	CEN352 Digital Signal Processing   by Dr. Anwar M. Mirza

	
	Lecture No. 19

	
	Date: November, 2012




















1. The Difference Equation and the Digital Filtering
Consider a DSP system in the form of an LTI system as shown in the figure below
 (
An LTI System
Digital Input
Digital Output
)


The relationship between its input and output can be expressed in the form of a difference equation as,
	

	(1)


where and represent the coefficients of the system and is the time index. This equation can also be written as
	
	(2)


The equation shows that the current value of the output depends on the current and past values of the input as well as the past values of the output.
We have already seen that a system expressed in this form of difference equation fulfills the conditions of linearity, time-invariance and causality.
If the initial conditions are given, the system output (i.e. time response), , can be obtained recursively (illustrated below by the examples). This process is called digital filtering.


Example 1
Compute the system output

for the first four samples using the following initial conditions
(a) Initial conditions:, and input .
(b) Zero initial conditions:, and input .
Solution
(a) Setting, and using the initial conditions, we obtain the input and output as


Setting, and using the initial conditions, we obtain the input and output as


Setting, and using the past values of the input and output,


Setting, and using the past values of the input and output,


 
Clearly, it can be seen that the further value of the output can be obtained recursively.

(b) Setting, and using the initial conditions, we obtain the input and output as



Setting, and using the initial conditions, we obtain the input and output as



Setting, and using the past values of the input and output,



Setting, and using the past values of the input and output,


 
Clearly, it can be seen that the further value of the output can be obtained recursively.
Example 2
Compute the DSP system output

with the initial conditions, and input .
(a) Compute the system response for 20 samples using MATLAB.

Solution
A MATLAB program to compute the system response for 20 samples is given below along with the corresponding output shown in graphical form.
 (
% Example 2
%
% Compute the response y(n) of a DSP system expressed by
%    y(n)=2x(n)-4x(n-1)-0.5y(n-1)-y(n-2)
% for the first 20 samples. Initial conditions are
% y(-2)=1, y(-1)=0, x(-1)=-1 and the system input is
% x(n)=(0.8)^n*u(n).
%
 
% Initialize the input and output vectors
xi = [0 -1]; 
% for n=-2 and n=-1
yi = [1 0];  
% for n=-2 and n=-1
 
% Compute time indices
n = 0:1:19;
% Compute the input samples x(n) for these time instants n
x = (0.8).^n;
% Include the initial values of input into this vector
x = [xi x];
 
% Now compute the system response
y = [];         
% an empty vector
y = [yi y];     
% after including the initial conditions
% compute y(n) recursively
for
 k = 3:1:22
    r = 2*x(k-2)-4*x(k-1)-0.5*y(k-1)-0.5*y(k-2);
    y = [y r];
end
 
subplot(2,1,1), stem(n,x(3:22),
'filled'
,
'LineWidth'
,2)
,
 grid 
on
xlabel(
'Sample number'
); ylabel(
'Input x(n)'
);
subplot(2,1,2), stem(n,y(3:22),
'filled'
,
'LineWidth'
,2), grid 
on
xlabel(
'Sample number'
); ylabel(
'Output x(n)'
);
)

















 (
Figure 2: Plots of the input and system output for Example 2.
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There are two MATLAB functions (syntax given below), that can used to perform this filtering process:
Zi = filtic(B, A, Yi, Xi)
y = filter(B, A, x, Zi)
where B and A are vectors for the coefficients given as
 and 
Xi and Yi are the vectors containing the initial conditions. Also x, y are the input and system output vectors.
The function filtic is used to obtain the initial states required by the second function filter. The function filter is based on the direct-form II realization to implement a digital filter from its difference equation form. This will be studied in a coming lecture.
The following MATLAB code, illustrates how to solve Example 1, using filtic and filter MATLAB functions.
 (
>> B = [0 1];
>> 
A = [1 0 -0.5];
>> 
Xi = [-1 0];
>> 
Yi = [0 1];
>> 
Zi = filtic(B, A, Yi, Xi);
>> 
n = 0:3;
>> 
x = (0.5).^n;
>> 
y = filter(B, A, x, Zi)
y =
   -0.5000    1.0000    0.2500    0.7500
)







These are the same results as obtained in Example 1.

