M 104 - GENERAL MATHEMATICS -2-Dr. Tariq A. AlFadhel Solution of the Mid-Term Exam First semester 1443 H

Q.1 Find the elements of the conic section of equation $y^2 - 2y + 4x = 3$, then sketch it.

Solution :

 $y^2 - 2y + 4x = 3$

$$y^2 - 2y = -4x + 3$$

By completing the square.

$$y^{2} - 2y + 1 = -4x + 3 + 1$$
$$y^{2} - 2y + 1 = -4x + 4$$
$$(y - 1)^{2} = -4(x - 1)$$

The conic section is a Parabola, and it opens to the left.

The vertex is V(1,1)

$$4a = 4 \implies a = 1$$

The Focus is F(0,1)

The equation of the directrix is x = 2

Q.2 Find the standard equation of the ellipse with vertices at (-4, 2), (6, 2) and one of its two foci at (5, 2), then sketch it.

Solution :

The two vertices and one focus are located on a line parallel to the x-axis.

The standard equation of the ellipse is $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$, where a > b. $P(h,k) = \left(\frac{-4+6}{2}, \frac{2+2}{2}\right) = (1,2)$, hence h = 1 and k = 2 c is the distance between the focus (5, 2) and P, hence c = 4 a is the distance between one of the vertices and P, hence a = 5 $c^2 = a^2 - b^2 \implies 16 = 25 - b^2 \implies b^2 = 25 - 16 = 9 \implies b = 3$ The standard equation of the ellipse is $\frac{(x-1)^2}{25} + \frac{(y-2)^2}{9} = 1$ The other focus is (-3, 2)

The end-points of the minor axis are (1, -1) and (1, 5).

 ${\bf Q.3}$ Calculate, whenever it is possible, the products of ${\bf 2AB}$ and ${\bf BA}$ of matrices

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 1 \end{pmatrix}$$

Solution :

$$2\mathbf{AB} = 2(\mathbf{AB}) = 2 \begin{bmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 1 \end{pmatrix} \end{bmatrix}$$
$$= 2 \begin{pmatrix} 1+0+2 & -1-1+1 \\ 1+0+0 & -1+1+0 \end{pmatrix} = 2 \begin{pmatrix} 3 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 6 & -2 \\ 2 & 0 \end{pmatrix}$$
$$\mathbf{BA} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1-1 & -1-1 & 1+0\\ 0+1 & 0+1 & 0+0\\ 2+1 & -2+1 & 2+0 \end{pmatrix} = \begin{pmatrix} 0 & -2 & 1\\ 1 & 1 & 0\\ 3 & -1 & 2 \end{pmatrix}$$

${\bf Q.4}$ Consider the system of the linear equations:

$$\begin{cases} x & -2y + z = 4\\ -x + 2y + z = -2\\ 2x - 3y - z = 3 \end{cases}$$

(a) Solve this system using Cramer's rule.

(b) Solve this system using Gauss elimination method.

Solution :

(a) Using Cramer's rule :

(b) Using Gauss elimination method: The augmented matrix is

$$\begin{pmatrix} 1 & -2 & 1 & | & 4 \\ -1 & 2 & 1 & | & -2 \\ 2 & -3 & -1 & | & 3 \end{pmatrix} \xrightarrow{R_1+R_2} \begin{pmatrix} 1 & -2 & 1 & | & 4 \\ 0 & 0 & 2 & | & 2 \\ 2 & -3 & -1 & | & 3 \end{pmatrix}$$
$$\xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & -2 & 1 & | & 4 \\ 2 & -3 & -1 & | & 3 \\ 0 & 0 & 2 & | & 2 \end{pmatrix} \xrightarrow{-2R_1+R_2} \begin{pmatrix} 1 & -2 & 1 & | & 4 \\ 0 & 1 & -3 & | & -5 \\ 0 & 0 & 2 & | & 2 \end{pmatrix}$$
$$2z = 2 \implies z = 1$$
$$y - 3z = -5 \implies y - 3 = -5 \implies y = -2$$
$$x - 2y + z = 4 \implies x - 2(-2) + 1 = 4 \implies x + 5 = 4 \implies x = -1$$
The solution is
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$$

 ${\bf Q.5}$ Evaluate the integrals:

(a)
$$\int (3x-1)\sqrt{3x^2-2x+1} \, dx$$

(b) $\int (5x+4)^5 \, dx$
(c) $\int x^3 \, \ln x \, dx$
(d) $\int \frac{3\cos(3x)+2\sin(2x)}{\sin(3x)-\cos(2x)} \, dx$

(a)
$$\int (3x-1)\sqrt{3x^2-2x+1} \, dx = \int (3x^2-2x+1)^{\frac{1}{2}} (3x-1) \, dx$$

= $\frac{1}{2} \int (3x^2-2x+1)^{\frac{1}{2}} (6x-2) \, dx = \frac{1}{2} \frac{(3x^2-2x+1)^{\frac{3}{2}}}{\frac{3}{2}} + c$

$$=\frac{\left(3x^2-2x+1\right)^{\frac{3}{2}}}{3}+c$$

Using the formula $\int [f(x)]^n f'(x) dx = \frac{[f(x)]^{n+1}}{n+1} + c$, where $n \neq 1$

(b)
$$\int (5x+4)^5 dx = \frac{1}{5} \int (5x+4)^5 (5) dx = \frac{1}{5} \frac{(5x+4)^6}{6} + c$$

