M 104-GENERAL MATHEMATICS -2-
 Dr. Tariq A. AlFadhel
 Solution of the Mid-Term Exam
 First semester 1443 H

Q. 1 Find the elements of the conic section of equation $y^{2}-2 y+4 x=3$, then sketch it.

Solution :

$y^{2}-2 y+4 x=3$
$y^{2}-2 y=-4 x+3$
By completing the square.
$y^{2}-2 y+1=-4 x+3+1$
$y^{2}-2 y+1=-4 x+4$
$(y-1)^{2}=-4(x-1)$
The conic section is a Parabola, and it opens to the left.
The vertex is $V(1,1)$
$4 a=4 \Longrightarrow a=1$
The Focus is $F(0,1)$
The equation of the directrix is $x=2$

Q. 2 Find the standard equation of the ellipse with vertices at $(-4,2),(6,2)$ and one of its two foci at $(5,2)$, then sketch it.

Solution :

The two vertices and one focus are located on a line parallel to the x-axis.
The standard equation of the ellipse is $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$, where $a>b$.
$P(h, k)=\left(\frac{-4+6}{2}, \frac{2+2}{2}\right)=(1,2)$, hence $h=1$ and $k=2$
c is the distance between the focus $(5,2)$ and P, hence $c=4$
a is the distance between one of the vertices and P, hence $a=5$
$c^{2}=a^{2}-b^{2} \Longrightarrow 16=25-b^{2} \Longrightarrow b^{2}=25-16=9 \Longrightarrow b=3$
The standard equation of the ellipse is $\frac{(x-1)^{2}}{25}+\frac{(y-2)^{2}}{9}=1$
The other focus is $(-3,2)$
The end-points of the minor axis are $(1,-1)$ and $(1,5)$.

Q. 3 Calculate, whenever it is possible, the products of $2 \mathbf{A B}$ and $\mathbf{B A}$ of matrices

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & 0
\end{array}\right), \mathbf{B}=\left(\begin{array}{cc}
1 & -1 \\
0 & 1 \\
2 & 1
\end{array}\right)
$$

Solution :

$$
\left.\begin{array}{l}
2 \mathbf{A B}=2(\mathbf{A B})=2\left[\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 1 \\
2 & 1
\end{array}\right)\right] \\
=2\left(\begin{array}{l}
1+0+2 \\
1+0+0
\end{array}-1-1+1\right. \\
1+1+0
\end{array}\right)=2\left(\begin{array}{cc}
3 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
6 & -2 \\
2 & 0
\end{array}\right) .
$$

$$
=\left(\begin{array}{ccc}
1-1 & -1-1 & 1+0 \\
0+1 & 0+1 & 0+0 \\
2+1 & -2+1 & 2+0
\end{array}\right)=\left(\begin{array}{ccc}
0 & -2 & 1 \\
1 & 1 & 0 \\
3 & -1 & 2
\end{array}\right)
$$

Q. 4 Consider the system of the linear equations:

$$
\left\{\begin{array}{c}
x-2 y+z=4 \\
-x+2 y+z=-2 \\
2 x-3 y-z=3
\end{array}\right.
$$

(a) Solve this system using Cramer's rule.
(b) Solve this system using Gauss elimination method.

Solution :

(a) Using Cramer's rule :

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & -2 & 1 \\
-1 & 2 & 1 \\
2 & -3 & -1
\end{array}\right)
$$

$$
\begin{array}{ccccc}
1 & -2 & 1 & 1 & -2 \\
-1 & 2 & 1 & -1 & 2 \\
2 & -3 & -1 & 2 & -3
\end{array}
$$

$|\mathbf{A}|=(-2-4+3)-(4-3-2)=-3-(-1)=-2 \neq 0$
$\mathbf{A}_{x}=\left(\begin{array}{ccc}4 & -2 & 1 \\ -2 & 2 & 1 \\ 3 & -3 & -1\end{array}\right)$

$$
\begin{array}{ccccc}
4 & -2 & 1 & 4 & -2 \\
-2 & 2 & 1 & -2 & 2 \\
3 & -3 & -1 & 3 & -3
\end{array}
$$

$\left|\mathbf{A}_{x}\right|=(-8-6+6)-(6-12-4)=-8-(-10)=-8+10=2$
$x=\frac{\left|\mathbf{A}_{x}\right|}{|\mathbf{A}|}=\frac{2}{-2}=-1$
$\mathbf{A}_{y}=\left(\begin{array}{ccc}1 & 4 & 1 \\ -1 & -2 & 1 \\ 2 & 3 & -1\end{array}\right)$

$$
\begin{array}{ccccc}
1 & 4 & 1 & 1 & 4 \\
-1 & -2 & 1 & -1 & -2 \\
2 & 3 & -1 & 2 & 3
\end{array}
$$

$\left|\mathbf{A}_{y}\right|=(2+8-3)-(-4+3+4)=7-3=4$
$y=\frac{\left|\mathbf{A}_{y}\right|}{|\mathbf{A}|}=\frac{4}{-2}=-2$
$\mathbf{A}_{z}=\left(\begin{array}{ccc}1 & -2 & 4 \\ -1 & 2 & -2 \\ 2 & -3 & 3\end{array}\right)$

$$
\begin{array}{ccccc}
1 & -2 & 4 & 1 & -2 \\
-1 & 2 & -2 & -1 & 2 \\
2 & -3 & 3 & 2 & -3
\end{array}
$$

