CHAPTER 6: Using Sample Data to Make Estimations About Population Parameters

6.1 Introduction:

Statistical Inferences: (Estimation and Hypotheses Testing)
It is the procedure by which we reach a conclusion about a population on the basis of the information contained in a sample drawn from that population.

There are two main purposes of statistics;

- Descriptive Statistics: (Chapter 1 \& 2): Organization \& summarization of the data
- Statistical Inference: (Chapter 6 and 7): Answering research questions about some unknown population parameters.
(1) Estimation: (chapter 6)

Approximating (or estimating) the actual values of the unknown parameters:

- Point Estimate: A point estimate is single value used to estimate the corresponding population parameter.
- Interval Estimate (or Confidence Interval): An interval estimate consists of two numerical values defining a range of values that most likely includes the parameter being estimated with a specified degree of confidence.
(2) Hypothesis Testing: (chapter 7)

Answering research questions about the unknown parameters of the population (confirming or denying some conjectures or statements about the unknown parameters).

6.1: The Point Estimates of the Population Parameters:

	Population Parameters	Point estimator
Mean	μ	\bar{X}
Variance	σ^{2}	$\mathrm{~s}^{2}$
Standard Deviation	σ	s
Proportion	$\mu_{1}-\mu_{2}$	$\overline{X_{1}}-\overline{X_{2}}$
The Difference between Two Means	$P_{1}-P_{2}$	$\overline{P_{1}}-\overline{P_{2}}$
The Difference between Two Proportion		
Pw		

6.2 Confidence Interval for a Population Mean (μ):

In this section we are interested in estimating the mean of a certain population (μ).

Population:

Population Size $=\mathrm{N}$
Population Values: $X_{1}, X_{2}, \ldots, X_{N}$
Population Mean: $\mu=\frac{\sum_{i=1}^{N} X_{i}}{N}$
Population Variance: $\sigma^{2}=\frac{\sum_{i=1}^{N}\left(X_{i}-\mu\right)^{2}}{N}$

Sample:
Sample Size $=\mathrm{n}$
Sample values: $x_{1}, x_{2}, \ldots, x_{n}$ Sample Mean: $\bar{X}=\frac{\sum_{i=1}^{n} x_{i}}{n}$
Sample Variance: $S^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}$

(i) Point Estimation of μ :

A point estimate of the mean is a single number used to estimate (or approximate) the true value of μ.

- Draw a random sample of size n from the population:

$$
-x_{1}, x_{2}, \ldots, x_{n}
$$

- Compute the sample mean: $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$

Result:

The sample mean $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ is a "good" point estimator of the population mean (μ).

(1- α) \% confident level

- How to get α when confidence level (1- α) \% known

Example1:

If we are 95% confident, find α ?

$$
\alpha=\frac{5}{100}=0.05
$$

Example2:

If we are 99\% confident, find α ?

$$
\alpha=\frac{1}{100}=0.01
$$

Example3:

If we are 80% confident, find α ?

$$
\alpha=\frac{20}{100}=0.20
$$

Example4:
If we are 92% confident, find α ?

$$
\alpha=\frac{8}{100}=0.08
$$

(ii) Confidence Interval (Interval Estimate) of μ :

An interval estimate of μ is an interval (L, U) containing the true value of μ "with a probability of $1-\alpha$ ".
(confidence level), degree of confidence

* $1-\alpha=$ is called the confidence coefficient (level)
* $\mathrm{L}=$ lower limit of the confidence interval
* $\mathrm{U}=$ upper limit of the confidence interval

Result: (For the case when σ is known)
(a) If $X_{1}, X_{2} \ldots, X_{n}$ is a random sample of size n from a normal distribution with mean μ and known variance σ^{2}, then:
A $(1-\alpha) 100 \%$ confidence interval for μ is:

$$
\begin{gathered}
\bar{X} \pm Z_{1-\frac{\alpha}{2}} \sigma_{\bar{X}} \\
\bar{X} \pm Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \\
\left(\bar{X}-Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X}+Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right) \\
\bar{X}-Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}<\mu<\bar{X}+Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}
\end{gathered}
$$

(b) If $X_{1}, X_{2} \ldots, X_{n}$ is a random sample of size n from a nonnormal distribution with mean μ and known variance σ^{2}, and if the sample size n is large $(n \geq 30)$, then:
An approximate $(1-\alpha) 100 \%$ confidence interval for μ is:

$$
\begin{gathered}
\bar{X} \pm Z_{1-\frac{\alpha}{2}} \sigma_{\bar{X}} \\
\bar{X} \pm Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \\
\left(\bar{X}-Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X}+Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right) \\
\bar{X}-Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}<\mu<\bar{X}+Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \\
\underbrace{}_{106}
\end{gathered}
$$

Note that:

1. We are $(1-\alpha) 100 \%$ confident that the true value of μ belongs to the interval $\left(\bar{X}-Z_{1-\frac{\alpha}{2}} \overline{\sqrt{n}}, \bar{X}+Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$.
2. Upper limit of the confidence interval $=\bar{X}+Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$
3. Lower limit of the confidence interval $=\bar{X}-Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$
4. $Z_{1-\frac{\alpha}{2}}=$ Reliability Coefficient
5. $Z_{1-\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}=$ margin of error $=$ precision of the estimate
6. In general the interval estimate (confidence interval) may be expressed as follows:

$$
\bar{X} \pm Z_{1-\frac{\alpha}{2}} \sigma_{\bar{X}}
$$

estimator $\pm($ reliability coefficient $) \times($ standard Error $)$

$$
\text { estimator } \pm \text { margin of error }
$$

6.3 The t Distribution:

(Confidence Interval Using t)

We have already introduced and discussed the t distribution.
Result: (For the case when σ is unknown + normal population) $+\mathrm{n}<30$ If $X_{1}, X_{2} \ldots, X_{n}$ is a random sample of size n from a normal distribution with mean μ and unknown variance σ^{2}, then:
A $(1-\alpha) 100 \%$ confidence interval for μ is:

$$
\begin{gathered}
\bar{X} \pm t_{1-\frac{\alpha}{2}} \hat{\sigma}_{\bar{X}} \\
\bar{X} \pm t_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}} \\
\left(\bar{X}-t_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \bar{X}+t_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}\right) \\
\end{gathered}
$$

where the degrees of freedom is:

$$
\mathrm{df}=\mathrm{v}=\mathrm{n}-1 .
$$

Note that:

1. We are $(1-\alpha) 100 \%$ confident that the true value of μ belongs to the interval $\left(\bar{X}-t_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \bar{X}+t_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}\right)$.
2. $\hat{\sigma}_{\bar{X}}=\frac{S}{\sqrt{n}} \quad$ (estimate of the standard error of \bar{X})
3. $t_{1-\frac{\alpha}{2}}=$ Reliability Coefficient
4. In this case, we replace σ by S and Z by t.
5. In general the interval estimate (confidence interval) may be expressed as follows:
Estimator \pm (Reliability Coefficient) \times (Estimate of the Standard Error)

$$
\bar{X} \pm t_{1-\frac{\alpha}{2}} \hat{\sigma}_{\bar{X}}
$$

Notes: (Finding Reliability Coefficient)

(1) We find the reliability coefficient $Z_{1-\frac{\alpha}{2}}$ from the Z-table as follows:

(2) We find the reliability coefficient $t_{1-\frac{\alpha}{2}}$ from the t -table as follows: $(\mathrm{df}=\mathrm{v}=\mathrm{n}-1)$

Example:

Suppose that $Z \sim N(0,1)$. Find $Z_{1-\frac{\alpha}{2}}$ for the following cases:
(1) $\alpha=0.1$
(2) $\alpha=0.05$
(3) $\alpha=0.01$

Solution:

(1) For $\alpha=0.1$:

$$
1-\frac{\alpha}{2}=1-\frac{0.1}{2}=0.95 \quad \Rightarrow \quad Z_{1-\frac{\alpha}{2}}=Z_{0.95}=1.645
$$

(2) For $\alpha=0.05$:

$$
1-\frac{\alpha}{2}=1-\frac{0.05}{2}=0.975 \quad \Rightarrow \quad Z_{1-\frac{\alpha}{2}}=Z_{0.975}=1.96
$$

(3) For $\alpha=0.01$:

$$
1-\frac{\alpha}{2}=1-\frac{0.01}{2}=0.995 \quad \Rightarrow \quad Z_{1-\frac{\alpha}{2}}=Z_{0.995}=2.575
$$

Example:

Suppose that $\mathrm{t} \sim \mathrm{t}(30)$. Find ${ }_{1-\frac{\alpha}{2}}$ for $\alpha=0.05$.

Solution:

$\mathrm{df}=\mathrm{v}=30$
$1-\frac{\alpha}{2}=1-\frac{0.05}{2}=0.975 \Rightarrow t_{1-\frac{\alpha}{2}}=t_{0.975}=2.0423$

The Confidence Interval (C.I) for the Population Mean μ :

Example: (The case where ${ }^{2}$ is known)

Diabetic ketoacidosis is a potential fatal complication of diabetes mellitus throughout the world and is characterized in part by very high blood glucose levels. In a study on 123 patients living in Saudi Arabia of age 15 or more who were admitted for diabetic ketoacidosis, the mean blood glucose level was $26.2 \mathrm{mmol} / 1$. Suppose that the blood glucose levels for such patients have a normal distribution with a standard deviation of $3.3 \mathrm{mmol} / \mathrm{l}$.
(1) Find a point estimate for the mean blood glucose level of such diabetic ketoacidosis patients.
(2) Find a 90% confidence interval for the mean blood glucose level of such diabetic ketoacidosis patients.

Solution:

Variable $=\mathrm{X}=$ blood glucose level (Continuous quantitative variable).
Population $=$ diabetic ketoacidosis patients in Saudi Arabia of age 15 or more.
Parameter of interest is: = the mean blood glucose level.
Distribution is normal with standard deviation $=3.3$.
${ }^{2}$ is known ($\sigma^{2}=10.89$)
X ~Normal(, 10.89)
$=$?? (unknown- we need to estimate)
Sample size: $\quad n=123$ (large)
Sample mean: $\quad \bar{X}=26.2$
(1) Point Estimation:

We need to find a point estimate for
$\bar{X}=26.2$ is a point estimate for
≈ 26.2
(2) Interval Estimation (Confidence Interval = C. I.):

We need to find 90% C. I. for
$90 \%=(1-) 100 \%$
$1-\quad=0.9 \Leftrightarrow \quad=0.1 \Leftrightarrow \frac{}{2}=0.05 \quad \Leftrightarrow \quad 1-\frac{1}{2}=0.95$
The reliability coefficient is: $Z_{1-\frac{\alpha}{2}}=Z_{0.95}=1.645$
90% confidence interval for is:

$$
\begin{gathered}
\left(\bar{X}-Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X}+Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right) \\
\left(26.2-(1.645) \frac{3.3}{\sqrt{123}}, 26.2+(1.645) \frac{3.3}{\sqrt{123}}\right) \\
(26.2-0.4894714,26.2+0.4894714) \\
(25.710529,26.689471)
\end{gathered}
$$

We are 90% confident that the true value of the mean μ lies in the interval $(25.71,26.69)$, that is:

$$
25.71<\mu<26.69
$$

Note: for this example even if the distribution is not normal, we may use the same solution because the sample size $n=123$ is large.