Using the formula $\int [f(x)]^n f'(x) dx = \frac{[f(x)]^{n+1}}{n+1} + c$, where $n \neq 1$

(c) $\int x^3 \ln x \, dx$

Using integration by parts:

$$u = \ln x \qquad dv = x^3 \ dx$$

$$du = \frac{1}{x} \ dx \qquad v = \frac{x^3}{3}$$

$$\int x^3 \ \ln x \ dx = \frac{x^3}{3} \ln x - \int \frac{x^3}{3} \ \frac{1}{x} \ dx = \frac{x^3}{3} \ln x - \frac{1}{3} \int x^2 \ dx$$

$$= \frac{x^3}{3} \ln x - \frac{1}{3} \frac{x^3}{3} + c = \frac{x^3}{3} \ln x - \frac{x^3}{9} + c$$

(d)
$$\int \frac{3\cos(3x) + 2\sin(2x)}{\sin(3x) - \cos(2x)} dx = \ln|\sin(3x) - \cos(2x)| + c$$

Using the formula
$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + c$$

M 104 - GENERAL MATHEMATICS -2-Dr. Tariq A. AlFadhel Solution of the Final Exam First semester 1443 H

Part 1: Multiple Choice Questions:

1. The center of the conic section of equation $4x^2 + 8x - y^2 + 2y - 1 = 0$ is

(a).
$$(-1,1)$$
 (b). $(1,-1)$ (c). $(4,1)$ (d). $(4,-1)$

Solution :

$$4x^{2} + 8x - y^{2} + 2y - 1 = 0$$

$$4x^{2} + 8x - y^{2} + 2y = 1$$

$$4(x^{2} + 2x) - (y^{2} - 2y) = 1$$

By completing the square:

$$4(x^{2} + 2x + 1) - (y^{2} - 2y + 1) = 1 + 4 - 1$$

$$4(x + 1)^{2} - (y - 1)^{2} = 4$$

$$\frac{4(x + 1)^{2}}{4} - \frac{(y - 1)^{2}}{4} = \frac{4}{4}$$

$$(x + 1)^{2} - \frac{(y - 1)^{2}}{4} = 1$$

The center of the conic section is P(-1, 1).

The right answer is (a).

2. The equation of the ellipse of foci (-3, 6); (-3, 2) and length of major axis 14 is given by:

(a).
$$\frac{(x-6)^2}{14} + \frac{(y-2)^2}{3} = 1$$
 (b). $\frac{(x+3)^2}{45} + \frac{(y-4)^2}{49} = 1$
(c). $\frac{(x-3)^2}{9} + \frac{(y+6)^2}{4} = 1$ (d). $\frac{(x+3)^2}{9} + \frac{(y-2)^2}{36} = 1$

Solution :

The two foci are located in a line parallel to the *y*-axis, hence the equation of the ellipse is: $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$, where b > a.

The center P is the middle point of the two foci, hence:

$$P(h,k) = \left(\frac{-3 + (-3)}{2}, \frac{6+2}{2}\right) = (-3,4).$$

c is the distance between P and one of the foci, hence c = 2.

The length of the major axis is 14 means that $2b = 14 \implies b = 7$. $c^2 = b^2 - a^2 \implies 4 = 49 - a^2 \implies a^2 = 49 - 4 = 45 \implies a = \sqrt{45}$. The equation of the ellipse is $\frac{(x+3)^2}{45} + \frac{(y-4)^2}{49} = 1$. The right answer is (b).

3. If
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & -2 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 0 & -3 & 2 \\ 1 & 2 & -1 \end{pmatrix}$, then $\mathbf{A} \begin{pmatrix} \mathbf{B}^T \end{pmatrix}$ equals
(a). $\begin{pmatrix} 0 & 3 & 4 \\ 0 & 2 & 2 \end{pmatrix}$ (b). $\begin{pmatrix} 0 & 3 \\ 0 & 2 \end{pmatrix}$ (c). $\begin{pmatrix} 7 & -3 \\ -7 & 4 \end{pmatrix}$ (d). undefined

Solution :

$$\mathbf{A} \begin{pmatrix} \mathbf{B}^T \end{pmatrix} = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -3 & 2 \\ 2 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} 0+3+4 & 1-2-2 \\ 0-3-4 & 0+2+2 \end{pmatrix} = \begin{pmatrix} 7 & -3 \\ -7 & 4 \end{pmatrix}$$

The right answer is (c).

4. The determinant
$$\begin{vmatrix} 1 & 1 & 1 & 2 \\ 1 & 1 & 2 & 2 \\ 1 & 2 & 2 & 2 \\ 2 & 2 & 3 & 4 \end{vmatrix}$$
 is equal to

$$(a). -2 (b). 0 (c). 6 (d). 8$$

Solution :

Note that
$$C_4 = 2C_1$$
, hence $\begin{vmatrix} 1 & 1 & 1 & 2 \\ 1 & 1 & 2 & 2 \\ 1 & 2 & 2 & 2 \\ 2 & 2 & 3 & 4 \end{vmatrix} = 0.$

The right answer is (b).

