

CSC 524

Computer Networks Dr. Esam A. Alwagait Lecture 5 25-26/2/2013

Agenda

Introduction Medium Access Control sub-Layer Channel Allocation Multiple Access Protocols Ethernet Summary & Discussion

Introduction

- There are two types of networks
 - Point-to-point
 - Broadcast
- Broadcasting.. If there are many senders.. Who gets the channel ?
- Medium Access Control (MAC) sub-layer is part of Data Link Layer

Agenda

1	Introduction	
2	Medium Access Control sub-Layer	LLLU.
3	Channel Allocation	nccp://www
4	Multiple Access Protocols	
5	Ethernet	
6	Summary & Discussion	P 13

Channel Allocation

- 1 channel .. Multiple users ..
 - How do you allocate it between them ?
- If 2 users send at the same time it will results in a collision ! Data will become garbage !
- Two methods
 - Static
 - dynamic

Channel Allocation

- Static allocation
- Use FDM to divide the channel between N users so that each will get a specific frequency
- PROs
 - Easy
- CONs
 - Limited (what if N is large ?)
 - Wastes resources (idle users)

Channel Allocation

- Dynamic Allocation
 - Station Model : several stations (computer, phone, network device..etc)
 - Single Channel
 - Collisions: 2 frames sent at the same time results in a collision .. Stations could detect that
 - Continuous time: transmission can start any time
 - Slotted time: time is divided in discrete intervals
 - Carrier Sense: stations can sense of channel is busy
 - No Carrier Sense: stations just transmit at will

Agenda

1	Introduction	
2	Medium Access Control sub-Layer	LLLU.
3	Channel Allocation	nccp://www
4	Multiple Access Protocols	
5	Ethernet	
6	Summary & Discussion	PN PN

- ALOHA
- 1970s at the university of Hawaii
- Two variations
 - Pure ALOHA
 - Time is continuous
 - Slotted ALOHA
 - Time is slotted

- Pure ALOHA
- Simple idea
 - User transmits whenever they want
 - Collision ? Wait random amount of time and re-send
- Stations must be able to detect collision
 LANs is fast.. Others there is a delay
- If they cannot ACK must be used

- Slotted Aloha
- Divide time into slots.. Stations must agree one slot boundaries
- Same as Pure Aloha except that:
 - Stations only send at the beginning of a slot

Throughput versus offered traffic for ALOHA systems.

Dr. Esam Alwagait

- Carrier Sense Multiple Access Protocols
- ALOHA does not provide good throughput
 - Lots of bandwidth is wasted on collisions and retransmissions
- In LANs, stations can "sense" if the channel is busy

- Persistent and non-persistent CSMA
- 1-persistent CSMA
 - Before sending "sense" if the channel is busy
 - If it is busy.. Wait till it is idle then send
 - Collisions ? Wait random time then resend
- Called 1-persistent because when the channel is idle you send with probability=1

- Propagation delay is important!
 - What if a stations begins sending and another one senses idle channel at the same time ?
 - Collisions
 - Collisions could occur even if propagation delay is zero ! (two are waiting for the third to finish sending)
- Even though it is way better than ALOHA

- Non-persistent CSMA
 - Sense the channel
 - Busy ? Do not keep sensing .. Instead wait a random amount of time and sense again
- P-persistent CSMA
 - Same, but if the channel is free send with probability q=1-p or wait random amount of time and repeat
 - Works with slotted time.

Comparison of the channel utilization versus load for various random access protocols.

- CSMA with Collision Detection (CD)
- Persistent and non-persistent provide
 improvement over ALOHA
 - Still when collision occur they keep sending the WHOLE frame
 - CD enables the station to abort as soon as collision is detected

THANK YOU!

Your Logo