Example: (The case where σ^{2} is unknown)

A study was conducted to study the age characteristics of Saudi women having breast lump. A sample of 21 Saudi women gave a mean of 37 years with a standard deviation of 10 years. Assume that the ages of Saudi women having breast lumps are normally distributed.
(a) Find a point estimate for the mean age of Saudi women having breast lumps.
(b) Construct a 99% confidence interval for the mean age of Saudi women having breast lumps

Solution:

$\mathrm{X}=$ Variable $=$ age of Saudi women having breast lumps (quantitative variable).
Population = All Saudi women having breast lumps.
Parameter of interest is: $\mu=$ the age mean of Saudi women having breast lumps.
$\mathrm{X} \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$
$\mu=$?? (unknown- we need to estimate μ)
$\sigma^{2}=?$? (unknown)
Sample size: $\quad n=21$
Sample mean: $\bar{X}=37$

Sample standard deviation: $S=10$
Degrees of freedom: $\mathrm{df}=v=21-1=20$
(a) Point Estimation: We need to find a point estimate for μ.
$\bar{X}=37$ is a "good" point estimate for μ.
$\mu \approx 37$ years
(b) Interval Estimation (Confidence Interval = C. I.): We need to find 99% C. I. for μ.

$$
\begin{aligned}
& 99 \%=(1-\alpha) 100 \% \\
& 1-\alpha=0.99 \Leftrightarrow \alpha=0.01 \Leftrightarrow \frac{\alpha}{2}=0.005 \quad \Leftrightarrow \quad 1-\frac{\alpha}{2}=0.995
\end{aligned}
$$

$v=\mathrm{df}=21-1=20$
The reliability coefficient is: $t_{1-\frac{\alpha}{2}}=t_{0.995}=2.845$

99\% confidence interval for μ is:

$$
\begin{gathered}
\bar{X} \pm t_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}} \\
37 \pm(2.845) \frac{10}{\sqrt{21}} \\
37 \pm 6.208 \\
(37-6.208,37+6.208) \\
(30.792,43.208) \\
30.792<\mu<43.208
\end{gathered}
$$

We are 99% confident that the true value of the mean μ lies in the interval $(30.792,43.208)$

6.4 Confidence Interval for the Difference between Two

Population Means $\left(\mu_{1}-\mu_{2}\right):$

Suppose that we have two populations:

- 1-st population with mean μ_{1} and variance $\sigma_{1}{ }^{2}$
- 2-nd population with mean μ_{2} and variance $\sigma_{2}{ }^{2}$
- We are interested in comparing μ_{1} and μ_{2}, or equivalently, making inferences about the difference between the means $\left(\mu_{1}-\mu_{2}\right)$.
- We independently select a random sample of size n_{1} from the 1 -st population and another random sample of size n_{2} from the 2-nd population:
- Let \bar{X}_{1} and S_{1}^{2} be the sample mean and the sample variance of the 1 -st sample.
- Let \bar{X}_{2} and S_{2}^{2} be the sample mean and the sample variance of the 2 -nd sample.
- The sampling distribution of $\bar{X}_{1}-\bar{X}_{2}$ is used to make inferences about $\mu_{1}-\mu_{2}$.

Recall:

1. Mean of $\bar{X}_{1}-\bar{X}_{2}$ is:

$$
\mu_{\bar{X}_{1}-\bar{X}_{2}}=\mu_{1}-\mu_{2}
$$

2. Variance of $\bar{X}_{1}-\bar{X}_{2}$ is:

$$
\sigma_{\bar{X}_{1}-\bar{X}_{2}}^{2}=\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}
$$

3. Standard error of $\bar{X}_{1}-\bar{X}_{2}$ is: $\quad \sigma_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$
4. If the two random samples were selected from normal distributions (or non-normal distributions with large sample sizes) with known variances σ_{1}^{2} and σ_{2}^{2}, then the difference between the sample means $\left(\bar{X}_{1}-\bar{X}_{2}\right)$ has a normal distribution with mean $\left(\mu_{1}-\mu_{2}\right)$ and variance $\left(\left(\sigma_{1}^{2} / n_{1}\right)+\left(\sigma_{2}^{2} / n_{2}\right)\right)$, that is:

$$
\text { - } \bar{X}_{1}-\bar{X}_{2} \sim N\left(\mu_{1}-\mu_{2}, \frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}\right)
$$

$$
\text { - } Z=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} \sim \mathrm{~N}(0,1)
$$

Point Estimation of $\mu_{1}-\mu_{2}$:

Result:

$$
\bar{X}_{1}-\bar{X}_{2} \text { is a "good" point estimate for } \mu_{1}-\mu_{2} .
$$

Interval Estimation (Confidence Interval) of $\mu_{1}-\mu_{2}$:

We will consider two cases.
(i) First Case: σ_{1}^{2} and σ_{2}^{2} are known:

If σ_{1}^{2} and σ_{2}^{2} are known, we use the following result to find an interval estimate for $\mu_{1}-\mu_{2}$.

Result:

A (1- α) 100% confidence interval for $\mu_{1}-\mu_{2}$ is:

$$
\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm Z_{1-\frac{\alpha}{2}} \sigma_{\bar{X}_{1}-\bar{X}_{2}}
$$

$$
\begin{gathered}
\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} \\
\left(\left(\bar{X}_{1}-\bar{X}_{2}\right)-Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}},\left(\bar{X}_{1}-\bar{X}_{2}\right)+Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}\right) \\
\left(\bar{X}_{1}-\bar{X}_{2}\right)-Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}<\mu_{1}-\mu_{2}<\left(\bar{X}_{1}-\bar{X}_{2}\right)+Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}
\end{gathered}
$$

Estimator \pm (Reliability Coefficient) $\times($ Standard Error $)$

(ii) Second Case:

Unknown equal Variances: ($\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2}$ is unknown):

If σ_{1}^{2} and σ_{2}^{2} are equal but unknown ($\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2}$), then the pooled estimate of the common variance σ^{2} is

$$
S_{p}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}
$$

where S_{1}^{2} is the variance of the 1 -st sample and S_{2}^{2} is the variance of the 2-nd sample. The degrees of freedom of S_{p}^{2} is

$$
\mathrm{df}=\mathrm{v}=n_{1}+n_{2}-2 .
$$

We use the following result to find an interval estimate for $\mu_{1}-\mu_{2}$ when we have normal populations with unknown and equal variances.

Result:

A ($1-\alpha$) 100% confidence interval for $\mu_{1}-\mu_{2}$ is:

$$
\begin{gathered}
\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm t_{1-\frac{\alpha}{2}} \sqrt{\frac{S_{p}^{2}}{n_{1}}+\frac{S_{p}^{2}}{n_{2}}} \\
\left(\left(\bar{X}_{1}-\bar{X}_{2}\right)-t_{1-\frac{\alpha}{2}} \sqrt{\frac{S_{p}^{2}}{n_{1}}+\frac{S_{p}^{2}}{n_{2}}},\left(\bar{X}_{1}-\bar{X}_{2}\right)+t_{1-\frac{\alpha}{2}} \sqrt{\frac{S_{p}^{2}}{n_{1}}+\frac{S_{p}^{2}}{n_{2}}}\right)
\end{gathered}
$$

where reliability coefficient $t_{1-\frac{\alpha}{2}}$ is the t -value with $\mathrm{df}=\mathrm{v}=n_{1}+n_{2}-2$ degrees of freedom.

Example: ($1^{\text {st }}$ Case: σ_{1}^{2} and σ_{2}^{2} are known)
An experiment was conducted to compare time length

The Confidence Interval (C.I)for the Difference between two

PopulationMeans $\mu_{1}-\mu_{2}$:

The $(1-\alpha) 100 \%$
Confidence Interval for the
Difference between two
Population Means
$\mu_{1}-\mu_{2}$

1. Normal Distribution $+\sigma_{1}^{2}$ and σ_{2}^{2} are known
2. Non-Normal Distribution + $n_{1}, n_{2} \geq 30+\sigma_{1}^{2}$ and σ_{2}^{2} are known.

$$
\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}
$$

$$
\begin{aligned}
& \text { Normal Distribution }+n_{1}, n_{2}<30 \\
& +\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2} \text { are unknown but } \\
& \text { equal } \\
& \qquad \quad\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm t_{1-\frac{\alpha}{2}} S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}
\end{aligned}
$$

pooled variance:

$$
S_{p}=\sqrt{\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}}, \text { d. } \mathrm{f}=n_{1}+n_{2}-2
$$

Example:

An experiment was conducted to compare time length
(duration time) of two types of surgeries (A) and (B). 75 surgeries of type (A) and 50 surgeries of type (B) were performed. The average time length for (A) was 42 minutes and the average for (B) was 36 minutes.
(1) Find a point estimate for $\mu_{A}-\mu_{B}$, where μ_{A} and μ_{B} are population means of the time length of surgeries of type (A) and (B), respectively.
(2) Find a 96% confidence interval for $\mu_{A}-\mu_{B}$. Assume that the population standard deviations are 8 and 6 for type (A) and (B), respectively.

Solution:

Surgery	Type (A)	Type (B)
Sample Size	$n_{\mathrm{A}}=75$	$n_{\mathrm{B}}=50$
Sample Mean	$\bar{X}_{A}=42$	$\bar{X}_{B}=36$
Population Standard Deviation	$\sigma_{\mathrm{A}}=8$	$\sigma_{\mathrm{B}}=6$

(1) A point estimate for $\mu_{A}-\mu_{B}$ is:

$$
\bar{X}_{A}-\bar{X}_{B}=42-36=6 .
$$

(2) Finding a 96% confidence interval for $\mu_{A}-\mu_{B}$:
$\alpha=$??
$96 \%=(1-\alpha) 100 \% \Leftrightarrow 0.96=(1-\alpha) \Leftrightarrow \alpha=0.04 \Leftrightarrow \alpha / 2=0.02$
Reliability Coefficient: $Z_{1-\frac{\alpha}{2}}=Z_{0.98}=2.055$
A 96% C.I. for $\mu_{A}-\mu_{B}$ is:

$$
\begin{gathered}
\left(\bar{X}_{A}-\bar{X}_{B}\right) \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_{A}^{2}}{n_{A}}+\frac{\sigma_{B}^{2}}{n_{B}}} \\
6 \pm Z_{0.98} \sqrt{\frac{8^{2}}{75}+\frac{6^{2}}{50}} \\
6 \pm(2.055) \sqrt{\frac{64}{75}+\frac{36}{50}} \\
6 \pm 2.578 \\
3.422<\mu_{A}-\mu_{B}<8.58 \\
<116
\end{gathered}
$$

We are 96% confident that $\mu_{A}-\mu_{B} \in(3.42,8.58)$.
Note: Since the confidence interval does not include zero, we conclude that the two population means are not equal ($\mu_{A}-\mu_{B} \neq 0$ $\Leftrightarrow \mu_{A} \neq \mu_{B}$). Therefore, we may conclude that the mean time length is not the same for the two types of surgeries.