$\left|\mathbf{A}_{z}\right|=(6+8+12)-(16+6+6)=26-28=-2$
$z=\frac{\left|\mathbf{A}_{z}\right|}{|\mathbf{A}|}=\frac{-2}{-2}=1$
(b) Using Gauss elimination method: The augmented matrix is

$$
\left(\begin{array}{ccc|c}
1 & -2 & 1 & 4 \\
-1 & 2 & 1 & -2 \\
2 & -3 & -1 & 3
\end{array}\right) \xrightarrow{R_{1}+R_{2}}\left(\begin{array}{ccc|c}
1 & -2 & 1 & 4 \\
0 & 0 & 2 & 2 \\
2 & -3 & -1 & 3
\end{array}\right)
$$

$\xrightarrow{R_{2} \longleftrightarrow R_{3}}\left(\begin{array}{ccc|c}1 & -2 & 1 & 4 \\ 2 & -3 & -1 & 3 \\ 0 & 0 & 2 & 2\end{array}\right) \xrightarrow{-2 R_{1}+R_{2}}\left(\begin{array}{ccc|c}1 & -2 & 1 & 4 \\ 0 & 1 & -3 & -5 \\ 0 & 0 & 2 & 2\end{array}\right)$
$2 z=2 \Longrightarrow z=1$
$y-3 z=-5 \Longrightarrow y-3=-5 \Longrightarrow y=-2$
$x-2 y+z=4 \Longrightarrow x-2(-2)+1=4 \Longrightarrow x+5=4 \Longrightarrow x=-1$
The solution is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-1 \\ -2 \\ 1\end{array}\right)$
Q. 5 Evaluate the integrals:
(a) $\int(3 x-1) \sqrt{3 x^{2}-2 x+1} d x$
(b) $\int(5 x+4)^{5} d x$
(c) $\int x^{3} \ln x d x$
(d) $\int \frac{3 \cos (3 x)+2 \sin (2 x)}{\sin (3 x)-\cos (2 x)} d x$

Solution :

(a) $\int(3 x-1) \sqrt{3 x^{2}-2 x+1} d x=\int\left(3 x^{2}-2 x+1\right)^{\frac{1}{2}}(3 x-1) d x$ $=\frac{1}{2} \int\left(3 x^{2}-2 x+1\right)^{\frac{1}{2}}(6 x-2) d x=\frac{1}{2} \frac{\left(3 x^{2}-2 x+1\right)^{\frac{3}{2}}}{\frac{3}{2}}+c$
$=\frac{\left(3 x^{2}-2 x+1\right)^{\frac{3}{2}}}{3}+c$
Using the formula $\int[f(x)]^{n} f^{\prime}(x) d x=\frac{[f(x)]^{n+1}}{n+1}+c$, where $n \neq 1$
(b) $\int(5 x+4)^{5} d x=\frac{1}{5} \int(5 x+4)^{5}(5) d x=\frac{1}{5} \frac{(5 x+4)^{6}}{6}+c$

Using the formula $\int[f(x)]^{n} f^{\prime}(x) d x=\frac{[f(x)]^{n+1}}{n+1}+c$, where $n \neq 1$
(c) $\int x^{3} \ln x d x$

Using integration by parts:
$u=\ln x \quad d v=x^{3} d x$
$d u=\frac{1}{x} d x \quad v=\frac{x^{3}}{3}$
$\int x^{3} \ln x d x=\frac{x^{3}}{3} \ln x-\int \frac{x^{3}}{3} \frac{1}{x} d x=\frac{x^{3}}{3} \ln x-\frac{1}{3} \int x^{2} d x$
$=\frac{x^{3}}{3} \ln x-\frac{1}{3} \frac{x^{3}}{3}+c=\frac{x^{3}}{3} \ln x-\frac{x^{3}}{9}+c$
(d) $\int \frac{3 \cos (3 x)+2 \sin (2 x)}{\sin (3 x)-\cos (2 x)} d x=\ln |\sin (3 x)-\cos (2 x)|+c$

Using the formula $\int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+c$

M 104-GENERAL MATHEMATICS -2-
 Dr. Tariq A. AlFadhel
 Solution of the Final Exam First semester 1443 H

Part 1: Multiple Choice Questions:

1. The center of the conic section of equation $4 x^{2}+8 x-y^{2}+2 y-1=0$ is
(a). $(-1,1)$
(b). $(1,-1)$
(c). $(4,1)$
(d). $(4,-1)$

Solution :

$4 x^{2}+8 x-y^{2}+2 y-1=0$
$4 x^{2}+8 x-y^{2}+2 y=1$
$4\left(x^{2}+2 x\right)-\left(y^{2}-2 y\right)=1$
By completing the square:
$4\left(x^{2}+2 x+1\right)-\left(y^{2}-2 y+1\right)=1+4-1$
$4(x+1)^{2}-(y-1)^{2}=4$
$\frac{4(x+1)^{2}}{4}-\frac{(y-1)^{2}}{4}=\frac{4}{4}$
$(x+1)^{2}-\frac{(y-1)^{2}}{4}=1$
The center of the conic section is $P(-1,1)$.
The right answer is (a).
2. The equation of the ellipse of foci $(-3,6) ;(-3,2)$ and length of major axis 14 is given by:
(a). $\frac{(x-6)^{2}}{14}+\frac{(y-2)^{2}}{3}=1$
(b). $\frac{(x+3)^{2}}{45}+\frac{(y-4)^{2}}{49}=1$
(c). $\frac{(x-3)^{2}}{9}+\frac{(y+6)^{2}}{4}=1$
(d). $\frac{(x+3)^{2}}{9}+\frac{(y-2)^{2}}{36}=1$

Solution :

The two foci are located in a line parallel to the y-axis, hence the equation of the ellipse is: $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$, where $b>a$.
The center P is the middle point of the two foci, hence:
$P(h, k)=\left(\frac{-3+(-3)}{2}, \frac{6+2}{2}\right)=(-3,4)$.
c is the distance between P and one of the foci, hence $c=2$.