2. The Difference Equation and the Transfer Function
From Equation 1, we have
	

	


Assuming that all initial conditions for this system are zero, we take the z-transform of both sides to get
	

	(3)


We have made use of the shift-theorem in the above equation. Rearranging, we obtain
	
	(4)


where is defined as the z-transfer function with its numerator and denominator polynomials given by
	
	(5)

	
	(6)


It can clearly be notices that the z-tranfer function is the ratio of the z-transform of the output with the z-transform of the input. This can diagrammatically be shown as

The z-transfer function can be used to determine the stability and frequency response of the digital filter.

Example 3
A DSP system is described by the following difference equation

Find the z-transfer function, the denominator polynomial, and the numerator polynomial.
Solution
Taking the z-transform of both sides of the given difference equation, and using the shift-theorem, we get

It can also be written as



The transfer function, is therefore, given by

The denominator and numerator polynomials are


Example 4
A digital system is described by the following difference equation

Find the z-transfer function, the denominator polynomial, and the numerator polynomial.
Solution
Taking the z-transform of both sides of the given difference equation, and using the shift-theorem, we get

It can also be written as


The transfer function, is therefore, given by

The denominator and numerator polynomials are


In some DSP applications, the given transfer function of a digital system can be converted into a difference equation for DSP implementation. The following example illustrates this procedure.
Example 5
Convert each of the following transfer functions into its difference equation
(a) 
(b) 
Solution
Part (a):  We first divide the numerator and denominator by to obtain the transfer function whose numerator and the denominator polynomials have the negative powers of, it follows that

According to the definition of the transfer function

Therefore, in this case,

Cross multiplication gives


Applying the inverse z-transform and applying the shift-theorem

This equation can be re-arranged to give the required difference equation for the DSP system, as


Part (b):  In this case also, we first divide the numerator and denominator by to obtain the transfer function whose numerator and the denominator polynomials have the negative powers of, it follows that

According to the definition of the transfer function

Therefore, in this case,

It can be written as


Applying the inverse z-transform and applying the shift-theorem

This is the required difference equation for the DSP system.





Transfer Function in Pole-Zero Form
From Equation 4, we know that the transfer function for a digital filter can be written as

The numerator and the denominator polynomials of the transfer function can be factorized. The transfer function can therefore, be written in its pole-zero form as 
	
	(7)


where the zeros and poles can be found by solving (finding the roots of) the polynomial equations


This is explained with the following example.
Example 6
Given the following transfer function

Convert it into its pole-zero form.
Solution
We first multiply the numerator and denominator by to obtain the transfer function whose numerator and the denominator polynomials have the positive powers of, as follows

Putting the numerator polynomial equal to zero and then finding the roots, gives us the zeros of the transfer function,


Therefore, we get and as the roots. 
Now, setting the denominator polynomial equal to zero and find the roots, gives us the poles of the transfer function,


Therefore, the poles are and. The transfer function can now be written in the pole-zero form as  



Impusle Response, Step Response and System Response
Example 6.7
Given a transfer function depicting a DSP system

Determine
(a) The impulse response
(b) The step response, and
(c) The system response, if the input is given as.
Solution
Part (a): In this case, thus. As

Therefore, in this case, the z-transform of the output is equal to the transfer function:

By taking the inverse z-transform of the transfer function we can find out the unit impulse response of the system. The transfer function can be written as

This can further be written in the form of partial fractions as

where


Thus we have

Or

Taking inverse z-transform of both sides (and using Table 5.1), we get

which is the required impulse response of the system.
Part (b): In this case, thus. As

Therefore, in this case, 

It can be written as

This can further be written in the form of partial fractions as

where


Thus we have

Or

Taking inverse z-transform of both sides (and using Table 5.1), we get

which is the required step response of the system.
Part (c): In this case, thus from Table 5.1,. As

Therefore, in this case, 

It can be written as

This can further be written in the form of partial fractions as

where


Thus we have

Or

Taking inverse z-transform of both sides (and using Table 5.1), we get

which is the required system response.
Table 5.1  Table of z-transform pairs (for causal sequences)
	Line No.
	Signal

	z-Transform

	Region of Convergence

	1
	
	
	

	2
	
	1
	Entire z-plane

	3
	
	
	

	4
	
	
	

	5
	
	
	

	6
	
	
	

	7
	
	
	

	8
	
	
	

	9
	
	
	

	10
	
	
	

	11
	
	
	

	12
	
	
	

	13
	
	
	

	14
	
	
	

	15
	 where  and are complex constants defined by
, 
	
	


Shift Theorem: 
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