Example: (2 ${ }^{\text {nd }}$ Case: $\sigma_{1}^{2}=\sigma_{2}^{2}$ unknown)
To compare the time length (duration time) of two types of surgeries (A) and (B), an experiment shows the following results based on two independent samples:

Type A: $140,138,143,142,144,137$
Type B: $135,140,136,142,138,140$
(1) Find a point estimate for $\mu_{A}-\mu_{B}$, where $\mu_{A}\left(\mu_{B}\right)$ is the mean time length of type $A(B)$.
(2) Assuming normal populations with equal variances, find a 95% confidence interval for $\mu_{A}-\mu_{B}$.

Solution:

First we calculate the mean and the variances of the two samples, and we get:

Surgery	Type (A)	Type (B)
Sample Size	$n_{\mathrm{A}}=6$	$n_{\mathrm{B}}=6$
Sample Mean	$\bar{X}_{A}=140.67$	$\bar{X}_{B}=138.50$
Sample Variance	$\mathrm{S}_{A}^{2}=7.87$	$\mathrm{~S}^{2}{ }_{B}=7.10$

(1) A point estimate for $\mu_{A}-\mu_{B}$ is:

$$
\bar{X}_{A}-\bar{X}_{B}=140.67-138.50=2.17
$$

(2) Finding 95\% Confidence interval for $\mu_{A}-\mu_{B}$:
$95 \%=(1-\alpha) 100 \% \Leftrightarrow 0.95=(1-\alpha) \Leftrightarrow \alpha=0.05 \Leftrightarrow \alpha / 2=0.025$
$. \mathrm{df}=v=n_{A}+n_{B}-2=10$
Reliability Coefficient: ${ }_{1-\frac{\alpha}{2}}=\mathrm{t}_{0.975}=2.228$
The pooled estimate of the common variance is:

$$
\begin{aligned}
S_{p}^{2} & =\frac{\left(n_{A}-1\right) S_{A}^{2}+\left(n_{B}-1\right) S_{B}^{2}}{n_{A}+n_{B}-2} \\
& =\frac{(6-1)(7.87)+(6-1)(7.1)}{6+6-2}=7.485
\end{aligned}
$$

A 95% C.I. for $\mu_{A}-\mu_{B}$ is:

$$
\begin{gathered}
\left(\bar{X}_{A}-\bar{X}_{B}\right) \pm t_{1-\frac{\alpha}{2}} \sqrt{\frac{S_{p}^{2}}{n_{A}}+\frac{S_{p}^{2}}{n_{B}}} \\
2.17 \pm(2.228) \sqrt{\frac{7.485}{6}+\frac{7.485}{6}} \\
2.17 \pm 3.519 \\
-1.35<\mu_{A}-\mu_{B}<5.69
\end{gathered}
$$

We are 95% confident that $\mu_{A}-\mu_{B} \in(-1.35,5.69)$.
Note: Since the confidence interval includes zero, we conclude that the two population means may be equal ($\mu_{A}-\mu_{B}=0 \Leftrightarrow$ $\mu_{A}=\mu_{B}$). Therefore, we may conclude that the mean time length is the same for both types of surgeries.

6.5 Confidence Interval for a Population Proportion (p):

Population

Population size $=\mathbf{N}$

Sample

Recall:

1. For the population:
$N(A)=$ number of elements in the population with a specified characteristic "A"
$\mathrm{N}=$ total number of elements in the population (population size)
The population proportion is:

$$
p=\frac{N(A)}{N} \quad(\mathrm{p} \text { is a parameter })
$$

2. For the sample:

$n(A)=$ number of elements in the sample with the same characteristic "A"
$n=$ sample size
The sample proportion is:

$$
\hat{p}=\frac{n(A)}{n} \quad(\hat{p} \text { is a statistic })
$$

3. The sampling distribution of the sample proportion (\hat{p}) is used to make inferences about the population proportion (p).
4. The mean of (\hat{p}) is: $\quad \mu_{\hat{p}}=p$
5. The variance of (\hat{p}) is: $\quad \sigma_{\hat{p}}^{2}=\frac{p(1-p)}{n}$
6. The standard error (standard deviation) of (\hat{p}) is:

$$
\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}
$$

7. For large sample size ($n \geq 30, n p>5, n(1-p)>5$), the sample proportion (\hat{p}) has approximately a normal distribution with mean $\mu_{\hat{p}}=p$ and a variance $\sigma_{\hat{p}}^{2}=p(1-p) / n$, that is:

$$
\begin{array}{ll}
\hat{p} \sim N\left(p, \frac{p(1-p)}{n}\right) & \text { (approximately) } \\
Z=\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0,1) & \text { (approximately) }
\end{array}
$$

(i) Point Estimate for (p):

Result:

A good point estimate for the population proportion (p) is the sample proportion (\hat{p}).

(ii) Interval Estimation (Confidence Interval) for (p):

Result:

For large sample size $(n \geq 30, n p>5, n(1-p)>5)$, an approximate $(1-\alpha) 100 \%$ confidence interval for (p) is:

$$
\begin{gathered}
\hat{p} \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \\
\left(\hat{p}-Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \quad \hat{p}+Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)
\end{gathered}
$$

Estimator \pm (Reliability Coefficient) $\times($ Standard Error $)$

Example:

In a study on the obesity of Saudi women, a random sample of 950 Saudi women was taken. It was found that 611 of these women were obese (overweight by a certain percentage).
(1) Find a point estimate for the true proportion of Saudi women who are obese.
(2) Find a 95% confidence interval for the true proportion of Saudi women who are obese.

Solution:

Variable: whether or not a women is obese (qualitative variable) Population: all Saudi women
Parameter: $\mathrm{p}=$ the proportion of women who are obese.
Sample:

$$
\begin{array}{ll}
n=950 & (950 \text { women in the sample) } \\
n(A)=611 & \text { (611 women in the sample who are obese) }
\end{array}
$$

The sample proportion (the proportion of women who are obese in the sample.) is:

$$
\hat{p}=\frac{n(A)}{n}=\frac{611}{950}=0.643
$$

(1) A point estimate for p is: $\quad \hat{p}=0.643$.
(2) We need to construct 95% C.I. for the proportion (p).
$95 \%=(1-\alpha) 100 \% \Leftrightarrow 0.95=1-\alpha \Leftrightarrow \alpha=0.05 \Leftrightarrow \frac{\alpha}{2}=0.025 \Leftrightarrow 1-\frac{\alpha}{2}=0.975$
The reliability coefficient: $Z_{1-\frac{\alpha}{2}}=z_{0.975}=1.96$.
A 95\% C.I. for the proportion (p) is:

$$
\hat{p} \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

$$
\begin{gathered}
0.643 \pm(1.96) \sqrt{\frac{(0.643)(1-0.643)}{950}} \\
0.643 \pm(1.96)(0.01554) \\
0.643 \pm 0.0305 \\
(0.6127,0.6735)
\end{gathered}
$$

We are 95% confident that the true value of the population proportion of obese women, p , lies in the interval $(0.61,0.67)$, that is:

$$
0.61<\mathrm{p}<0.67
$$

6.6 Confidence Interval for the Difference Between Two

Population Proportions $\left(p_{1}-p_{2}\right)$:

Suppose that we have two populations with:

- $p_{1}=$ population proportion of elements of type (A) in the 1 -st population.
- $p_{2}=$ population proportion of elements of type (A) in the 2-nd population.
- We are interested in comparing p_{1} and p_{2}, or equivalently, making inferences about $p_{1}-p_{2}$.
- We independently select a random sample of size n_{1} from the 1 -st population and another random sample of size n_{2} from the 2 -nd population:

- Let $X_{1}=$ no. of elements of type (A) in the 1 -st sample.
- Let $X_{2}=$ no. of elements of type (A) in the 2-nd sample.
- $\hat{p}_{1}=\frac{X_{1}}{n_{1}}=$ the sample proportion of the 1 -st sample
- $\hat{p}_{2}=\frac{X_{2}}{n_{2}}=$ the sample proportion of the 2-nd sample
- The sampling distribution of $\hat{p}_{1}-\hat{p}_{2}$ is used to make inferences about $p_{1}-p_{2}$.

Recall:

1. Mean of $\hat{p}_{1}-\hat{p}_{2}$ is: $\mu_{\hat{p}_{1}-\hat{p}_{2}}=p_{1}-p_{2}$
2. Variance of $\hat{p}_{1}-\hat{p}_{2}$ is: $\sigma_{\hat{p}_{1}-\hat{p}_{2}}^{2}=\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}$
3. Standard error (standard deviation) of $\hat{p}_{1}-\hat{p}_{2}$ is:

$$
\sigma_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}}
$$

4. For large samples sizes ($n_{1} \geq 30, n_{2} \geq 30, n_{1} p_{1}>5, n_{1} q_{1}>5, n_{2} p_{2}>5, n_{2} q_{2}>5$), we have that $\hat{p}_{1}-\hat{p}_{2}$ has approximately normal distribution with mean $\mu_{\hat{p}_{1}-\hat{p}_{2}}=p_{1}-p_{2}$ and variance $\sigma_{\hat{p}_{1}-\hat{p}_{2}}^{2}=\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}$, that is:

$$
\begin{aligned}
& \hat{p}_{1}-\hat{p}_{2} \sim N\left(p_{1}-p_{2}, \frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}\right) \quad \text { (Approximately) } \\
& Z=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-\left(p_{1}-p_{2}\right)}{\sqrt{\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}}} \sim \mathrm{~N}(0,1) \quad \text { (Approximately) }
\end{aligned}
$$

Note: $q_{1}=1-p_{1}$ and $q_{2}=1-p_{2}$.

Point Estimation for $p_{1}-p_{2}$:

Result:

A good point estimator for the difference between the two proportions, $p_{1}-p_{2}$, is:

$$
\hat{p}_{1}-\hat{p}_{2}=\frac{X_{1}}{n_{1}}-\frac{X_{2}}{n_{2}}
$$

Interval Estimation (Confidence Interval) for $\boldsymbol{p}_{1}-\boldsymbol{p}_{\underline{2}}$:

Result:

For large n_{1} and n_{2}, an approximate $(1-\alpha) 100 \%$ confidence interval for $p_{1}-p_{2}$ is:

$$
\begin{gathered}
\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}} \\
\left(\left(\hat{p}_{1}-\hat{p}_{2}\right)-Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}},\left(\hat{p}_{1}-\hat{p}_{2}\right)+Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}}\right)
\end{gathered}
$$

Estimator \pm (Reliability Coefficient) \times (Standard Error)

Example:

A researcher was interested in comparing the proportion of people having cancer disease in two cities (A) and (B). A random sample of 1500 people was taken from the first city (A), and another independent random sample of 2000 people was taken from the second city (B). It was found that 75 people in the first sample and 80 people in the second sample have cancer disease.
(1) Find a point estimate for the difference between the proportions of people having cancer disease in the two cities.
(2) Find a 90% confidence interval for the difference between the two proportions.