The length of the major axis is 14 means that $2 b=14 \Longrightarrow b=7$.
$c^{2}=b^{2}-a^{2} \Longrightarrow 4=49-a^{2} \Longrightarrow a^{2}=49-4=45 \Longrightarrow a=\sqrt{45}$.
The equation of the ellipse is $\frac{(x+3)^{2}}{45}+\frac{(y-4)^{2}}{49}=1$.
The right answer is (b).
3. If $\mathbf{A}=\left(\begin{array}{ccc}1 & -1 & 2 \\ 0 & 1 & -2\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{ccc}0 & -3 & 2 \\ 1 & 2 & -1\end{array}\right)$, then $\mathbf{A}\left(\mathbf{B}^{T}\right)$ equals
(a). $\left(\begin{array}{lll}0 & 3 & 4 \\ 0 & 2 & 2\end{array}\right)$
(b). $\left(\begin{array}{ll}0 & 3 \\ 0 & 2\end{array}\right)$
(c). $\left(\begin{array}{cc}7 & -3 \\ -7 & 4\end{array}\right)$
(d). undefined

Solution :

$\mathbf{A}\left(\mathbf{B}^{T}\right)=\left(\begin{array}{ccc}1 & -1 & 2 \\ 0 & 1 & -2\end{array}\right)\left(\begin{array}{cc}0 & 1 \\ -3 & 2 \\ 2 & -1\end{array}\right)$
$=\left(\begin{array}{ll}0+3+4 & 1-2-2 \\ 0-3-4 & 0+2+2\end{array}\right)=\left(\begin{array}{cc}7 & -3 \\ -7 & 4\end{array}\right)$
The right answer is (c).
4. The determinant $\left|\begin{array}{llll}1 & 1 & 1 & 2 \\ 1 & 1 & 2 & 2 \\ 1 & 2 & 2 & 2 \\ 2 & 2 & 3 & 4\end{array}\right|$ is equal to
(a). -2
(b). 0
(c). $6 \quad(d) .8$

Solution :
Note that $C_{4}=2 C_{1}$, hence $\left|\begin{array}{llll}1 & 1 & 1 & 2 \\ 1 & 1 & 2 & 2 \\ 1 & 2 & 2 & 2 \\ 2 & 2 & 3 & 4\end{array}\right|=0$.
The right answer is (b).
5. The integral $\int x^{3}\left(2+x^{4}\right)^{5} d x$ is equal to
(a). $\frac{\left(2+x^{4}\right)^{6}}{24}+c \quad$ (b). $\frac{x^{4}\left(2+x^{4}\right)^{6}}{24}+c$
(c). $\frac{\left(2+x^{4}\right)^{6}}{6}+c \quad(d) \cdot \frac{x^{4}\left(2+x^{4}\right)^{5}}{4}+c$

Solution :
$\int x^{3}\left(2+x^{4}\right)^{5} d x=\frac{1}{4} \int\left(2+x^{4}\right)^{5}\left(4 x^{3}\right) d x$
$=\frac{1}{4} \frac{\left(2+x^{4}\right)^{6}}{6}+c=\frac{\left(2+x^{4}\right)^{6}}{24}+c$
The right answer is (a).
6. The volume of the solid, obtained by revolving the region bounded by the curves $y=x^{2}, y=x^{3}$ about the x-axis, is equal to
(a). $\frac{\pi}{7}$
(b). $\frac{\pi}{12}$
(c). $\frac{2 \pi}{15}$
(d). $\frac{2 \pi}{35}$

Solution :
The points of intersection of $y=x^{2}$ and $y=x^{3}$:

$$
x^{3}=x^{2} \Longrightarrow x^{3}-x^{2}=0 \Longrightarrow x^{2}(x-1)=0 \Longrightarrow x=0, x=1
$$

Using Washer method:
$\mathbf{V}=\pi \int_{0}^{1}\left[\left(x^{2}\right)^{2}-\left(x^{3}\right)^{2}\right] d x=\pi \int_{0}^{1}\left(x^{4}-x^{6}\right) d x=\pi\left[\frac{x^{5}}{5}-\frac{x^{7}}{7}\right]_{0}^{1}$
$=\pi\left[\left(\frac{1}{5}-\frac{1}{7}\right)-(0-0)\right]=\pi\left(\frac{7-5}{35}\right)=\frac{2 \pi}{35}$.
The right answer is (d).
7. The point with rectangular coordinates $(-1, \sqrt{3})$, has polar coordinates:
(a). $\left(2, \frac{\pi}{3}\right)$
(b). $\left(2, \frac{2 \pi}{3}\right)$
(c). $\left(\sqrt{3}, \frac{\pi}{2}\right)$
(d). $\left(\sqrt{3}, \frac{\pi}{4}\right)$