5. The integral $\int x^3 (2+x^4)^5 dx$ is equal to

(a).
$$\frac{(2+x^4)^6}{24} + c$$
 (b). $\frac{x^4(2+x^4)^6}{24} + c$
(c). $\frac{(2+x^4)^6}{6} + c$ (d). $\frac{x^4(2+x^4)^5}{4} + c$

Solution :

$$\int x^3 (2+x^4)^5 dx = \frac{1}{4} \int (2+x^4)^5 (4x^3) dx$$
$$= \frac{1}{4} \frac{(2+x^4)^6}{6} + c = \frac{(2+x^4)^6}{24} + c$$

The right answer is (a).

6. The volume of the solid, obtained by revolving the region bounded by the curves $y = x^2$, $y = x^3$ about the x-axis, is equal to

(a).
$$\frac{\pi}{7}$$
 (b). $\frac{\pi}{12}$ (c). $\frac{2\pi}{15}$ (d). $\frac{2\pi}{35}$

Solution :

The points of intersection of $y = x^2$ and $y = x^3$:

Using Washer method:

$$\mathbf{V} = \pi \int_0^1 \left[(x^2)^2 - (x^3)^2 \right] \, dx = \pi \int_0^1 \left(x^4 - x^6 \right) \, dx = \pi \left[\frac{x^5}{5} - \frac{x^7}{7} \right]_0^1$$
$$= \pi \left[\left(\frac{1}{5} - \frac{1}{7} \right) - (0 - 0) \right] = \pi \left(\frac{7 - 5}{35} \right) = \frac{2\pi}{35}.$$

The right answer is (d).

- 7. The point with rectangular coordinates $(-1, \sqrt{3})$, has polar coordinates:
 - (a). $\left(2,\frac{\pi}{3}\right)$ (b). $\left(2,\frac{2\pi}{3}\right)$ (c). $\left(\sqrt{3},\frac{\pi}{2}\right)$ (d). $\left(\sqrt{3},\frac{\pi}{4}\right)$

Solution :

$$(x,y) = \left(-1,\sqrt{3}\right) \implies x = -1, y = \sqrt{3}.$$

$$r = \sqrt{x^2 + y^2} = \sqrt{(-1)^2 + (\sqrt{3})^2} = \sqrt{1+3} = \sqrt{4} = 2.$$
$$\tan \theta = \frac{y}{x} = \frac{\sqrt{3}}{-1} = -\sqrt{3} \implies \theta = \frac{2\pi}{3}.$$
$$(r, \theta) = \left(2, \frac{2\pi}{3}\right).$$

The right answer is (b).

8. Let $f(x,y) = x^3y^2 + y\sin\left(\frac{x}{y}\right)$. The partial derivative $\frac{\partial f}{\partial x}$ is equal to (a). $3x^2y^2 + \cos x$ (b). $6x^2y + \cos x$

(c).
$$3x^2y^2 + \cos\left(\frac{x}{y}\right)$$
 (d). $6x^2y + \cos\left(\frac{x}{y}\right)$

Solution :

$$\frac{\partial f}{\partial x} = (3x^2)y^2 + y\cos\left(\frac{x}{y}\right)\frac{1}{y} = 3x^2y^2 + \cos\left(\frac{x}{y}\right).$$

The right answer is (c).

9. If y = y(x) is defined implicitly by $e^{xy} = xy + 1$, for x, y > 0, then $\frac{dy}{dx}$ is equal to

(a).
$$xe^{xy} - y$$
 (b). $-\frac{e^{xy}}{y}$ (c). $-\frac{e^{xy}}{x}$ (d). $-\frac{y}{x}$

Solution :

$$e^{xy} = xy + 1 \implies e^{xy} - xy - 1 = 0.$$

Let $F(x, y) = e^{xy} - xy - 1$, then $F(x, y) = 0$.
$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{e^{xy}y - y}{e^{xy}x - x} = -\frac{y(e^{xy} - 1)}{x(e^{xy} - 1)} = -\frac{y}{x}.$$

The right answer is (d).

10. The general solution of the differential equation $y' - \frac{3x^2}{2y} = 0$ is

(a).
$$2y = 3x^2 + c$$
 (b). $y - x^3 \ln |2y| = c$ (c). $y^2 = x^3 + c$ (d). $y - \frac{x^3}{y^3} = c$

Solution :

 $\frac{dy}{dx} = \frac{3x^2}{2y}$

 $2y \ dy = 3x^2 \ dx$ (Separable differential equation) $y^2 = x^3 + c$

The right answer is (c).

Part 2: Essay Questions

11. Find the elements of the conic section $4x^2 - 9y^2 - 8x - 36y - 68 = 0$ and then sketch it.

36

Solution :

$$4x^{2} - 9y^{2} - 8x - 36y - 68 = 0$$

$$4x^{2} - 8x - 9y^{2} - 36y = 68$$

$$4(x^{2} - 2x) - 9(y^{2} + 4y) = 68$$
By completing the square :
$$4(x^{2} - 2x + 1) - 9(y^{2} + 4y + 4) = 68 + 4 - 4(x - 1)^{2} - 9(y + 2)^{2} = 36$$

$$\frac{4(x - 1)^{2}}{36} - \frac{9(y + 2)^{2}}{36} = \frac{36}{36}$$

$$\frac{(x - 1)^{2}}{9} - \frac{(y + 2)^{2}}{4} = 1$$

The conic section is a hyperbola.