Solution:

$p_{1}=$ population proportion of people having cancer disease in the first city (A)
$p_{2}=$ population proportion of people having cancer disease in the second city (B)
$\hat{p}_{1}=$ sample proportion of the first sample
$\hat{p}_{2}=$ sample proportion of the second sample
$\mathrm{X}_{1}=$ number of people with cancer in the first sample
$\mathrm{X}_{2}=$ number of people with cancer in the second sample
For the first sample we have:

$$
n_{1}=1500, \quad X_{1}=75
$$

$$
\hat{p}_{1}=\frac{X_{1}}{n_{1}}=\frac{75}{1500}=0.05, \quad \hat{q}_{1}=1-0.05=0.95
$$

For the second sample we have:

$$
\begin{aligned}
& n_{2}=2000 \quad, \quad X_{2}=80 \\
& \hat{p}_{2}=\frac{X_{2}}{n_{2}}=\frac{80}{2000}=0.04 \quad, \quad \hat{q}_{2}=1-0.04=0.96
\end{aligned}
$$

(1) Point Estimation for $p_{1}-p_{2}$:

A good point estimate for the difference between the two proportions, $p_{1}-p_{2}$, is:

$$
\begin{aligned}
\hat{p}_{1}-\hat{p}_{2} & =0.05-0.04 \\
& =0.01
\end{aligned}
$$

(2) Finding 90% Confidence Interval for $p_{1}-p_{2}$: $90 \%=(1-\alpha) 100 \% \Leftrightarrow 0.90=(1-\alpha) \Leftrightarrow \alpha=0.1 \Leftrightarrow \alpha / 2=0.05$ The reliability coefficient: $Z_{1-\frac{\alpha}{2}}=z_{0.95}=1.645$
A 90% confidence interval for $p_{1}-p_{2}$ is:

$$
\begin{gathered}
\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}} \\
\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm Z_{0.95} \sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}} \\
0.01 \pm 1.645 \sqrt{\frac{(0.05)(0.95)}{1500}+\frac{(0.04)(0.96)}{2000}} \\
0.01 \pm 0.01173 \\
-0.0017<p_{1}-p_{2}<0.0217
\end{gathered}
$$

We are 90% confident that $p_{1}-p_{2} \in(-0.0017,0.0217)$.
Note: Since the confidence interval includes zero, we may conclude that the two population proportions are equal ($p_{1}-$ $p_{2}=0 \Leftrightarrow p_{1}=p_{2}$). Therefore, we may conclude that the proportion of people having cancer is the same in both cities.

CHAPTER 7: Using Sample Statistics To Test Hypotheses About Population Parameters:

In this chapter, we are interested in testing some hypotheses about the unknown population parameters.

7.1 Introduction:

Consider a population with some unknown parameter θ. We are interested in testing (confirming or denying) some conjectures about θ. For example, we might be interested in testing the conjecture that $\theta>\theta_{0}$, where θ_{0} is a given value.

- A hypothesis is a statement about one or more populations.
- A research hypothesis is the conjecture or supposition that motivates the research.
- A statistical hypothesis is a conjecture (or a statement) concerning the population which can be evaluated by appropriate statistical technique.
- For example, if θ is an unknown parameter of the population, we might be interested in testing the conjecture sating that $\theta \geq \theta_{0}$ against $\theta<\theta_{0}$ (for some specific value θ_{0}).
- We usually test the null hypothesis $\left(\mathrm{H}_{0}\right)$ against the alternative (or the research) hypothesis $\left(\mathrm{H}_{1}\right.$ or $\left.\mathrm{H}_{A}\right)$ by choosing one of the following situations:

$$
\begin{equation*}
\mathrm{H}_{\mathrm{o}}: \theta=\theta_{0} \text { against } \mathrm{H}_{\mathrm{A}}: \theta \neq \theta_{0} \tag{i}
\end{equation*}
$$

(ii) $\mathrm{H}_{0}: \theta \geq \theta_{0}$ against $\mathrm{H}_{\mathrm{A}}: \theta<\theta_{0}$
(iii) $\mathrm{H}_{0}: \theta \leq \theta_{0}$ against $\mathrm{H}_{\mathrm{A}}: \theta>\theta_{0}$

- Equality sign must appear in the null hypothesis.
- H_{0} is the null hypothesis and H_{A} is the alternative hypothesis. (H_{0} and H_{A} are complement of each other)
- The null hypothesis $\left(\mathrm{H}_{0}\right)$ is also called "the hypothesis of no difference".
- The alternative hypothesis $\left(H_{A}\right)$ is also called the research hypothesis.

- There are 4 possible situations in testing a statistical hypothesis:

Condition of Null Hypothesis H_{0} (Nature/reality)

	H_{0} is true		H_{o} is false
Possible Action (Decision)	Accepting H_{0}	Correct Decision	Type II error (β)
	Rejecting H_{0}	Type I error (α)	Correct Decision

- There are two types of Errors:
- Type I error $=$ Rejecting H_{o} when H_{0} is true $\mathrm{P}($ Type I error $)=\mathrm{P}($ Rejecting Ho \mid Ho is true $)=\alpha$
- Type II error $=$ Accepting Ho when Ho is false $\mathrm{P}($ Type $I I$ error $)=\mathrm{P}($ Accepting Ho \mid Ho is false $)=\beta$
- The level of significance of the test is the probability of rejecting true H_{0} :

$$
\alpha=\mathrm{P}\left(\text { Rejecting } \mathrm{H}_{0} \mid \mathrm{H}_{0} \text { is true }\right)=\mathrm{P}(\text { Type } \mathrm{I} \text { error })
$$

- There are 2 types of alternative hypothesis:
- One-sided alternative hypothesis:
- $\mathrm{H}_{\mathrm{O}}: \theta \geq \theta_{0}$ against $\mathrm{H}_{\mathrm{A}}: 0<0_{0}$
- $\mathrm{H}_{\mathrm{O}}: \theta \leq \theta_{0}$ against $\mathrm{H}_{\mathrm{A}}: \theta>\theta_{\mathrm{o}}$
- Two-sided alternative hypothesis:
- $\mathrm{H}_{\mathrm{O}}: \theta=\theta_{0}$ against $\mathrm{H}_{\mathrm{A}}: \theta \neq \theta_{0}$
- We will use the terms "accepting" and "not rejecting" interchangeably. Also, we will use the terms "acceptance" and "nonrejection" interchangeably.
- We will use the terms "accept" and "fail to reject" interchangeably

The Procedure of Testing H_{0} (against H_{A}):
The test procedure for rejecting H_{0} (accepting H_{A}) or accepting H_{6} (rejecting H_{A}) involves the following steps:

1- Determining Hypothesis

2. Determining a test statistic (T.S.)

We choose the appropriate test statistic based on the point estimator of the parameter.
The test statistic has the following form:

$$
\text { Test statistic }=\frac{\text { Estimate }- \text { hypothesized parameter }}{\text { Standard Error of the Estimate }}
$$

3. Determining the level of significance (α) :

$$
\alpha=0.01,0.025,0.05,0.10
$$

4. Determining the rejection region of H_{o} (R.R.) and the acceptance region of $\mathrm{H}_{0}(\mathrm{~A} . \mathrm{R}$.$) .$
The R.R. of H_{0} depends on H_{A} and α :

- H_{A} determines the direction of the R.R. of H_{v}
- α determines the size of the R.R. of H_{0} ($\alpha=$ the size of the R.R. of $\mathrm{H}_{\mathrm{o}}=$ shaded area)

5. Decision:

We reject H_{0} (and accept H_{A}) if the value of the test statistic (T.S.) belongs to the R.R. of H_{0}, and vice versa.
Notes:

1. The rejection region of H_{0} (R.R.) is sometimes called "the critical region".
2. The values which separate the rejection region (R.R.) and the acceptance region (A.R.) are called "the critical values" or Relibility Cofficient.

7.2 Hypothesis Testing: A Single Population Mean (μ):

Suppose that $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}$ is a random sample of size n from a distribution (or population) with mean μ and variance σ^{2}.

We need to test some hypotheses (make some statistical inference) about the mean (μ).
King Saud University $\quad 127$ Dr, Abdulah Al-Shilta

Chapter 7 : Testing Hypothesis about population mean (μ) :

Example: (first case: variance σ^{2} is known)

A random sample of 100 recorded deaths in the United States during the past year showed an average of 71.8 years. Assuming a population standard deviation of 8.9 year, does this seem to indicate that the mean life span today is greater than 70 years?
Use a 0.05 level of significance.

Solution:

$$
\begin{aligned}
& n=100 \text { (large), } \\
& \sigma=8.9 \text { (} \sigma \text { known) } \\
& \bar{X}=71.8, \sigma=8.9(\sigma \text { is known }) \\
& \mu=\text { average (mean) life span } \\
& \mu_{N}=70 \\
& \alpha=0.05
\end{aligned}
$$

1) Hypotheses:

$$
\begin{aligned}
& \text { Ho: } \mu \leq 70 \quad(\mu \mathrm{o}=70) \\
& \text { HA: } \mu>70 \quad \text { (research hypothesis) }
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{H}_{0}: \mu \leq 70 \quad & \left(\mu_{0}-70\right) \\
\mathrm{H}_{\mathrm{A}}: \mu>70 & \text { (research hypothesis) }
\end{array}
$$

Test statistics (T.S.) :
$Z=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}=\frac{71.8-70}{8.9 / \sqrt{100}}=2.02$
Level of significance:
$\alpha=0.05 \quad 1-\alpha=0.95$
Rejection Region of H_{0} (R.R.): (critical region) is $\mathrm{Z}_{1-\mathrm{a}}=\mathrm{Z}_{0.95}=1.645$
We should reject H_{0} if: $Z($ test $)>Z_{1-a}$

Another solution :
From curve:
1)determine test value on graph
2) Z (test) $=2.02$ in R.R,then reject H_{o}

Note: Using P-Value as a decision tool:

P-value is the smallest value of α for which we can reject the null hypothesis H_{0}.
Calculating P -value:

* Calculating P-value depends on the alternative hypothesis H_{A}.
* Suppose that $Z_{c}=\frac{\bar{X}-\mu_{e}}{\sigma / \sqrt{n}}$ is the computed value of the test Statistic.
* The following table illustrates how to compute P-value, and how to use P-value for testing the null hypothesis:

			Z =
Alternative Hypothesis:	$\mathrm{HA}: \mu \neq \mu \mathrm{O}$	HA: $\mu>\mu_{0}$	HA: ${ }^{\text {C }}<\mu^{\circ}$
P - Value	$2 \times P\left(Z>\left\|Z_{C}\right\|\right)$	$\mathrm{P}\left(\mathrm{Z}>\mathrm{Z}_{\mathrm{C}}\right)$	$\mathrm{P}(\mathrm{Z}>-7 .)^{\text {e }}$)
Significance Level =	α		
Decision	Reject Ho if P-1	alue \leq.	

