzyme presents in the inner mitochondrial membrane and used in making ATP by using H+ (protons).
- <u>NAD⁺</u>: Nicotinamide adenine dinucleotide, which is an electron acceptor that helps electron transfer during redox reactions in cellular respiration.
- FAD: Flavin adenine dinucleotide, which is an electron acceptor that helps electron transfer during Krebs Cycle and Electron Transport Chain in cellular respiration.

Fermentation: Enables يُنَكِن some cells to produce ATP without the help of Oxygen

- Oxidation refers to the loss of electrons to any electron acceptor, not just to oxygen.
 - In glycolysis, glucose is oxidized to 2 pyruvate molecules with NAD⁺ as the oxidizing agent (not O₂).
 - Some energy from this oxidation produce 2 ATP.
 - If oxygen is present, additional ATP can be generated when NADH delivers its electrons to the electron transport chain.
- Glycolysis generates 2 ATP when oxygen is absent (anaerobic لاهوائي).
- Anaerobic catabolism of sugars can occur by fermentation.
- Fermentation can generate ATP from glucose by substrate-level phosphorylation as long as there is a supply of NAD⁺ (the oxidizing agent) to accept electrons.
 - If the NAD⁺ pool is exhausted إستثنفذ, glycolysis shuts down.
 - Under aerobic هوانی conditions, NADH transfers its electrons to the electron transfer chain, recycling NAD⁺.
- Under anaerobic conditions, various fermentation pathways generate ATP by glycolysis and recycle NAD⁺ by transferring electrons from NADH to pyruvate.

Fermentation

<u>Alcohol fermentation:</u>

the pyruvate is converted to ethanol in two steps.

- First, <u>pyruvate</u> is converted to <u>acetaldehyde</u> by the removal of CO₂.
- Second, <u>acetaldehyde</u> is reduced by NADH to <u>ethanol</u>.
- Alcohol fermentation by yeast is used in wine-making.

Lactic acid fermentation:

the pyruvate is reduced directly by NADH to form lactate (ionized form of lactic acid).

- Lactic acid fermentation by some fungi and bacteria is used to make cheese and yogurt.
- Muscle cells switch from aerobic respiration to lactic acid fermentation to generate ATP when lack of O2 (O₂ is scarce نادر)
 - The waste product, lactate, may cause muscle fatigue, but ultimately it is converted back to pyruvate in the liver.

Examples of anaerobic respiration:

A)- During exercise our bodies require a lot of energy

- The body can only supply a limited amount of oxygen for cellular respiration.
- Energy is not produced at the rate required.
- Cells will use anaerobic respiration to release extra energy
- This produces lactic acid (a waste product).

B)- We use yeast to make bread

- CO₂ produced causes bread to rise by creating air pockets
- The ethanol (alcohol) produced is evaporating during baking

• "Cellular respiration and Fermentation" chapter 09 Biology by Jane B Reece; Neil A Campbell; et al Boston : Benjamin Cummings / Pearson, ©2011. English : 9th Ed.