The center is
$$P(h, k) = (1, -2)$$
.
 $a^2 = 9 \implies a = 3 \text{ and } b^2 = 4 \implies b = 2$.
 $c^2 = a^2 + b^2 = 9 + 4 = 13 \implies c = \sqrt{13}$.
The vertices are $V_1(-2, -2)$ and $V_2(4, -2)$.

The foci are $F_1(1 - \sqrt{13}, -2)$ and $F_2(1 + \sqrt{13}, -2)$.

The equations of the asymptotes are :

12. Solve by using Gauss Elimination Method the system

$$\begin{cases} x + y + z = 2\\ x - y + 2z = 0\\ 2x + z = 2 \end{cases}$$

Solution :

The augmented matrix is

$$\begin{pmatrix} 1 & 1 & 1 & | & 2 \\ 1 & -1 & 2 & | & 0 \\ 2 & 0 & 1 & | & 2 \end{pmatrix} \xrightarrow{-R_1 + R_2} \begin{pmatrix} 1 & 1 & 1 & | & 2 \\ 0 & -2 & 1 & | & -2 \\ 2 & 0 & 1 & | & 2 \end{pmatrix}$$

$$\xrightarrow{-2R_1 + R_3} \begin{pmatrix} 1 & 1 & 1 & | & 2 \\ 0 & -2 & 1 & | & -2 \\ 0 & -2 & -1 & | & -2 \end{pmatrix} \xrightarrow{-R_2 + R_2} \begin{pmatrix} 1 & 1 & 1 & 1 & | & 2 \\ 0 & -2 & 1 & | & -2 \\ 0 & 0 & -2 & | & 0 \end{pmatrix}$$

$$-2z = 0 \implies z = 0$$

$$-2y + z = -2 \implies -2y = -2 \implies y = 1$$

$$x + y + z = 2 \implies x + 1 = 2 \implies x = 1$$
The solution is $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$

13. Compute the integral
$$\int \frac{2x^2 - 2x - 2}{x(x+1)(x-1)} dx$$

Solution : Using partial fractions method.

$$\frac{2x^2 - 2x - 2}{x(x-1)(x+1)} = \frac{A_1}{x} + \frac{A_2}{x-1} + \frac{A_3}{x+1}$$

$$2x^2 - 2x - 2 = A_1(x-1)(x+1) + A_2x(x+1) + A_3x(x-1)$$

$$2x^2 - 2x - 2 = A_1(x^2 - 1) + A_2(x^2 + x) + A_3(x^2 - x)$$

$$2x^2 - 2x - 2 = A_1x^2 - A_1 + A_2x^2 + A_2x + A_3x^2 - A_3x$$

$$2x^2 - 2x - 2 = (A_1 + A_2 + A_3)x^2 + (A_2 - A_3)x - A_1$$

$$A_1 + A_2 + A_3 = 2 \longrightarrow (1)$$

$$A_2 - A_3 = -2 \longrightarrow (2)$$

$$-A_1 = -2 \longrightarrow (3)$$

From equation (1) : $A_1 = 2$.

Equation (1) becomes : $A_2 + A_3 = 0 \longrightarrow$ (4). Equation (4) + Equation (2) : $2A_2 = -2 \implies A_2 = -1$. From equation (4) : $A_3 = 1$.

$$\int \frac{2x^2 - 2x - 2}{x(x+1)(x-1)} \, dx = \int \left(\frac{2}{x} + \frac{-1}{x-1} + \frac{1}{x+1}\right) \, dx$$
$$= 2 \int \frac{1}{x} \, dx - \int \frac{1}{x-1} \, dx + \int \frac{1}{x+1} \, dx$$
$$= 2 \ln|x| - \ln|x-1| + \ln|x+1| + c$$

14. If $w = x^2 + xy + 3y^2$, $x = u^2 + v$ and $y = v^2$, use the chain rule to compute $\frac{\partial w}{\partial u}$.

Solution :

$$\begin{split} \frac{\partial w}{\partial u} &= \frac{\partial w}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial u} \\ \frac{\partial w}{\partial x} &= 2x + y \text{ and } \frac{\partial x}{\partial u} = 2u, \\ \frac{\partial w}{\partial y} &= x + 6y \text{ and } \frac{\partial y}{\partial u} = 0. \\ \frac{\partial w}{\partial u} &= (2x + y)(2u) + (x + 6y)(0) = (2x + y)(2u) = \left[2(u^2 + v) + v^2\right](2u) \\ &= 2u \left[2u^2 + 2v + v^2\right] = 4u^2 + 4uv + 2uv^2. \end{split}$$

15. Find the general solution of the linear differential equation $xy' + 2y = 5x^3$.

Solution:

$$xy' + 2y = 5x^{3}$$
$$y' + \left(\frac{2}{x}\right)y = 5x^{2}$$

It is a First-order differential equation .

$$P(x) = \frac{2}{x}$$
 and $Q(x) = 5x^2$

The integrating factor is :

$$u(x) = e^{\int P(x) \, dx} = e^{\int \frac{2}{x} \, dx} = e^{2 \int \frac{1}{x} \, dx} = e^{2 \ln |x|} = e^{\ln(x^2)} = x^2.$$

The general solution of the differential equation is :

$$y = \frac{1}{u(x)} \int u(x)Q(x) \, dx = \frac{1}{x^2} \int x^2 \, (5x^2) \, dx = \frac{1}{x^2} \int 5x^4 \, dx$$
$$= \frac{1}{x^2} \left(x^5 + c\right) = x^3 + \frac{c}{x^2}$$

M 104 - GENERAL MATHEMATICS -2-Dr. Tariq A. AlFadhel Solution of the Mid-Term Exam Second semester 1443 H

 ${\bf Q.1}\,$ Find the elements of the conic section of equation

 $4x^2 + 9y^2 - 8x - 36y + 4 = 0$, then sketch it.