Example:

For the previous example, we have found that:

$$
Z_{C}=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}=2.02
$$

The alternative hypothesis was HA: $\mu>70$.

$$
\begin{aligned}
P=\text { Value } & =P\left(Z>Z_{C}\right) \\
& =P(Z>2.02)=1-P(Z<2.02)-1-0.9783=0.0217
\end{aligned}
$$

The level of significance was $\alpha=0.05$. Decision : Reject H_{0} If :
Since P-value $\leq \alpha$, we reject H_{o}

P-value < a $0.0217<0.05$

Example: (second case: variance is unknown)

The manager of a private clinic claims that the mean time of the patient-doctor visit in his clinic is 8 minutes. Test the hypothesis that $\mu=8$ minutes against the alternative that $\mu \neq 8$ minutes if a random sample of 25 patient-doctor visits yielded a mean time of 7.8 minutes with a standard deviation of 0.5 minutes. It is assumed that the distribution of the time of this type of visits is normal. Use a 0.01 level of significance.

Solution:

The distribution is normal.

$$
\begin{aligned}
& n=25 \text { (small) } \\
& X=7.8 \\
& \mathrm{~S}=0.5 \text { (sample standard deviation): } \sigma \text { is unknown } \\
& \mu=\text { mean time of the visit, } \alpha=0.01
\end{aligned}
$$

Hypotheses:

$$
\begin{aligned}
H_{0}: u=8 & \left(\mu_{\mathrm{a}}=8\right) \\
H_{A}: \mu \neq 8 & \text { (research hypothesis) }
\end{aligned}
$$

Test statistics (T.S.):

$$
\begin{array}{r}
T=\frac{\bar{X}-\mu_{0}}{S / \sqrt{7 t}}=\frac{7.8-8}{0.5 / \sqrt{25}}=-2 \\
\mathrm{df}=v=\mathrm{n}=1=25-1=24
\end{array}
$$

Level of significance:

$$
\alpha=0.01, \alpha / 2=0.005,1-\alpha / 2=0.995
$$

Rejection Region of Ho (R.R.): (critical region)
$t_{1-\alpha / 2}=t_{0.005}=2.797$
We should reject Ho if:

Since $T=-2 \in A . R$., we accept $H_{o}: \mu=8$ at $\alpha=0.01$ and reject $H_{A}: \mu \neq 8$. Therefore, we conclude that the claim is correct.

Note:

For the case of non-normal population with unknown variance, and when the sumple size is large ($n \geq 30$), we may use the following test statistic:

$$
Z=\frac{\dot{\bar{X}}-\mu_{0}}{S / \sqrt{n}}
$$

That is, we replace the population standard deviation (a) by the sample standard deviation (S), and we conduct the test as described for the first case.

7.3 Hypothesis Testing: The Difference Between Two Population Means: (Independent Populations)

Suppose that we have two (independent) populations:

- 1-st population with mean μ_{1} and variance σ_{1}^{2}
- 2-nd population with mean μ_{2} and variance $\sigma_{2}{ }^{2}$
- We are interested in comparing μ_{1} and μ_{2}, or equivalently, making inferences about the difference between the means $\left(\mu_{1}-\mu_{2}\right)$.
- We independently select a random sample of size n_{1} from the 1 -st population and another random sample of size n_{2} from the 2-nd population:
- Let \bar{X}_{1} and S_{1}^{2} be the sample mean and the sample variance of the 1 -st sample.
- Let \bar{X}_{2} and S_{2}^{2} be the sample mean and the sample variance of the 2 -nd sample.
- The sampling distribution of $\bar{X}_{1}-\bar{X}_{2}$ is used to make inferences about $\mu_{1}-\mu_{2}$.
We wish to test some hypotheses comparing the population means.

Hypotheses:

We choose one of the following situations:
(i) $\mathrm{H}_{\mathrm{o}}: \mu_{1}=\mu_{2}$ against $\mathrm{H}_{\mathrm{A}}: \mu_{1} \neq \mu_{2}$
(ii) $\mu_{0}: \mu_{1} \geq \mu_{2}$ against $H_{A}: \mu_{1}<\mu_{2}$
(iii) $H_{0}: \mu_{1} \leq \mu_{2}$ against $H_{A}: \mu_{1}>\mu_{2}$
or equivalently,
(i) $H_{0}: \mu_{1}-\mu_{2}=\mathrm{M}_{0}$ against $\mathrm{H}_{\mathrm{A}}: \mu_{1}-\mu_{2} \neq \mathrm{M}_{\mathrm{o}}$
(ii) $H_{0}: \mu_{1}-\mu_{2} \geq \mathrm{M}_{\mathrm{o}}$ against $\mathrm{H}_{\mathrm{A}}: \mu_{1}-\mu_{2}<\mathrm{M}_{\mathrm{o}}$
(iii) $H_{a}: \mu_{1}-\mu_{2} \leq M_{o}$ against $H_{A}: \mu_{1}-\mu_{2}>\mathrm{M}_{\mathrm{o}}$

Test Statistic:

(1) First Case:

For normal populations (or non-normal populations with large sample sizes), and if σ_{1}^{2} and σ_{2}^{2} are known, then the test statistic is:

$$
\mathrm{Z}=\frac{\bar{X}_{1}-\bar{X}_{2}-\mathrm{M}_{\mathrm{o}}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} \sim \mathrm{~N}(0,1)
$$

(2) Second Case:

For normal populations, and if σ_{1}^{2} and σ_{2}^{2} are unknown but equal ($\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2}$), then the test statistic is:

$$
T=\frac{\bar{x}_{1}-\bar{X}_{2}-\mathrm{M}_{\mathrm{o}}}{\sqrt{\frac{S_{p}^{2}}{n_{1}}+\frac{S_{p}^{2}}{n_{2}}}} \sim \mathrm{t}\left(n_{1}+n_{2}-2\right)
$$

where the pooled estimate of σ^{2} is

$$
S_{p}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}
$$

and the degrees of freedom of S_{p}^{2} is $\mathrm{df}=\mathrm{v}=n_{1}+n_{2}-2$.

Testing Hypothesis about difference between two

population means $\left(\mu_{1}-\mu_{1}\right)$: (Independent population)

Hypothesis	$\begin{aligned} & H_{0}: \mu_{1}-\mu_{2}=M_{0} \\ & H_{A}: \mu_{1}-\mu_{2}=M_{0} \end{aligned}$	$\begin{aligned} & H_{0}: \mu_{1}-\mu_{2} \leq M_{0} \\ & H_{A}: \mu_{1}-\mu_{2}>M_{0} \end{aligned}$	$\begin{aligned} & H_{0}: \mu_{1}-\mu_{2} \geqslant \mathbf{M}_{0} \\ & H_{A}: \mu_{1}-\mu_{2}<\mathbf{M}_{0} \end{aligned}$
First Case	$\sigma_{1}^{2}, \sigma_{2}^{2}$ are known + Normal or Non-Normal with large samples		
Test Statistic (T.S.)	$Z=\frac{X_{1}-X_{2}-\mathrm{M}_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} \sim N(0,1)$		
Rejection Region(R.R) $\&$ Acceptance Region(A.R)			
Reliability Coefficient	$-Z_{1-\alpha / 2}$ or $Z_{1-\alpha / 2}$	$Z_{\text {i-a }}$	$-Z_{1-\alpha}$
Decision: Reject H_{0} if the	Reject H_{0} (Accept $\left.H_{A}\right)$ at the significant level α if:		
following condition satisfies	$\begin{aligned} Z & >Z_{Z_{1 \cdot a / 2}} \\ \text { or } Z & <-Z_{1-\alpha / 2} \end{aligned}$	$\begin{gathered} \mathrm{Z}>\mathrm{Z}_{1-\mathrm{a}} \\ \text { (one-5ided Test) } \end{gathered}$	$\begin{gathered} Z<-Z_{\text {1-a }} \\ \text { (one-5ided Test) } \end{gathered}$
Second Case	$\sigma_{1}^{2}, \sigma_{2}^{2}$ are unknown but equal $\left(\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2}\right)$ + Normal		
Test Statistic (T.S.)	$\begin{array}{cc} T=\frac{\bar{x}_{1}-\bar{X}_{2}-\mathrm{M}_{0}}{\sqrt{\frac{S_{p}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}} & , S_{\mathcal{2}}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2} \\ & \mathrm{df}=\mathrm{n}_{1}+\mathrm{n}_{2}-2 \end{array}$		
Rejection Region(R.R) $\&$ Acceptance Region(A.R)			
Reliability Cocfficient	$-t_{1-a / 2}$ or $t_{1-a / 2}$	$\mathrm{t}_{1-\mathrm{a}}$	- $\mathrm{t}_{1-\mathrm{a}}$
Decision: Reject H_{0} if the	Reject $\mathrm{H}_{0}\left(\right.$ Accept $\left.\mathrm{H}_{A}\right)$ at the significant level α if :		
Following condition satisfies	$\begin{gathered} T>t_{1-\alpha / 2} \\ O r T<-t_{1-\alpha / 2} \\ (T w o-\text { sided test) } \end{gathered}$	$\begin{gathered} \mathrm{T}>\mathrm{t}_{1-\mathrm{a}} \\ \text { (one-Sided Test) } \end{gathered}$	$\begin{gathered} T<-t_{1-a} \\ \text { (one-sided Test) } \end{gathered}$

Example: ($\sigma_{1}^{2}, \sigma_{2}^{2}$ arc known)

Researchers wish to know if the data they have collected provide sufficient evidence to indicate the difference in mean serum uric acid levels between individuals with Down's syndrome and normal individuals. The data consist of serum uric acid on 12 individuals with Down's syndrome and 15 normal individuals. The sample means are
$\bar{X}_{1}=4.5 \mathrm{mg} / 100 \mathrm{ml}$
$R_{2}=3.4 \mathrm{mg} / 100 \mathrm{ml}$
Assume the populations are normal with variances

$$
\begin{aligned}
\sigma_{1}^{2} & =1 \\
\sigma_{2}^{2} & =1.5
\end{aligned}
$$

. Use significance level $\alpha=0.05$.

Solution:

$\mu_{1}=$ mean serum uric acid levels for the individuals with
Down's syndrome.
$\mu_{2}=$ mean serum uric acid levels for the normal individuals.
$n_{1}=12 \quad \bar{X}_{1}=4.5 \quad \sigma_{1}^{2}=1$
$n_{2}=15 \quad \bar{X}_{2}=3.4 \quad \sigma_{2}^{2}=1.5$.