Solution :

$$
(x, y)=(-1, \sqrt{3}) \Longrightarrow x=-1, y=\sqrt{3}
$$

$r=\sqrt{x^{2}+y^{2}}=\sqrt{(-1)^{2}+(\sqrt{3})^{2}}=\sqrt{1+3}=\sqrt{4}=2$.
$\tan \theta=\frac{y}{x}=\frac{\sqrt{3}}{-1}=-\sqrt{3} \Longrightarrow \theta=\frac{2 \pi}{3}$.
$(r, \theta)=\left(2, \frac{2 \pi}{3}\right)$.
The right answer is (b).
8. Let $f(x, y)=x^{3} y^{2}+y \sin \left(\frac{x}{y}\right)$. The partial derivative $\frac{\partial f}{\partial x}$ is equal to
(a). $3 x^{2} y^{2}+\cos x$
(b). $6 x^{2} y+\cos x$
(c). $3 x^{2} y^{2}+\cos \left(\frac{x}{y}\right)$
(d). $6 x^{2} y+\cos \left(\frac{x}{y}\right)$

Solution :

$\frac{\partial f}{\partial x}=\left(3 x^{2}\right) y^{2}+y \cos \left(\frac{x}{y}\right) \frac{1}{y}=3 x^{2} y^{2}+\cos \left(\frac{x}{y}\right)$.
The right answer is (c).
9. If $y=y(x)$ is defined implicitly by $e^{x y}=x y+1$, for $x, y>0$, then $\frac{d y}{d x}$ is equal to
(a). $x e^{x y}-y$
(b). $-\frac{e^{x y}}{y}$
(c). $-\frac{e^{x y}}{x}$
(d). $-\frac{y}{x}$

Solution :

$e^{x y}=x y+1 \Longrightarrow e^{x y}-x y-1=0$.
Let $F(x, y)=e^{x y}-x y-1$, then $F(x, y)=0$.
$\frac{d y}{d x}=-\frac{F_{x}}{F_{y}}=-\frac{e^{x y} y-y}{e^{x y} x-x}=-\frac{y\left(e^{x y}-1\right)}{x\left(e^{x y}-1\right)}=-\frac{y}{x}$.
The right answer is (d).
10. The general solution of the differential equation $y^{\prime}-\frac{3 x^{2}}{2 y}=0$ is
(a). $2 y=3 x^{2}+c$
(b). $y-x^{3} \ln |2 y|=c$
(c). $y^{2}=x^{3}+c$
(d). $y-\frac{x^{3}}{y^{3}}=c$

Solution :

$\frac{d y}{d x}=\frac{3 x^{2}}{2 y}$
$2 y d y=3 x^{2} d x$ (Separable differential equation)
$y^{2}=x^{3}+c$
The right answer is (c).

Part 2: Essay Questions

11. Find the elements of the conic section $4 x^{2}-9 y^{2}-8 x-36 y-68=0$ and then sketch it.

Solution :

$$
\begin{aligned}
& 4 x^{2}-9 y^{2}-8 x-36 y-68=0 \\
& 4 x^{2}-8 x-9 y^{2}-36 y=68 \\
& 4\left(x^{2}-2 x\right)-9\left(y^{2}+4 y\right)=68
\end{aligned}
$$

By completing the square:
$4\left(x^{2}-2 x+1\right)-9\left(y^{2}+4 y+4\right)=68+4-36$
$4(x-1)^{2}-9(y+2)^{2}=36$
$\frac{4(x-1)^{2}}{36}-\frac{9(y+2)^{2}}{36}=\frac{36}{36}$
$\frac{(x-1)^{2}}{9}-\frac{(y+2)^{2}}{4}=1$
The conic section is a hyperbola.
The center is $P(h, k)=(1,-2)$.
$a^{2}=9 \Longrightarrow a=3$ and $b^{2}=4 \Longrightarrow b=2$.
$c^{2}=a^{2}+b^{2}=9+4=13 \Longrightarrow c=\sqrt{13}$.
The vertices are $V_{1}(-2,-2)$ and $V_{2}(4,-2)$.
The foci are $F_{1}(1-\sqrt{13},-2)$ and $F_{2}(1+\sqrt{13},-2)$.
The equations of the asymptotes are :
$L_{1}: y+2=\frac{2}{3}(x-1)$ and $L_{2}: y+2=-\frac{2}{3}(x-1)$

12. Solve by using Gauss Elimination Method the system

$$
\left\{\begin{array}{c}
x+y+z=2 \\
x-y+2 z=0 \\
2 x+z=2
\end{array}\right.
$$

Solution :

The augmented matrix is
$\left(\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 1 & -1 & 2 & 0 \\ 2 & 0 & 1 & 2\end{array}\right) \xrightarrow{-R_{1}+R_{2}}\left(\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & -2 & 1 & -2 \\ 2 & 0 & 1 & 2\end{array}\right)$
$\xrightarrow{-2 R_{1}+R_{3}}\left(\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & -2 & 1 & -2 \\ 0 & -2 & -1 & -2\end{array}\right) \xrightarrow{-R_{2}+R_{2}}\left(\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & -2 & 1 & -2 \\ 0 & 0 & -2 & 0\end{array}\right)$
$-2 z=0 \Longrightarrow z=0$
$-2 y+z=-2 \Longrightarrow-2 y=-2 \Longrightarrow y=1$
$x+y+z=2 \Longrightarrow x+1=2 \Longrightarrow x=1$
The solution is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$
13. Compute the integral $\int \frac{2 x^{2}-2 x-2}{x(x+1)(x-1)} d x$