Solution :

$$4x^{2} + 9y^{2} - 8x - 36y + 4 = 0$$

$$4x^{2} - 8x + 9y^{2} - 36y = -4$$

$$4(x^{2} - 2x) + 9(y^{2} - 4y) = -4$$

By completing the square.

$$4(x^{2} - 2x + 1) + 9(y^{2} - 4y + 4) = -4 + 4 + 36$$
$$4(x - 1)^{2} + 9(y - 2)^{2} = 36$$
$$\frac{4(x - 1)^{2}}{36} + \frac{9(y - 2)^{2}}{36} = \frac{36}{36}$$
$$\frac{(x - 1)^{2}}{9} + \frac{(y - 2)^{2}}{4} = 1$$

The conic section is an ellipse.

The center is
$$P(1,2)$$

 $a^2 = 9 \implies a = 3$
 $b^2 = 4 \implies b = 2$
 $c^2 = a^2 - b^2 = 9 - 4 = 5 \implies c = \sqrt{5}$

The vertices are $V_1(-2,2)$ and $V_2(4,2)$

The foci are $F_1\left(1-\sqrt{5},2\right)$ and $F_2\left(1+\sqrt{5},2\right)$

The end-points of the minor axis are $W_1(1,4)$ and $W_2(1,0)$

Q.2 Find the standard equation of the hyperbola with foci (2,3),(-6,3) and the the distance between its two vertices equals to 6, then sketch it.

Solution :

The two foci are located on a line parallel to the x-axis.

The standard equation of the hyperbola is $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1.$

The center is the middle point between the two foci.

$$P(h,k) = \left(\frac{2+(-6)}{2}, \frac{3+3}{2}\right) = (-2,3)$$
, hence $h = -2$ and $k = 3$.

c is the distance between one of the foci and P , hence c=4.

The distance between its two vertices equals 6 means $2a = 6 \implies a = 3$. $c^2 = a^2 + b^2 \implies 16 = 9 + b^2 \implies b^2 = 16 - 9 = 7 \implies b = \sqrt{7}$. The standard equation of the hyperbola is $\frac{(x+2)^2}{9} - \frac{(y-3)^2}{7} = 1$.

The vertices are $V_1(-5,3)$ and $V_2(1,3)$.

The equations of the asymptotes are :

$$L_1$$
: $y-3 = \frac{\sqrt{7}}{3} (x+2)$ and L_2 : $y-3 = -\frac{\sqrt{7}}{3} (x+2)$.

Q.3 Calculate, whenever it is possible, $2\mathbf{A} - \mathbf{B}^T$ and \mathbf{AB} for matrices

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 3 & -2 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ -1 & 3 \end{pmatrix}.$$

Solution :

$$2\mathbf{A} - \mathbf{B}^{T} = \begin{pmatrix} 4 & 2 & -2 \\ 2 & 6 & -4 \end{pmatrix} - \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & 3 \end{pmatrix}$$
$$= \begin{pmatrix} 3 & 2 & -1 \\ 0 & 5 & -7 \end{pmatrix}$$
$$\mathbf{AB} = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 3 & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ -1 & 3 \end{pmatrix}$$
$$= \begin{pmatrix} 2+0+1 & 4+1-3 \\ 1+0+2 & 2+3-6 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 3 & -1 \end{pmatrix}$$

 ${\bf Q.4}$ Consider the system of the linear equations:

$$\begin{cases} 2x + y + z = 1\\ x - y &= 0\\ y - z = 3 \end{cases}$$

(a) Solve this system using Cramer's rule.

(b) Solve this system using Gauss elimination method.

Solution :

(a) Using Cramer's rule :

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

$$\begin{aligned} 2 & 1 & 1 & 2 & 1 \\ 1 & -1 & 0 & 1 & -1 \\ 0 & 1 & -1 & 0 & 1 \end{aligned}$$
$$|\mathbf{A}| = (2 + 0 + 1) - (0 + 0 - 1) = 3 - (-1) = 3 + 1 = 4 \neq 0 \\ \mathbf{A}_x = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & 0 \\ 3 & 1 & -1 \end{pmatrix} \\ & 1 & 1 & 1 & 1 & 1 \\ 0 & -1 & 0 & 0 & -1 \\ 3 & 1 & -1 & 3 & 1 \end{aligned}$$
$$|\mathbf{A}_x| = (1 + 0 + 0) - (-3 + 0 + 0) = 1 - (-3) = 1 + 3 = 4 \\ x = \frac{|\mathbf{A}_x|}{|\mathbf{A}|} = \frac{4}{4} = 1 \\ \mathbf{A}_y = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 3 & -1 \end{pmatrix} \\ & 2 & 1 & 1 & 2 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 3 & -1 & 0 & 3 \end{aligned}$$
$$|\mathbf{A}_y| = (0 + 0 + 3) - (0 + 0 - 1) = 3 - (-1) = 3 + 1 = 4 \\ y = \frac{|\mathbf{A}_y|}{|\mathbf{A}|} = \frac{4}{4} = 1 \\ \mathbf{A}_z = \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & 3 \end{pmatrix} \\ & 2 & 1 & 1 & 2 & 1 \\ 1 & -1 & 0 & 1 & -1 \\ 0 & 1 & 3 & 0 & 1 \end{aligned}$$
$$|\mathbf{A}_z| = (-6 + 0 + 1) - (0 + 0 + 3) = -5 - 3 = -8 \\ z = \frac{|\mathbf{A}_z|}{|\mathbf{A}|} = \frac{-8}{4} = -2 \end{aligned}$$
(b) Using Gauss elimination method: The augmented matrix is

