

CSC 524

Computer Networks Dr. Esam A. Alwagait Lecture 7 17/4/2012

Agenda

1	IP protocol – Cont.	
2	Transport Layer	LLL Humme
3	Routing Algorithms	nccp://www
4	Congestion Control	
5	Internet Protocol	
6	Summary & Discussion	P.U

- NAT
- Internet Control Protocols
 - ICMP
 - ARP
 - DHCP

- NAT (Network Address Translation)
- IPs are limited !
- Cannot give each "Host" an IP address
- Solution ?
 - Internal Networks
 - Non-Routable IP address
 - 10.0.0.0 10.255.255.255/8 (16,777,216 hosts) 172.16.0.0 - 172.31.255.255/12 (1,048,576 hosts) 192.168.0.0 - 192.168.255.255/16 (65,536 hosts)
 - NATting !

- How does NAT work ?
- NAT box
 - Internal host (iHost) wants to communicate with External Host (eHost)
 - NAT box replace ip of iHost to be ip of NAT box and update the Translation Table (or packet)
 - Packet comes from eHost ? Check Table or packet
 - Reverse the translation

CSC524 - Computer Networks - Lecture 6

Dr. Esam Alwagait

- Outgoing Packets
 - Whenever an outgoing packet enters the NAT box, the 10.x.y.z source address is replaced by the company's true IP address.
 - TCP Source port field is replaced by an index into the NAT box's 65,536-entry translation table.
 - This table entry contains the original IP address and the original source port.

- Incoming Packets
 - a packet arrives at the NAT box from the ISP
 - the Source port in the TCP header is extracted and used as an index into the NAT box's mapping table.
 - the internal IP address and original TCP Source port are extracted and inserted into the packet.
 - The packet is then passed to the company router for normal delivery using the 10.x.y.z address.

• ICMP

- Internet Control Message Protocol
- To handle unexpected errors
- You know Ping?
 - Utility that uses ICMP

Message type	Description	
Destination unreachable	Packet could not be delivered	
Time exceeded	Time to live field hit 0	
Parameter problem	Invalid header field	
Source quench	Choke packet	
Redirect	Teach a router about geography	
Echo request	Ask a machine if it is alive	
Echo reply	Yes, I am alive	
Timestamp request	Same as Echo request, but with timestamp	
Timestamp reply	Same as Echo reply, but with timestamp	

Dr. Esam Alwagait

• 1983.. Why named PING ? ☺

```
_ 🗆 🗙
C:\Windows\system32\cmd.exe
C:\Users\wagait>ping 10.1.1.1
Pinging 10.1.1.1 with 32 bytes of data:
Reply from 93.190.55.254: Destination net unreachable.
Ping statistics for 10.1.1.1:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
C:\Users\wagait>ping 192.168.1.1
Pinging 192.168.1.1 with 32 bytes of data:
Reply from 192.168.1.1: bytes=32 time=9ms TTL=64
Reply from 192.168.1.1: bytes=32 time=12ms TTL=64
Reply from 192.168.1.1: bytes=32 time=9ms TTL=64
Reply from 192.168.1.1: bytes=32 time=7ms TTL=64
Ping statistics for 192.168.1.1:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 7ms, Maximum = 12ms, Average = 9ms
C:\Users\wagait>
```


- ARP (Address Resolution Protocol)
- Network layer is end-to-end layer !
- How do you determine Data Link Layer address ?

C.\Windows\system32\cmd.exe					-
	C:\Users\wagait>arp -a			-	
	Interface: 192.168.1.8	0x11			
	Internet Address	Physical Address	Туре		
	192.168.1.1	b4-82-fe-f5-db-84	dynamic		
	192.168.1.5	98-fc-11-a9-29-f1	dynamic		
	192.168.1.200	98-fc-11-a1-3b-bc	dynamic		
l	192.168.1.201	98-fc-11-a1-3b-0b	dynamic		
	192.168.1.255	ff-ff-ff-ff-ff-ff	static		
	224.0.0.2	01-00-5e-00-00-02	static		
	224.0.0.22	01-00-5e-00-00-16	static		
	224.0.0.252	01-00-5e-00-00-fc	static		
	224.0.1.60	01-00-5e-00-01-3c	static		
	239.255.255.250	01-00-5e-7f-ff-fa	static		
	255.255.255.255	ff-ff-ff-ff-ff	static		
	C:\Users\wagait>				

- DHCP (Dynamic Host Configuration Protocol)
- Telling each host the IP config. (gateway, ip address, DNS ..etc)

- Routing
 - Internal \rightarrow OSPF
 - Open Shortest Path First
 - -External \rightarrow BGP
 - Border Gateway Protocol

• OSPF

- Internet Engineering Task Force (RFC2328)
- Requirements
 - published in the open literature, hence the "O"
 - support a variety of distance metrics, including physical distance, delay, and so on
 - dynamic algorithm
 - support routing based on type of service
 - load balancing, splitting the load over multiple lines
 - support for hierarchical systems (no single router knows the entire Internet topology)
 - security (cannot fool routers)

- OSPF supports
 - Point-to-point lines between exactly two routers
 - Multiaccess networks with broadcasting (e.g., most LANs).
 - Multiaccess networks without broadcasting (e.g., most packet-switched WANs).

CSC524 – Computer Networks – Lecture 6

Dr. Esam Alwagait

- networks, routers, and lines converted into a directed graph in which each arc is assigned a cost
- then computes the shortest path based on the weights on the arcs
- OSPF allows Large Autonomous Systems to be divided into numbered areas
 - area is a network or a set of contiguous networks

- backbone area, called area 0.
 - All areas are connected to the backbone
- Within an area
 - each router has the same link state database and runs the same shortest path algorithm
- 3 kinds of routes
 - intra-area: Shortest Path !!
 - Interarea: Source \rightarrow backbone \rightarrow destination

– inter-AS

- 4 types of routers
 - Internal
 - Area Border
 - Backbone
 - AS Boundary
- Classes overlap

- BGP
 - Border Gateway Protocol
- Homework .. Self-read

THANK YOU!

Your Logo