Solution : Using partial fractions method.

$$
\begin{aligned}
& \frac{2 x^{2}-2 x-2}{x(x-1)(x+1)}=\frac{A_{1}}{x}+\frac{A_{2}}{x-1}+\frac{A_{3}}{x+1} \\
& 2 x^{2}-2 x-2=A_{1}(x-1)(x+1)+A_{2} x(x+1)+A_{3} x(x-1) \\
& 2 x^{2}-2 x-2=A_{1}\left(x^{2}-1\right)+A_{2}\left(x^{2}+x\right)+A_{3}\left(x^{2}-x\right) \\
& 2 x^{2}-2 x-2=A_{1} x^{2}-A_{1}+A_{2} x^{2}+A_{2} x+A_{3} x^{2}-A_{3} x \\
& 2 x^{2}-2 x-2=\left(A_{1}+A_{2}+A_{3}\right) x^{2}+\left(A_{2}-A_{3}\right) x-A_{1} \\
& A_{1}+A_{2}+A_{3}=2 \quad \longrightarrow \quad(1) \\
& A_{2}-A_{3}=-2 \quad \longrightarrow \quad(2) \\
& -A_{1}=-2 \quad \longrightarrow \quad(3)
\end{aligned}
$$

From equation (1) : $A_{1}=2$.
Equation (1) becomes : $A_{2}+A_{3}=0 \longrightarrow(4)$.
Equation (4) + Equation (2) : $2 A_{2}=-2 \Longrightarrow A_{2}=-1$.

From equation (4) : $A_{3}=1$.
$\int \frac{2 x^{2}-2 x-2}{x(x+1)(x-1)} d x=\int\left(\frac{2}{x}+\frac{-1}{x-1}+\frac{1}{x+1}\right) d x$
$=2 \int \frac{1}{x} d x-\int \frac{1}{x-1} d x+\int \frac{1}{x+1} d x$
$=2 \ln |x|-\ln |x-1|+\ln |x+1|+c$
14. If $w=x^{2}+x y+3 y^{2}, x=u^{2}+v$ and $y=v^{2}$, use the chain rule to compute $\frac{\partial w}{\partial u}$.

Solution :

$\frac{\partial w}{\partial u}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial u}$
$\frac{\partial w}{\partial x}=2 x+y$ and $\frac{\partial x}{\partial u}=2 u$,
$\frac{\partial w}{\partial y}=x+6 y$ and $\frac{\partial y}{\partial u}=0$.
$\frac{\partial w}{\partial u}=(2 x+y)(2 u)+(x+6 y)(0)=(2 x+y)(2 u)=\left[2\left(u^{2}+v\right)+v^{2}\right](2 u)$
$=2 u\left[2 u^{2}+2 v+v^{2}\right]=4 u^{2}+4 u v+2 u v^{2}$.
15. Find the general solution of the linear differential equation $x y^{\prime}+2 y=5 x^{3}$.

Solution :

$x y^{\prime}+2 y=5 x^{3}$
$y^{\prime}+\left(\frac{2}{x}\right) y=5 x^{2}$
It is a First-order differential equation .
$P(x)=\frac{2}{x}$ and $Q(x)=5 x^{2}$
The integrating factor is :
$u(x)=e^{\int P(x) d x}=e^{\int \frac{2}{x} d x}=e^{2 \int \frac{1}{x} d x}=e^{2 \ln |x|}=e^{\ln \left(x^{2}\right)}=x^{2}$.
The general solution of the differential equation is :

$$
\begin{aligned}
& y=\frac{1}{u(x)} \int u(x) Q(x) d x=\frac{1}{x^{2}} \int x^{2}\left(5 x^{2}\right) d x=\frac{1}{x^{2}} \int 5 x^{4} d x \\
& =\frac{1}{x^{2}}\left(x^{5}+c\right)=x^{3}+\frac{c}{x^{2}}
\end{aligned}
$$

M 104 - GENERAL MATHEMATICS -2-

Dr. Tariq A. AlFadhel
Solution of the Mid-Term Exam
Second semester 1443 H
Q. 1 Find the elements of the conic section of equation
$4 x^{2}+9 y^{2}-8 x-36 y+4=0$, then sketch it.

Solution :

$4 x^{2}+9 y^{2}-8 x-36 y+4=0$
$4 x^{2}-8 x+9 y^{2}-36 y=-4$
$4\left(x^{2}-2 x\right)+9\left(y^{2}-4 y\right)=-4$
By completing the square.
$4\left(x^{2}-2 x+1\right)+9\left(y^{2}-4 y+4\right)=-4+4+36$
$4(x-1)^{2}+9(y-2)^{2}=36$
$\frac{4(x-1)^{2}}{36}+\frac{9(y-2)^{2}}{36}=\frac{36}{36}$
$\frac{(x-1)^{2}}{9}+\frac{(y-2)^{2}}{4}=1$
The conic section is an ellipse.
The center is $P(1,2)$
$a^{2}=9 \Longrightarrow a=3$
$b^{2}=4 \Longrightarrow b=2$
$c^{2}=a^{2}-b^{2}=9-4=5 \Longrightarrow c=\sqrt{5}$
The vertices are $V_{1}(-2,2)$ and $V_{2}(4,2)$
The foci are $F_{1}(1-\sqrt{5}, 2)$ and $F_{2}(1+\sqrt{5}, 2)$
The end-points of the minor axis are $W_{1}(1,4)$ and $W_{2}(1,0)$

Q. 2 Find the standard equation of the hyperbola with foci $(2,3),(-6,3)$ and the the distance between its two vertices equals to 6 , then sketch it.