$$\begin{pmatrix} 2 & 1 & 1 & | & 1 \\ 1 & -1 & 0 & | & 0 \\ 0 & 1 & -1 & | & 3 \end{pmatrix} \xrightarrow{R_1 \longleftrightarrow R_2} \begin{pmatrix} 1 & -1 & 0 & | & 0 \\ 2 & 1 & 1 & | & 1 \\ 0 & 1 & -1 & | & 3 \end{pmatrix}$$

$$\begin{array}{c} \xrightarrow{-2R_1+R_2} & \begin{pmatrix} 1 & -1 & 0 & | & 0 \\ 0 & 3 & 1 & | & 1 \\ 0 & 1 & -1 & | & 3 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} & \begin{pmatrix} 1 & -1 & 0 & | & 0 \\ 0 & 1 & -1 & | & 3 \\ 0 & 3 & 1 & | & 1 \end{pmatrix} \\ \xrightarrow{-3R_2+R_3} & \begin{pmatrix} 1 & -1 & 0 & | & 0 \\ 0 & 1 & -1 & | & 3 \\ 0 & 0 & 4 & | & -8 \end{pmatrix} \\ 4z = -8 \implies z = \frac{-8}{4} = -2 \\ y - z = 3 \implies y - (-2) = 3 \implies y + 2 = 3 \implies y = 3 - 2 = 1 \\ x - y = 0 \implies x - 1 = 0 \implies x = 1 \\ The solution is \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} \end{array}$$

Q.5 Evaluate the integrals:

(a)
$$\int \frac{4x^3 + 1}{\sqrt{x^4 + x + 1}} dx$$

(b)
$$\int (x+1) e^{x^2 + 2x} dx$$

(c)
$$\int (2x+1) \cos x dx$$

(d)
$$\int (2x+1) \ln x dx$$

Solution :

(a)
$$\int \frac{4x^3 + 1}{\sqrt{x^4 + x + 1}} dx = \int (x^4 + x + 1)^{-\frac{1}{2}} (4x^3 + 1) dx$$

= $\frac{(x^4 + x + 1)^{\frac{1}{2}}}{\frac{1}{2}} + c = 2 (x^4 + x + 1)^{\frac{1}{2}} + c$

Using the formula $\int [f(x)]^n f'(x) dx = \frac{[f(x)]^{n+1}}{n+1} + c$, where $n \neq 1$

(b)
$$\int (x+1) e^{x^2+2x} dx = \frac{1}{2} \int e^{x^2+2x} [2(x+1)] dx$$

= $\frac{1}{2} \int e^{x^2+2x} (2x+2) dx = \frac{1}{2} e^{x^2+2x} + c$
Using the formula $\int e^{f(x)} f'(x) dx = e^{f(x)} + c$

(c)
$$\int (2x+1) \cos x \, dx$$

Using integration by parts:

$$u = 2x + 1 \quad dv = \cos x \, dx$$

$$du = 2 \, dx \quad v = \sin x$$

$$\int (2x + 1) \, \cos x \, dx = (2x + 1) \sin x - \int 2 \sin x \, dx$$

$$= (2x + 1) \sin x - 2 \int \sin x \, dx = (2x + 1) \sin x - 2(-\cos x) + c$$

$$= (2x + 1) \sin x + 2 \cos x + c$$

(d)
$$\int (2x+1) \ln x \, dx$$

Using integration by parts:

$$u = \ln x \qquad dv = (2x+1) \ dx$$

$$du = \frac{1}{x} \ dx \qquad v = x^2 + x$$

$$\int (2x+1) \ \ln x \ dx = (x^2+x) \ln x - \int (x^2+x) \ \frac{1}{x} \ dx$$

$$= (x^2+x) \ln x - \int (x+1) \ dx = (x^2+x) \ln x - \left(\frac{x^2}{2}+x\right) + c$$

$$= (x^2+x) \ln x - \frac{x^2}{2} - x + c$$

M 104 - GENERAL MATHEMATICS -2-Dr. Tariq A. AlFadhel Solution of the Final Exam Second semester 1443 H

Q.1 (a) Let $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}$. Compute (if possible) \mathbf{AB} and \mathbf{BA} .

(b) Compute the determinant
$$\begin{vmatrix} -1 & 6 & 2 \\ 0 & 0 & 5 \\ 0 & 3 & 4 \end{vmatrix}$$
.

(c) Solve by using Gauss Elimination Method the linear system

$$\begin{cases} x + y + 3z = 7\\ -2x - y - z = -4\\ 3x + 2y - 2z = -1 \end{cases}$$

Solution :

(a)
$$\mathbf{AB} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}$$

= $\begin{pmatrix} 0+0+0 & 1+0+0 \\ 0+1+0 & 1+1+0 \\ 0+1+1 & 1+1+0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 2 \\ 2 & 2 \end{pmatrix}$

 ${\bf BA}$ can not be computed.