Hypotheses:

$$
\mathrm{H}_{\mathrm{o}}: \mu_{1}=\mu_{2} \text { against } \mathrm{H}_{\mathrm{A}}: \mu_{1} \neq \mu_{2}
$$

or

$$
\mathrm{H}_{0}: \mu_{1}-\mu_{2}=0 \text { against } \mathrm{H}_{\mathrm{A}}: \mu_{1}-\mu_{2} \neq 0
$$

Calculation:

1) $\alpha=0.05$
2) $1-\alpha / 2=1-0.05 / 2=0.975$
3) $Z_{1-\alpha / 2}=Z_{0.975}=1.96$

Test Statistic (T.S.):

$$
Z=\frac{\bar{X}_{1}-\bar{X}_{2}-\mathrm{M}_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} \frac{4.5-3.4-0}{\sqrt{\frac{1}{12}+\frac{1.5}{15}}}=2.569
$$

Decision : Reject H_{0} If
Z (test) $>Z_{0.975}$ or $Z<-Z_{0.975}$
$2.569>1.96$

Another solution: from curve Since Z (test) $=2.569$ in R.R Decision:

Reject H

Since $Z=2.569 \in R . R$. we reject $H_{0}: \mu_{1}=\mu_{2}$ and we accept (do not reject) $\mathrm{H}_{\mathrm{A}}: \mu_{1} \neq \mu_{2}$ at $\alpha=0.05$. Therefore, we conclude that the two population means are not equal.
Notes:

1. We can easily show that a 95% confidence interval for ($\mu_{1}-$ $\left.\mu_{2}\right)$ is $(0.26,1.94)$, that is:

$$
0.26<\mu_{1}-\mu_{2}<1.94
$$

Since this interval does not include 0 , we say that 0 is not a candidate for the difference between the population means ($\mu_{1}-$ μ_{2}), and we conclude that $\mu_{1}-\mu_{2} \neq 0$, i.e., $\mu_{1} \neq \mu_{2}$. Thus we arrive
Another solution by p-value:
2. P-Value $=2 \times P\left(Z>\left|Z_{c}\right|\right)$

$$
=2 P(Z>2.57)=2[1-P(Z<2.57)]=2(1-0.9949)=0.0102
$$

The level of significance was $\alpha=0.05 . \quad$ Reject H_{0} If p-value $<a$ Since P-value $<\alpha$, we reject H_{0}.

Example: $\left(\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2}\right.$ is unknown)
An experiment was performed to compare the abrasive wear of two different materials used in making artificial teeth. 12 pieces of material 1 were tested by exposing each piece to a machine measuring wear. 10 pieces of material 2 were similarly tested. In each case, the depth of wear was observed. The samples of material 1 gave an average wear of 85 units with a sample standard deviation of 4 , while the samples of materials 2 gave an average wear of 81 and a sample standard deviation of 5. Can we conclude at the 0.05 level of significance that the mean abrasive wear of material 1 is greater than that of material 2 ? Assume normal populations with equal variances.

Solution:

Material 1	material 2
$n_{1}=12$	$n_{2}=10$
$\bar{X}_{1}=85$	$\bar{X}_{2}=81$
$\mathrm{~S}_{1}=4$	$\mathrm{~S}_{2}=5$

Hypotheses:

$$
\begin{gathered}
\mathrm{H}_{0}: \mu_{1} \leq \mu_{2} \\
\mathrm{H}_{\mathrm{A}}: \mu_{1}>\mu_{2} \\
\text { Or equivalently, } \\
\mathrm{H}_{\mathrm{o}}: \mu_{1}-\mu_{2} \leq 0 \\
\mathrm{H}_{\mathrm{A}}: \mu_{1}-\mu_{2}>0
\end{gathered}
$$

Calculation:
$\alpha=0.05$

$$
\begin{aligned}
& S_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2} \\
= & \frac{(12-1) 4^{2}+(10-1) 5^{2}}{12+10-2}=20.05
\end{aligned}
$$

Reliability Coefficient:

$$
\begin{array}{r}
\qquad f=v=12+10-2=20 \\
\alpha=0.05 \cdots+1-\alpha=0.95 \cdots+t_{1 \cdot e}=t_{0.95}=1.725
\end{array}
$$

Test Statistic (T.S.):

$$
T=\frac{\bar{x}_{1}-\bar{x}_{2}-\mathrm{M}_{\mathrm{O}}}{\sqrt{\frac{S_{\rho}^{2}}{n_{1}}+\frac{s_{1}^{2}}{n_{2}}}}=\frac{85-81-0}{\sqrt{\frac{20.05}{12}+\frac{20.05}{10}}}=2.09
$$

$$
\begin{gathered}
\text { Reject } \mathrm{H}_{\mathrm{o}} \text { If } \mathrm{T}(\text { test })>\mathrm{t}_{1-\mathrm{a}} \\
2.09>1.725 \\
\checkmark
\end{gathered}
$$

Decision:

Since $T=2.09 \in R . R .(T=2.09>t 0.95=1.725)$, we reject H_{0} and we accept $\mathrm{H}_{\mathrm{A}}: \mu_{1}-\mu_{1}>0\left(\mathrm{HA}_{\mathrm{A}}: \mu_{1}>\mu_{1}\right)$ at $\alpha=0.05$. Therefore, we conclude that the mean abrasive wear of material 1 is greater than that of material 2.

7.4 Paired Comparisons:

Paired T-Test:

- In this section, we are interested in comparing the means of two related (non-independent/dependent) normal populations.
- In other words, we wish to make statistical inference for the difference between the means of two related normal populations.
- Paired t-Test concerns about testing the equality of the means of two related normal populations.

Examples of related populations are:

1. Height of the father and height of his son.
2. Mark of the student in MATH and his mark in STAT.
3. Pulse rate of the patient before and after the medical treatment.
4. Hemoglobin level of the patient before and after the medical treatment.

Test procedure:

Let

X : Values of the first population
Y: Values of the Second population
D: Values of X - Values of Y
Means:
$\mu_{1}=$ Mean of the first population
$\mu_{2}=$ Mean of the Second population
$\mu_{\mathrm{D}}=$ Mean of X - Mean of Y $\quad\left(\mu_{\mathrm{D}}=\mu_{1}-\mu_{2}\right)$

Confident Interval and Testing Hypothesis about difference between

 two population means $\left(\mu_{\mathrm{b}}-\mu_{1}-\mu_{2}\right)$: (Dependent/Related population)| Calculate the following Quantities | * The difference (D-observation): $\mathrm{D}_{\mathrm{i}}=\mathrm{X}_{i}-\mathrm{Y}_{\mathrm{i}} \quad, \mathrm{i}=1,2,3,4, \ldots \ldots, \mathrm{n}$
 - Sample mean of the D-Observaticens : $\bar{D}=\frac{Z_{i-1}^{n} D_{i}}{n}$
 - Sample Variance $S_{5}^{2}=\frac{\sum_{i=1}^{n}\left(D_{1}-\bar{D}\right)^{2}}{n-t}$
 - Sample Standard Deviation $S_{p}=\sqrt{S_{0}^{2}}$ | | |
| :---: | :---: | :---: | :---: |
| Confident Interval for $\mu_{\mathrm{D}}=\mu_{1}-\mu_{2}$ | | | |
| $100(1-a) \%$ Gonfident Interva for μ_{0} | $\bar{D} \pm t_{1} \frac{a}{2} \frac{S_{D}}{\sqrt{n}}, d f=n-1$ | | |
| Testing Hypothesis for $\mu_{0}=\mu_{1}-\mu_{2}$ | | | |
| Hypothesis | $\begin{aligned} & H_{0}: \mu_{t}-\mu_{2}=\mathrm{M}_{\mathrm{O}} \\ & H_{\mathrm{A}}: \mu_{1}-\mu_{2} \neq \mathrm{M}_{\mathrm{O}} \end{aligned}$
 Or $H_{c}: \mu_{D}=M_{0} \text { vs } H_{A}: \mu_{0} \neq \bar{M}_{0}$ | $\begin{aligned} & H_{0}: \mu_{1}-\mu_{2} \leq M_{\mathrm{O}} \\ & H_{\mathrm{A}}: \mu_{1}-\mu_{2}>\mathrm{M}_{\mathrm{O}} \end{aligned}$
 Or $H_{0}: \mu_{0} \leq M_{0} \text { vs } H_{A}: \mu_{0}>M_{0}$ | $\begin{gathered} H_{\mathrm{B}}: \mu_{1}-\mu_{2} \geq \mathrm{M}_{\mathrm{O}} \\ H_{\mathrm{A}}: \mu_{\mathrm{t}}-\mu_{2}<\mathrm{M}_{\mathrm{O}} \\ \text { Or } \\ H_{0}: \mu_{\mathrm{D}} \geq \mathrm{M}_{\mathrm{O}} \mathrm{~V}, H_{\mathrm{A}}: \mu_{\mathrm{D}}<\mathrm{M}_{\mathrm{O}} \end{gathered}$ |
| Test Statistic (T.S.) | $T=\frac{\bar{D}-\mathrm{M}_{\mathrm{O}}}{S_{0} / \sqrt{n}^{\prime}} \quad, d f=v=n-1$ | | |
| Rejection Region(R.R) 8
 Aeceptance Repion(A.R) | | | |
| Reliability Coefficient | $-t_{1-a / 2}$ or $t_{1-a / 2}$ | $\mathrm{t}_{1 \mathrm{u}}$ | $-t_{\text {din }}$ |
| Decision:
 Reject H_{0} If the | Reject $H_{n}\left(\right.$ Accept $\left.H_{A}\right)$ at the significant level α if : | | |
| Following condition satisfies | $\begin{gathered} T>t_{1-\alpha / 2} \\ \text { Or } T<-t_{1-a / 2} \\ \text { (Two-sided test) } \end{gathered}$ | $\begin{gathered} T>\boldsymbol{t}_{1-a} \\ \text { (one-sided Test) } \end{gathered}$ | $\begin{gathered} \mathrm{T}<-\mathrm{t}_{1-a} \\ \text { (one-sided Test) } \end{gathered}$ |

Example:

Suppose that we are interested in studying the effectiveness of a certain diet program on ien individual, Let the random variables X and Y given as following table :

Individual(i)	1	2	3	4	5	6	7	8	9	10
Weight before $\left(\mathrm{X}_{\mathrm{i}}\right)$	86.6	80.2	91.5	80.6	82.3	81.9	88.4	85.3	83.1	82.1
Weight After (Y)	79.7	85.9	81.7	82.5	77.9	85.8	81.3	74.7	68.3	69.7

1) A 95% Confident Interval for the difference between the mean of weights before the diet program $\left(\mu_{1}\right)$ and the mean of weights after the diet programt $\left(\mu_{2}\right)$.

$$
\left[\mu_{0}=\mu_{1}-\mu_{2}\right]
$$

2) Does the data provide sufficient evidence to allow us to conclude that the diet is good? Use $\alpha-0.05$ and assume population is normal.

Solution:

1-st population $(\mathrm{X})=$ the weight of the individual before the diet program.
2-nd population $(\mathrm{Y})=$ the weight of the same individual afler the diet program.
We assume that the distributions of these random variables are normal with means μ_{5} and μ_{2}, respectively.