Solution :

The two foci are located on a line parallel to the x-axis.
The standard equation of the hyperbola is $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$.
The center is the middle point between the two foci.
$P(h, k)=\left(\frac{2+(-6)}{2}, \frac{3+3}{2}\right)=(-2,3)$, hence $h=-2$ and $k=3$.
c is the distance between one of the foci and P, hence $c=4$.
The distance between its two vertices equals 6 means $2 a=6 \Longrightarrow a=3$.
$c^{2}=a^{2}+b^{2} \Longrightarrow 16=9+b^{2} \Longrightarrow b^{2}=16-9=7 \Longrightarrow b=\sqrt{7}$.
The standard equation of the hyperbola is $\frac{(x+2)^{2}}{9}-\frac{(y-3)^{2}}{7}=1$.
The vertices are $V_{1}(-5,3)$ and $V_{2}(1,3)$.
The equations of the asymptotes are :
$L_{1}: y-3=\frac{\sqrt{7}}{3}(x+2)$ and $L_{2}: y-3=-\frac{\sqrt{7}}{3}(x+2)$.

Q. 3 Calculate, whenever it is possible, $2 \mathbf{A}-\mathbf{B}^{T}$ and $\mathbf{A B}$ for matrices

$$
\mathbf{A}=\left(\begin{array}{lll}
2 & 1 & -1 \\
1 & 3 & -2
\end{array}\right), \mathbf{B}=\left(\begin{array}{cc}
1 & 2 \\
0 & 1 \\
-1 & 3
\end{array}\right)
$$

Solution :

$$
\begin{aligned}
& 2 \mathbf{A}-\mathbf{B}^{T}=\left(\begin{array}{lll}
4 & 2 & -2 \\
2 & 6 & -4
\end{array}\right)-\left(\begin{array}{ccc}
1 & 0 & -1 \\
2 & 1 & 3
\end{array}\right) \\
& =\left(\begin{array}{lll}
3 & 2 & -1 \\
0 & 5 & -7
\end{array}\right) \\
& \mathbf{A B}=\left(\begin{array}{lll}
2 & 1 & -1 \\
1 & 3 & -2
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
0 & 1 \\
-1 & 3
\end{array}\right) \\
& =\left(\begin{array}{ll}
2+0+1 & 4+1-3 \\
1+0+2 & 2+3-6
\end{array}\right)=\left(\begin{array}{cc}
3 & 2 \\
3 & -1
\end{array}\right)
\end{aligned}
$$

Q. 4 Consider the system of the linear equations:

$$
\left\{\begin{aligned}
2 x+y+z & =1 \\
x-y & =0 \\
y-z & =3
\end{aligned}\right.
$$

(a) Solve this system using Cramer's rule.
(b) Solve this system using Gauss elimination method.

Solution :

(a) Using Cramer's rule :
$\mathbf{A}=\left(\begin{array}{ccc}2 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1\end{array}\right)$

$$
\begin{aligned}
& \left|\mathbf{A}_{y}\right|=(0+0+3)-(0+0-1)=3-(-1)=3+1=4 \\
& y=\frac{\left|\mathbf{A}_{y}\right|}{|\mathbf{A}|}=\frac{4}{4}=1 \\
& \mathbf{A}_{z}=\left(\begin{array}{ccc}
2 & 1 & 1 \\
1 & -1 & 0 \\
0 & 1 & 3
\end{array}\right)
\end{aligned}
$$

$$
\begin{array}{ccccc}
2 & 1 & 1 & 2 & 1 \\
1 & -1 & 0 & 1 & -1 \\
0 & 1 & 3 & 0 & 1
\end{array}
$$

$$
\left|\mathbf{A}_{z}\right|=(-6+0+1)-(0+0+3)=-5-3=-8
$$

$$
z=\frac{\left|\mathbf{A}_{z}\right|}{|\mathbf{A}|}=\frac{-8}{4}=-2
$$

(b) Using Gauss elimination method: The augmented matrix is

$$
\left(\begin{array}{ccc|c}
2 & 1 & 1 & 1 \\
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 3
\end{array}\right) \xrightarrow{R_{1} \longleftrightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & -1 & 0 & 0 \\
2 & 1 & 1 & 1 \\
0 & 1 & -1 & 3
\end{array}\right)
$$