(b) Solution (1): Using Sarrus Method

$$\begin{vmatrix} -1 & 6 & 2 & -1 & 6 \\ 0 & 0 & 5 & 0 & 0 \\ 0 & 3 & 4 & 0 & 3 \end{vmatrix}$$
$$\begin{vmatrix} -1 & 6 & 2 \\ 0 & 0 & 5 \\ 0 & 3 & 4 \end{vmatrix} = (0 + 0 + 0) - (0 + (-15) + 0) = 0 - (-15) = 15$$

Solution (2) : Using the properties of determinants:

$$\begin{vmatrix} -1 & 6 & 2 \\ 0 & 0 & 5 \\ 0 & 3 & 4 \end{vmatrix} \xrightarrow{R_2 \longleftrightarrow R_3} (-1) \times \begin{vmatrix} -1 & 6 & 2 \\ 0 & 3 & 4 \\ 0 & 0 & 5 \end{vmatrix} = (-1) \times (-1 \times 3 \times 5) = 15$$

(c) Using Gauss Elimination Method :

$$\begin{pmatrix} 1 & 1 & 3 & | & 7 \\ -2 & -1 & -1 & | & -4 \\ 3 & 2 & -2 & | & -1 \end{pmatrix} \xrightarrow{2R_1+R_2} \begin{pmatrix} 1 & 1 & 3 & | & 7 \\ 0 & 1 & 5 & | & 10 \\ 3 & 2 & -2 & | & -1 \end{pmatrix}$$
$$\xrightarrow{-3R_1+R_3} \begin{pmatrix} 1 & 1 & 3 & | & 7 \\ 0 & 1 & 5 & | & 10 \\ 0 & -1 & -11 & | & -22 \end{pmatrix} \xrightarrow{R_2+R_3} \begin{pmatrix} 1 & 1 & 3 & | & 7 \\ 0 & 1 & 5 & | & 10 \\ 0 & 0 & -6 & | & -12 \end{pmatrix}$$
$$-6z = -12 \implies z = \frac{-12}{-6} = 2$$
$$y + 5z = 10 \implies y + 5(2) = 10 \implies y + 10 = 10 \implies y = 0$$
$$x + y + 3z = 7 \implies x + 0 + 3(2) = 7 \implies x + 6 = 7 \implies x = 1$$
The solution is $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$

Q.2 (a) Find the standard equation of the ellipse with foci (3, 6) and (3, -2), and vertex (3, -3) and then sketch it.

(b) Find the elements of the conic section $9x^2 - 4y^2 - 18x - 24y + 9 = 0$ and then sketch it.

Solution :

(a) The two foci and the vertex are located on a line parallel to the y-axis.

The standard equation of the ellipse is $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$, where b > a. $P(h,k) = \left(\frac{3+3}{2}, \frac{6+(-2)}{2}\right) = (3,2)$, hence h = 3 and k = 2 b is the distance between the vertex (3, -3) and P, hence b = 5 c is the distance between one of the foci and P, hence c = 3 $c^2 = b^2 - a^2 \implies 16 = 25 - a^2 \implies a^2 = 25 - 16 = 9 \implies a = 3$ The standard equation of the ellipse is $\frac{(x-3)^2}{9} - \frac{(y-2)^2}{25} = 1$ The other vertex is (3, 7)The end-points of the minor axis are (0, 2) and (6, 2).

(b) $9x^2 - 4y^2 - 18x - 24y + 9 = 0$ $9x^2 - 18x - 4y^2 - 24y = -9$ $9(x^2 - 2x) - 4(y^2 + 6y) = -9$ By completing the square $9(x^2 - 2x + 1) - 4(y^2 + 6y + 9) = -9 + 9 - 36$ $9(x - 1)^2 - 4(y + 3)^2 = -36$ $\frac{9(x - 1)^2}{-36} - \frac{4(y + 3)^2}{-36} = 1$ $-\frac{(x - 1)^2}{4} + \frac{(y + 3)^2}{9} = 1 \implies \frac{(y + 3)^2}{9} - \frac{(x - 1)^2}{4} = 1$

The conic section is a hyperbola.

The center is
$$P(1, -3)$$
.
 $a^2 = 4 \implies a = 2$.
 $b^2 = 9 \implies b = 3$.
 $c^2 = a^2 + b^2 = 4 + 9 = 13 \implies c = \sqrt{13}$.
The vertices are $V_1(1, 0)$ and $V_2(1, -6)$

The foci are $F_1(1, -3 + \sqrt{13})$ and $F_2(1, -3 - \sqrt{13})$.

The equations of the asymptotes are :

$$L_1$$
: $y+3=\frac{3}{2}(x-1)$ and L_2 : $y+3=-\frac{3}{2}(x-1)$

Q.3 (a) Compute the integrals :

(i)
$$\int x \sqrt{x^2 + 4} \, dx$$
 (ii) $\int \tan^{-1} x \, dx$ (iii) $\int \frac{x+3}{(3-x)(x-2)} \, dx$

(b) Sketch and find the area of the region bounded by the curves :

 $y = 4 - x^2$ and $y = x^3$.