These two variables are related (dependent/non-independent)because they are measured on the same individual.

Calculate mean, standard deviation

i	Xi	Yi	$\mathrm{D}_{\mathrm{j}}-\mathrm{Xi}-\mathrm{Y}$
,	86.6	70.7	6.9
2	80.2	85.9	-5.7
3	91.5	81.7	9.8
4	80.6	82.5	- 19
5	82.3	77.9	4.4
6	81.9	85.8	-3.9
7	88.4	81.3	7.1
8	85.3	74.7	10.6
9	83.1	68.3	14.8
10	82.1	69.7	12.4
sum	$\Sigma \mathrm{x}=842$	Ev-787.5	इb-54.5

D,S_{D}

First, we need to calculate:(By calculator)

Sample Mean:

$$
\bar{D}=\frac{\sum_{i=1}^{n} D_{i}}{n}=\frac{54.5}{10}=5.45
$$

Sample Variance :

$$
S_{D}^{2}=\frac{\sum_{i=1}^{n}\left(D_{i}-D\right)^{2}}{n-1}=\frac{(6.9-5.45)^{2}+(-5.7-5.45)^{2}+\cdots \cdots \cdots+(12.4-5.45)^{2}}{10-1}=50.33
$$

Sample Standard Deviation: $S_{D}=\sqrt{S_{D}^{2}}=\sqrt{50.33}=7.09$
Reliability Coeflicient : $t_{1-\pi / 2}$:

$$
\begin{aligned}
& \alpha=0.05 \cdots-1-0.05 / 2=1-0.025=0.975(\mathrm{df}=10-1=9) \\
& t_{1+w / 2}=t_{0.975}=2.262
\end{aligned}
$$

Then 95% Confident Interval for $\mu_{D}=\mu_{1}-\mu_{2}$

$$
\begin{gathered}
\bar{D} \pm t_{1-\frac{a}{2}} \frac{S_{D}}{\sqrt{n}} \\
5.45 \pm 2.262 \frac{7.09}{\sqrt{10}} \\
5.45 \pm 5.0715 \\
(5.45-5.0715,5.45+5.0715) \\
(0.38,10.52) \\
0.38<\mu_{D}<10.52
\end{gathered}
$$

2) Does the data provide sufficient evidence to allow us to conclude that the diet is good? Use $\alpha=0.05$ and assume population is normal .

Diet is good means .-. weight after will be less than weight befor.

Solution:

$$
\begin{aligned}
& \mu_{1}=\text { Mean of the first population } \\
& \mu_{2}=\text { Mean of the second population } \\
& \mu_{\mathrm{D}}=\text { Mean of } \mathrm{X}-\text { Mean of } \mathrm{Y} \quad\left(\mu_{\mathrm{D}}=\mu_{1}-\mu_{2}\right)
\end{aligned}
$$

Hypothesis :

$$
H_{0}: \mu_{1} \leq \mu_{2} \quad \text { vs } H_{A}: \mu_{1}>\mu_{2}
$$

or $\quad H_{0}: \mu_{1}-\mu_{2} \leq 0$ vs $H_{A}: \mu_{1}-\mu_{2}>0$
or $\quad H_{0}: \mu_{\mathrm{D}} \leq 0 \quad$ vs $\mathrm{H}_{\mathrm{A}}: \mu_{\mathrm{D}}>0$

Test Statistic:

$$
\begin{aligned}
& \bar{D}=5.45, S_{D}=7.09, n=10 \\
& T=\frac{\overline{\mathrm{D}}-\mathrm{M}_{0}}{\frac{S_{0}}{\sqrt{n}}}=\frac{5.45-0}{\frac{7.04}{\sqrt{10}}}=2.43
\end{aligned}
$$

Rejection Region(R.R):

$$
\alpha=0.05 \cdots \quad 1-\alpha=0.95 \cdots t_{1-n}=t_{0.95}=1.833 \quad(\mathrm{df}=\mathrm{n}-1=9)
$$

Reject H_{0} if $\mathrm{T}>\mathrm{t}_{1-\mathrm{e}}$

$$
2.45>1.833 \text { (condition satisfied) }
$$

Then reject H_{0} and accept $\mathrm{H}_{\mathrm{A}}: \mu_{1}>\mu_{2}$
So, we have a good diet program .
7.5 Hypothesis Testing: A Single Population Proportion (p):

In this section, we are interested in testing some hypotheses about the population proportion (p).

Recall:

- p - Population proportion of elements of Type A in the population $p=\frac{\text { no. of elements of type } A \text { in the population }}{\text { Total no. of elements in the population }}$

$$
p=\frac{A}{N} \quad(N=\text { population size })
$$

- $n=$ sample size
- $X=$ no. of elements of type A in the sample of size n.
- $\hat{p}=$ Sample proportion elements of Type A in the sample $\hat{p}=\frac{\text { no. of elements of type } A \text { in the sample }}{\text { no. of elements in the sample }}$ $\hat{p}=\frac{X}{n} \quad$ ($\mathrm{n}=$ sample size $=$ no. of elements in the sample)
- \hat{p} is a "good" point estimate for p.
- For large $n,(n \geq 30, n p>5)$, we have

Test Procedure: $\left(\mathrm{P}_{0}\right.$ is known number)

Hypothesis	$\begin{aligned} & H_{0}: P=P_{0} \\ & H_{A}: P \neq P_{0} \end{aligned}$	$\begin{aligned} & H_{0}: P \leq P_{0} \\ & H_{A}: P>P_{0} \end{aligned}$	$\begin{aligned} & H_{0}: P \geq P_{0} \\ & H_{A}: P<P_{0} \end{aligned}$
Test Statistic (T.S.)	$Z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0} q_{0}}{n}}}, \quad q_{0}=1$		
Rejection Region(R.R) 3 Acceptance Region(A.R)			
Reiability Coefficient	$-\mathrm{Z}_{1-\mathrm{a} / 2}$ or $\mathrm{Z}_{1-a / 2}$	$\mathrm{Z}_{\text {1-a }}$	$-Z_{1-\alpha}$
Decision: Reject H_{0} if the following condition satisfles	Reject $\mathrm{H}_{0}\left(\right.$ Accept $\left.H_{A}\right)$ at the significant level α if:		
	$\begin{aligned} Z & >Z_{1-\alpha / 2} \\ 0 r Z & <-Z_{1-\alpha / Z} \end{aligned}$	$\begin{gathered} \mathrm{Z}>\mathrm{Z}_{1-\alpha} \\ \text { (one-5ided Test) } \end{gathered}$	$\begin{gathered} \mathrm{z}<-\mathrm{z}_{1-\mathrm{u}} \\ \text { (one- }- \text { sided Test) } \end{gathered}$

Example:

A researcher was interested in the proportion of females in the population of all patients visiting a certain clinic. The researcher claims that 70% of all patients in this population are females. Would you agree with this claim if a random survey shows that 24 out of 45 patients are females? Use a 0.10 level of significance.

Solution:

$\mathrm{p}=$ Proportion of female in the population.
$. n=45$ (large)
$X=$ no. of female in the sample $=24$
$\hat{p}=$ proportion of females in the sample

$$
\begin{aligned}
& \hat{p}=\frac{X}{n}=\frac{24}{45}=0.5333 \\
& p_{0}=\frac{70}{100}=0.7 \\
& \alpha=0.10
\end{aligned}
$$

Hypotheses:

$$
\begin{aligned}
& \mathrm{H}_{0}: p=0.7 \quad\left(p_{0}=0.7\right) \\
& \mathrm{H}_{\text {A }}: p \neq 0.7
\end{aligned}
$$

Level of significance:

$$
\alpha=0.10 \quad 1-\alpha / 2=1-0.10 / 2=0.95
$$

Test Statistic (T.S.):

$$
\begin{aligned}
Z & =\frac{\dot{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}} \\
& =\frac{0.5333-0.70}{\sqrt{\frac{(0.7)(0.3)}{45}}}=-2.44
\end{aligned}
$$

Rejection Region of H_{0} (R.R.):
Critical values:

$$
Z_{1-a / 2}=Z_{0.95}=1.645
$$

We reject H_{0} If:

Z (test) $>Z_{0.95}$	or	$Z($ test $)<-Z_{0.95}$
$-2.44>1.645$	or	$-2.44<-1.645$
X		

From curve
Since Z(test)=-2.44 in R.R Decision :

Reject H_{0}

$-Z_{1-\alpha} / 2=-Z 0.95=-1.645$

Since one of the conditions is valid then,

Decision : Reject H ${ }_{0}$

Decision:
Since $Z=-2.44 \in$ Rejection Region of H_{0} (R.R), we reject

$H_{0}: p=0.7$ and accept $H_{A}: p \neq 0.7$ at $\alpha=0.1$. Therefore, we do not agree with the claim stating that 70% of the patients in this population are females.

Example:

In a study on the fear of dental care in a certain city, a survey showed that 60 out of 200 adults said that they would hesitate to take a dental appointment due to fear. Test whether the proportion of adults in this city who hesitate to take dental appointment is less than 0.25 . Use a level of significance of 0.025 .

Solution:

$$
\begin{aligned}
& \mathrm{p}=\text { Proportion of adults in the city who hesitate to } \\
& \text { take a dental appointment. } \\
& . n=200 \text { (large) } \\
& \mathrm{X}=\text { no. of adults who hesitate in the sample }=60 \\
& \hat{p}=\text { proportion of adults who hesitate in the sample } \\
& \hat{p}=\frac{X}{n}=\frac{60}{200}=0.3 \\
& P_{0}=0.25 \\
& \alpha=0.025
\end{aligned}
$$

Hypotheses:

$$
\begin{array}{ll}
\mathrm{H}_{\mathrm{o}}: p \geq 0.25 & \left(p_{\mathrm{o}}=0.25\right) \\
\mathrm{H}_{\mathrm{A}}: p<0.25 & \text { (research hypothesis) }
\end{array}
$$

Level of significance:

$$
\alpha=0.025
$$

Test Statistic (T.S.):

$$
z=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}=\frac{0.3-0.25}{\sqrt{\frac{(0.25)(0.75)}{200}}}=1.633
$$

Rejection Region of H_{o} (R.R.):
Critical value: $\quad Z_{1-a}=Z_{0.975}=1.96$
Critical Region:
We reject H_{0} if:
$Z<-Z_{1-a}$
$1.633<-1.96$ Accept H_{0} (condition not satisfy)

| King Saud Universily | Accept H_{0} (condition not satisfy) |
| :--- | :--- | :--- |

Decision:

Since $\mathrm{Z}=1.633 \in$ Acceptance Region of $\mathrm{H}_{0}(A . R$.), we accept (do not reject) $\mathrm{H}_{0}: p \geq 0.25$ and we reject $\mathrm{H}_{\mathrm{A}}: p<0.25$ at $\alpha=0.025$. Therefore, we do not agree with claim stating that the proportion of adults in this city who hesitate to take dental appointment is less than 0.25 .