$$
\begin{aligned}
& \begin{array}{lllll}
2 & 1 & 1 & 2 & 1
\end{array} \\
& \begin{array}{ccccc}
1 & -1 & 0 & 1 & -1 \\
0 & 1 & -1 & 0 & 1
\end{array} \\
& |\mathbf{A}|=(2+0+1)-(0+0-1)=3-(-1)=3+1=4 \neq 0 \\
& \mathbf{A}_{x}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & -1 & 0 \\
3 & 1 & -1
\end{array}\right) \\
& \begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
0 & -1 & 0 & 0 & -1 \\
3 & 1 & -1 & 3 & 1
\end{array} \\
& \left|\mathbf{A}_{x}\right|=(1+0+0)-(-3+0+0)=1-(-3)=1+3=4 \\
& x=\frac{\left|\mathbf{A}_{x}\right|}{|\mathbf{A}|}=\frac{4}{4}=1 \\
& \mathbf{A}_{y}=\left(\begin{array}{ccc}
2 & 1 & 1 \\
1 & 0 & 0 \\
0 & 3 & -1
\end{array}\right) \\
& \begin{array}{ccccc}
2 & 1 & 1 & 2 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 3 & -1 & 0 & 3
\end{array}
\end{aligned}
$$

$\xrightarrow{-2 R_{1}+R_{2}}\left(\begin{array}{ccc|c}1 & -1 & 0 & 0 \\ 0 & 3 & 1 & 1 \\ 0 & 1 & -1 & 3\end{array}\right) \xrightarrow{R_{2} \longleftrightarrow R_{3}}\left(\begin{array}{ccc|c}1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 3 \\ 0 & 3 & 1 & 1\end{array}\right)$
$\xrightarrow{-3 R_{2}+R_{3}}\left(\begin{array}{ccc|c}1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 4 & -8\end{array}\right)$
$4 z=-8 \Longrightarrow z=\frac{-8}{4}=-2$
$y-z=3 \Longrightarrow y-(-2)=3 \Longrightarrow y+2=3 \Longrightarrow y=3-2=1$
$x-y=0 \Longrightarrow x-1=0 \Longrightarrow x=1$
The solution is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right)$
Q. 5 Evaluate the integrals:
(a) $\int \frac{4 x^{3}+1}{\sqrt{x^{4}+x+1}} d x$
(b) $\int(x+1) e^{x^{2}+2 x} d x$
(c) $\int(2 x+1) \cos x d x$
(d) $\int(2 x+1) \ln x d x$

Solution :

(a) $\int \frac{4 x^{3}+1}{\sqrt{x^{4}+x+1}} d x=\int\left(x^{4}+x+1\right)^{-\frac{1}{2}}\left(4 x^{3}+1\right) d x$ $=\frac{\left(x^{4}+x+1\right)^{\frac{1}{2}}}{\frac{1}{2}}+c=2\left(x^{4}+x+1\right)^{\frac{1}{2}}+c$

Using the formula $\int[f(x)]^{n} f^{\prime}(x) d x=\frac{[f(x)]^{n+1}}{n+1}+c$, where $n \neq 1$
(b) $\int(x+1) e^{x^{2}+2 x} d x=\frac{1}{2} \int e^{x^{2}+2 x}[2(x+1)] d x$
$=\frac{1}{2} \int e^{x^{2}+2 x}(2 x+2) d x=\frac{1}{2} e^{x^{2}+2 x}+c$
Using the formula $\int e^{f(x)} f^{\prime}(x) d x=e^{f(x)}+c$
(c) $\int(2 x+1) \cos x d x$

Using integration by parts:
$u=2 x+1 \quad d v=\cos x d x$
$d u=2 d x \quad v=\sin x$
$\int(2 x+1) \cos x d x=(2 x+1) \sin x-\int 2 \sin x d x$
$=(2 x+1) \sin x-2 \int \sin x d x=(2 x+1) \sin x-2(-\cos x)+c$
$=(2 x+1) \sin x+2 \cos x+c$
(d) $\int(2 x+1) \ln x d x$

Using integration by parts:

$$
\begin{aligned}
& u=\ln x \quad d v=(2 x+1) d x \\
& d u=\frac{1}{x} d x \quad v=x^{2}+x \\
& \int(2 x+1) \ln x d x=\left(x^{2}+x\right) \ln x-\int\left(x^{2}+x\right) \frac{1}{x} d x \\
& =\left(x^{2}+x\right) \ln x-\int(x+1) d x=\left(x^{2}+x\right) \ln x-\left(\frac{x^{2}}{2}+x\right)+c \\
& =\left(x^{2}+x\right) \ln x-\frac{x^{2}}{2}-x+c
\end{aligned}
$$

M 104-GENERAL MATHEMATICS -2-

Dr. Tariq A. AlFadhel
Solution of the Final Exam Second semester 1443 H
Q. 1 (a) Let $\mathbf{A}=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{ll}0 & 1 \\ 1 & 1 \\ 1 & 0\end{array}\right)$. Compute (if possible) $\mathbf{A B}$ and $\mathbf{B A}$.
(b) Compute the determinant $\left|\begin{array}{ccc}-1 & 6 & 2 \\ 0 & 0 & 5 \\ 0 & 3 & 4\end{array}\right|$.
(c) Solve by using Gauss Elimination Method the linear system

$$
\left\{\begin{array}{c}
x+y+3 z=7 \\
-2 x-y-z=-4 \\
3 x+2 y-2 z=-1
\end{array}\right.
$$

Solution :