(c) The region bounded by the curves curves $y = \sqrt{x}$, y = 1, y = 2 and x = 0 is rotated about the y-axis to form a solid S. Find the volume of S.

Solution :

(a) (i)
$$\int x \sqrt{x^2 + 4} \, dx = \int x \, (x^2 + 4)^{\frac{1}{2}} \, dx \frac{1}{2} \int (x^2 + 4)^{\frac{1}{2}} (2x) \, dx$$

$$= \frac{1}{2} \frac{(x^2 + 4)^{\frac{3}{2}}}{\frac{3}{2}} + c = \frac{1}{3} \, (x^2 + 4)^{\frac{3}{2}} + c$$
(ii) $\int \tan^{-1} x \, dx$

Using integration by parts

$$u = \tan^{-1} xx \qquad dv = dx du = \frac{1}{1+x^2} dx \qquad v = x \int \tan^{-1} x \, dx = x \, \tan^{-1} x - \int x \, \frac{1}{1+x^2} \, dx$$

$$= x \tan^{-1} x - \frac{1}{2} \int \frac{2x}{1+x^2} dx = x \tan^{-1} x - \frac{1}{2} \ln|1+x^2| + c$$

(iii)
$$\int \frac{x+3}{(3-x)(x-2)} dx$$

Using the method of partial fractions

$$\frac{x+3}{(3-x)(x-2)} = \frac{A_1}{3-x} + \frac{A_2}{x-2}$$

$$x+3 = A_1(x-2) + A_2(3-x)$$
Put $x = 3$ then $3+3 = A_1(3-2) \implies A_1 = 6$
Put $x = 2$ then $2+3 = A_2(3-2) \implies A_2 = 5$

$$\int \frac{x+3}{(3-x)(x-2)} dx = \int \left(\frac{6}{3-x} + \frac{5}{x-2}\right) dx$$

$$= -6 \int \frac{-1}{3-x} dx + 5 \int \frac{1}{x-2} dx = -6 \ln|3-x| + 5 \ln|x-2| + c$$

(b) $y = 4 - x^2$ is a parabola opens downwards with vertex (0,4).

y = 3 is a straight line parallel to the x-axis and passing through (0,3).

Points of intersection of $y = 4 - x^2$ and y = 3:

$$3 = 4 - x^{2} \implies x^{2} - 1 = 0 \implies (x - 1)(x + 1) = 0 \implies x = -1, x = 1$$

Area
$$= \int_{-1}^{1} \left[(4 - x^{2}) - 3 \right] dx = \int_{-1}^{1} (1 - x^{2}) dx = \left[x - \frac{x^{3}}{3} \right]_{-1}^{1}$$
$$= \left(1 - \frac{1^{3}}{3} \right) - \left(-1 - \frac{(-1)^{3}}{3} \right) = 1 - \frac{1}{3} - \left(-1 + \frac{1}{3} \right)$$
$$= 1 - \frac{1}{3} + 1 - \frac{1}{3} = 2 - \frac{2}{3} = \frac{4}{3}$$

(c) x = 0 is the y-axis .

y = 1 is a straight line parallel to the x-axis and passes through (0, 1).

y = 2 is a straight line parallel to the x-axis and passes through (0, 2).

 $y=\sqrt{x}$ is the upper-half of the parabola $x=y^2$ which opens to the right with vertex (0,0),

$$y = \sqrt{x} \implies x = y^2$$

Using Disk Method :

Volume
$$= \pi \int_{1}^{2} (y^{2})^{2} dy = \pi \int_{1}^{2} y^{4} dy = \pi \left[\frac{y^{5}}{5}\right]_{1}^{2}$$

 $= \pi \left[\frac{2^{5}}{5} - \frac{1^{5}}{5}\right] = \pi \left(\frac{32 - 1}{5}\right) = \frac{31\pi}{5}$

Q.4 (a) We define z(x, y) implicitly by the equation $x^2y + \sin(xyz) = 1$. Compute the partial derivative $\frac{\partial z}{\partial y}$.

(b) Solve the differential equation : $xy^2 + y' e^{-x} = 0$.

Solution :

(a) $x^2y + \sin(xyz) = 1 \implies x^2y + \sin(xyz) - 1 = 0.$ Put $F(x, y, z) = x^2y + \sin(xyz) - 1$, then F(x, y, z) = 0. $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{x^2 + \cos(xyz)(xz) - 0}{0 + \cos(xyz)(xy) - 0} = -\frac{x^2 + xz\cos(xyz)}{xy\cos(xyz)}$

(b)
$$xy^2 + y' e^{-x} = 0$$

 $y' e^{-x} = -xy^2$
 $\frac{dy}{dx} e^{-x} = -xy^2$

$$\frac{1}{y^2} dy = -x e^x dx$$

It is a separable differential equation.

$$\int \frac{1}{y^2} dy = -\int x \ e^x \ dx$$

$$\frac{y^{-1}}{-1} = -(x \ e^x - e^x + c)$$

$$\frac{1}{y} = x \ e^x - e^x + c$$

$$y = \frac{1}{x \ e^x - e^x + c}.$$
Note that $\int x \ e^x \ dx$ can be solved by parts :
$$u = x \qquad dv = e^x \ dx$$

$$du = dx \qquad v = e^x$$

$$\int x \ e^x \ dx = x \ e^x - \int e^x \ dx = x \ e^x - e^x + c$$