7.6 Hypothesis Testing: The Difference Between Two Population Proportions $\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)$:

In this section, we are interested in testing some hypotheses about the difference between two population proportions $\left(p_{1}-p_{2}\right)$.

Suppose that we have two populations:

- $p_{1}=$ population proportion of the 1 -st population.
- $p_{2}=$ population proportion of the 2 -nd population.
- We are interested in comparing p_{1} and p_{2}, or equivalently, making inferences about $p_{1}-p_{2}$.
- We independently select a random sample of size n_{1} from
King Saud University Dr. Abdullah Al-Shihat

the 1-st population and another random sample of size n_{2} from the 2 -nd population:

- Let $X_{1}=$ no. of elements of type A in the 1 -st sample.
- Let $\mathrm{X}_{2}=$ no. of elements of type A in the 2 -nd sample.
- $\hat{p}_{1}=\frac{X_{1}}{n_{1}}=$ the sample proportion of the 1 -st sample
- $\hat{p}_{2}=\frac{X_{2}}{n_{2}}=$ the sample proportion of the 2-nd sample
- The sampling distribution of $\hat{p}_{1}-\hat{p}_{2}$ is used to make inferences about $p_{1}-p_{2}$.
- For large n_{1} and n_{2}, we have

$$
Z=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-\left(p_{1}-p_{2}\right)}{\sqrt{\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}}} \sim \mathrm{~N}(0,1) \quad \text { (Approximately) }
$$

- $q=1-p$

Hypotheses:

We choose one of the following situations:
(i) $\mathrm{H}_{0}: \mathrm{p}_{1}=\mathrm{p}_{2}$ against $\mathrm{H}_{\mathrm{A}}: \mathrm{p}_{1} \neq \mathrm{p}_{2}$
(ii) $H_{0}: p_{1} \geq p_{2}$ against $H_{A}: p_{1}<p_{2}$
(iii) $\mathrm{H}_{0}: \mathrm{p}_{1} \leq \mathrm{p}_{2}$ against $\mathrm{H}_{\mathrm{A}}: \mathrm{p}_{1}>\mathrm{p}_{2}$ or equivalently,
(i) $\mathrm{H}_{0}: \mathrm{p}_{1}-\mathrm{p}_{2}=0$ against $\mathrm{H}_{\mathrm{A}}: \mathrm{p}_{1}-\mathrm{p}_{2} \neq 0$
(ii) $\mathrm{H}_{0}: \mathrm{p}_{1}-\mathrm{p}_{2} \geq 0$ against $\mathrm{H}_{\mathrm{A}}: \mathrm{p}_{1}-\mathrm{p}_{2}<0$
(iii) $\mathrm{H}_{0}: \mathrm{p}_{1}-\mathrm{p}_{2} \leq 0$ against $\mathrm{H}_{\mathrm{A}}: \mathrm{p}_{1}-\mathrm{p}_{2}>0$

Note, under the assumption of the equality of the two population proportions $\left(\mathrm{H}_{0}: p_{1}=p_{2}=p\right)$, the pooled estimate of the common proportion p is:

$$
\bar{p}=\frac{X_{1}+X_{2}}{n_{1}+n_{2}} \quad(\bar{q}=1-\bar{p})
$$

The test statistic (T.S.) is

$$
Z=\frac{\hat{p}_{1}-\widehat{p}_{2}}{\sqrt{\frac{p \bar{q}}{n_{1}}+\frac{\bar{p} \bar{q}}{n_{2}}}} \sim N(0,1)
$$

Test Procedure:

Hypothesis	$\begin{aligned} & H_{0}: P_{1}-P_{2}=0 \\ & H_{2}: P_{1}-P_{2} \neq 0 \end{aligned}$	$\begin{aligned} & H_{0}: P_{1}-P_{2} \leq 0 \\ & H_{A}: P_{1}-P_{2}>0 \end{aligned}$	$\begin{aligned} & H_{0}: P_{1}-P_{2} \geq 0 \\ & H_{3}: P_{1}-P_{2}<0 \end{aligned}$
Test Statistic (T.S.)	$\begin{gathered} Z=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\frac{\bar{p} \bar{q}}{n_{1}}+\frac{\bar{p} \bar{q}}{n_{2}}}} \text {, Pooled proportion: } \bar{p}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}} \\ \text { where } \quad \bar{q}=1-\bar{p} \end{gathered}$		
Rejection Region(R.R) Acceptance Region(A.R)			
Reliability Coefficient	$-Z_{1-\frac{c}{2}}$ or $Z_{1-\frac{1}{2}}$	$\mathrm{Z}_{1-\alpha}$	$-Z_{1-\alpha}$
Decision: Reject H_{2} it the following condition satisfies	Reject H_{0} (Accept H_{A}) at the significant level α if :		
	$\begin{gathered} z>Z_{1-a / 2} \\ \text { or } Z<-Z_{1-a / 2} \end{gathered}$	$\begin{gathered} \mathrm{Z}>\mathrm{Z}_{1-\mathrm{a}} \\ \text { (one }- \text { Sided Test) } \end{gathered}$	$\begin{gathered} Z<-Z_{1 \cdot a} \\ \text { (one-sided } \text { Test) } \end{gathered}$

Example:

In a study about the obesity (overweight), a researcher was interested in comparing the proportion of obesity between males and femaless. The rasarcher hes abtained a random sample of 150 males and another independent random sample of 200 females. The following results were obtained from this study.

	n	Number of obese people(X)
Males	150	21
Females	200	48

Can we conclude from these data that there is a difference between the proportion of obese males and proportion of obese females?
Use $\alpha=0.05$ and assume that the two population proportions are equal.

Solution

$p_{1}=$ population proportion of obese males
$. p_{2}=$ population proportion of obese females
$\dot{p}_{1}=$ sample proportion of obese males
\dot{p}_{2} - sample proportion of obese females

$$
\begin{aligned}
& \text { Males } \\
& n_{1}=150 \\
& \mathrm{X}_{1}=21
\end{aligned}
$$

$$
\hat{p}_{1}=\frac{X_{1}}{n_{1}}=\frac{21}{150}=0.14 \quad \hat{p}_{2}=\frac{X_{2}}{n_{2}}=\frac{48}{200}=0.24
$$

The pooled estimate of the common proportion p is:

$$
\bar{p}=\frac{X_{1}+X_{2}}{n_{1}+n_{2}}=\frac{21+48}{150+200}=0.197
$$

Hypotheses:

$$
\begin{aligned}
& \mathrm{H}_{0}: p_{1}=p_{2} \\
& \mathrm{H}_{\mathrm{A}}: p_{1} \neq p_{2}
\end{aligned}
$$

or

$$
\begin{aligned}
& \mathrm{H}_{0}: p_{1}-p_{2}=0 \\
& \mathrm{H}_{A}: p_{1}-p_{2} \neq 0
\end{aligned}
$$

Level of significance: $\alpha=0.05 \quad 1-\alpha / 2=1-0.05 / 2=0.975$
Test Statistic (T.S.):

$$
Z=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)}{\sqrt{\frac{\bar{p}(1-\bar{p})}{n_{1}}+\frac{\bar{p}(1-\bar{p})}{n_{2}}}}=\frac{(0.14-0.24)}{\sqrt{\frac{0.197 \times 0.803}{150}+\frac{0.197 \times 0.803}{200}}}=-2.328
$$

Rejection Region (R.R.) of H_{0} :
Critical values:

$$
Z_{1-\alpha / 2}=Z_{0.975}=1.96
$$

Critical region:
Reject H_{0} if: $\mathrm{Z}<-1.96$ or $\underset{\text { test }}{\mathrm{Z}>1.96}$

$$
-2.328<1.96
$$

Decision: Reject H_{0} (Since one of the conditions satisfied)
King Saud University

Decision:

Since $Z=-2.328 \in R . R$., we reject $H_{0}: p_{1}=p_{2}$ and accept $\mathrm{H}_{\mathrm{A}}: p_{1} \neq p_{2}$ at $\alpha=0.05$. Therefore, we conclude that there is a difference between the proportion of obese males and the proportion of obese females. Additionally, since, $\dot{p}_{1}=0.14<$ $\dot{p}_{2}=0.24$, we may conclude that the proportion of obesity for females is larger than that for males.

TABLE OF CONTENTS

Subject	Page
Outline of the course	
Marks Distribution and Schedule of Assessment Tasks	
CHAPTER 1: Organizing and Displaying Data	
Introduction	
Statistics	
Biostatistics	
Populations	
Population Size	
Samples	
Sample Size	
Variables	
Types of Variables	
Types of Quantitative Variables	
Organizing the Data	
Simple frequency distribution or ungrouped frequency distribution	
Grouped Frequency Distributions	
Width of a class interval	
Displaying Grouped Frequency Distributions	
CHAPTER 2: Basic Summary Statistics	
Introduction	
Measures of Central Tendency	
Mean	
Population Mean	
Sample Mean	
Advantages and Disadvantages of the Mean	
Median	
Advantages and Disadvantages of the Median	
Mode	
Advantages and Disadvantages of the Mode	
Measures of Dispersion (Variation)	
Range	
Variance	
Deviations of Sample Values from the Sample Mean	
Population Variance	
Sample Variance	
Calculating Formula for the Sample Variance	
Standard Deviation	
Coefficient of Variation	

TABLE OF CONTENTS

Some Properties of the Mean, Standard Deviation, and Variance	
Calculating Measures from Simple Frequency Table	
Approximating Measures From Grouped Data	
CHPTER 3: Basic Probability Concepts	
General Definitions and Concepts	
Probability	
An Experiment	
Sample Space	
Events	
Equally Likely Outcomes	
Probability of an Event	
Some Operations on Events	
Union of Two events	
Intersection of Two Events	
Complement of an Event	
General Probability Rules	
Applications	
Conditional Probability	
Independent Events	
Bayes' Theorem	
Combinations:	
CHAPTER 4: Probability Distributions	
Introduction	
Probability Distributions of Discrete R.V.'s	
Graphical Presentation	
Population Mean of a Discrete Random Variable	
Cumulative Distributions	
Binomial Distribution	
Poisson Distribution	
Probability Distributions of Continuous R.V.	
Normal Distribution	
Standard Normal Distribution	
Calculating Probabilities of Standard Normal Distribution	
Calculating Probabilities of Normal Distribution	
Sampling Distribution of the Sample Mean	
Results about Sampling Distribution of the Sample Mean	
t-distribution	
CAPTER 5: Statistical Inferences	
Estimation and Hypotheses Testing	

TABLE OF CONTENTS

Estimation	
Estimation of the Population Mean	
Point Estimation of the population mean	
Interval Estimation of the population mean	
Estimation for the Population Proportion	
Point Estimate for the Population Proportion	
Interval Estimation for the Population Proportion	
Tests of Hypotheses	
Single Sample: Tests Concerning a Single Mean	
Single Sample: Tests on a Single Proportion:	
Two-sample: Paired t-test	