(a) $\mathbf{A B}=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 1 \\ 1 & 0\end{array}\right)$
$=\left(\begin{array}{ll}0+0+0 & 1+0+0 \\ 0+1+0 & 1+1+0 \\ 0+1+1 & 1+1+0\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 1 & 2 \\ 2 & 2\end{array}\right)$
BA can not be computed.
(b) Solution (1): Using Sarrus Method

$$
\begin{aligned}
& \begin{array}{ccccc}
-1 & 6 & 2 & -1 & 6 \\
0 & 0 & 5 & 0 & 0 \\
0 & 3 & 4 & 0 & 3
\end{array} \\
& \left|\begin{array}{ccc}
-1 & 6 & 2 \\
0 & 0 & 5 \\
0 & 3 & 4
\end{array}\right|=(0+0+0)-(0+(-15)+0)=0-(-15)=15
\end{aligned}
$$

Solution (2) : Using the properties of determinants:

$$
\left|\begin{array}{ccc}
-1 & 6 & 2 \\
0 & 0 & 5 \\
0 & 3 & 4
\end{array}\right| \xrightarrow{R_{2} \longleftrightarrow R_{3}}(-1) \times\left|\begin{array}{ccc}
-1 & 6 & 2 \\
0 & 3 & 4 \\
0 & 0 & 5
\end{array}\right|=(-1) \times(-1 \times 3 \times 5)=15
$$

(c) Using Gauss Elimination Method :
$\left(\begin{array}{ccc|c}1 & 1 & 3 & 7 \\ -2 & -1 & -1 & -4 \\ 3 & 2 & -2 & -1\end{array}\right) \xrightarrow{2 R_{1}+R_{2}}\left(\begin{array}{ccc|c}1 & 1 & 3 & 7 \\ 0 & 1 & 5 & 10 \\ 3 & 2 & -2 & -1\end{array}\right)$
$\xrightarrow{-3 R_{1}+R_{3}}\left(\begin{array}{ccc|c}1 & 1 & 3 & 7 \\ 0 & 1 & 5 & 10 \\ 0 & -1 & -11 & -22\end{array}\right) \xrightarrow{R_{2}+R_{3}}\left(\begin{array}{ccc|c}1 & 1 & 3 & 7 \\ 0 & 1 & 5 & 10 \\ 0 & 0 & -6 & -12\end{array}\right)$
$-6 z=-12 \Longrightarrow z=\frac{-12}{-6}=2$
$y+5 z=10 \Longrightarrow y+5(2)=10 \Longrightarrow y+10=10 \Longrightarrow y=0$
$x+y+3 z=7 \Longrightarrow x+0+3(2)=7 \Longrightarrow x+6=7 \Longrightarrow x=1$
The solution is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)$
Q. 2 (a) Find the standard equation of the ellipse with foci $(3,6)$ and $(3,-2)$, and vertex $(3,-3)$ and then sketch it.
(b) Find the elements of the conic section $9 x^{2}-4 y^{2}-18 x-24 y+9=0$ and then sketch it.

Solution :

(a) The two foci and the vertex are located on a line parallel to the y-axis.

The standard equation of the ellipse is $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$, where $b>a$.
$P(h, k)=\left(\frac{3+3}{2}, \frac{6+(-2)}{2}\right)=(3,2)$, hence $h=3$ and $k=2$
b is the distance between the vertex $(3,-3)$ and P, hence $b=5$
c is the distance between one of the foci and P, hence $c=3$
$c^{2}=b^{2}-a^{2} \Longrightarrow 16=25-a^{2} \Longrightarrow a^{2}=25-16=9 \Longrightarrow a=3$
The standard equation of the ellipse is $\frac{(x-3)^{2}}{9}-\frac{(y-2)^{2}}{25}=1$
The other vertex is $(3,7)$
The end-points of the minor axis are $(0,2)$ and $(6,2)$.

(b) $9 x^{2}-4 y^{2}-18 x-24 y+9=0$
$9 x^{2}-18 x-4 y^{2}-24 y=-9$
$9\left(x^{2}-2 x\right)-4\left(y^{2}+6 y\right)=-9$
By completing the square
$9\left(x^{2}-2 x+1\right)-4\left(y^{2}+6 y+9\right)=-9+9-36$
$9(x-1)^{2}-4(y+3)^{2}=-36$
$\frac{9(x-1)^{2}}{-36}-\frac{4(y+3)^{2}}{-36}=1$
$-\frac{(x-1)^{2}}{4}+\frac{(y+3)^{2}}{9}=1 \Longrightarrow \frac{(y+3)^{2}}{9}-\frac{(x-1)^{2}}{4}=1$
The conic section is a hyperbola.
The center is $P(1,-3)$.
$a^{2}=4 \Longrightarrow a=2$.
$b^{2}=9 \Longrightarrow b=3$.
$c^{2}=a^{2}+b^{2}=4+9=13 \Longrightarrow c=\sqrt{13}$.
The vertices are $V_{1}(1,0)$ and $V_{2}(1,-6)$
The foci are $F_{1}(1,-3+\sqrt{13})$ and $F_{2}(1,-3-\sqrt{13})$.
The equations of the asymptotes are :
$L_{1}: y+3=\frac{3}{2}(x-1)$ and $L_{2}: y+3=-\frac{3}{2}(x-1)$

Q. 3 (a) Compute the integrals :
(i) $\int x \sqrt{x^{2}+4} d x$
(ii) $\int \tan ^{-1} x d x$
(iii) $\int \frac{x+3}{(3-x)(x-2)} d x$
(b) Sketch and find the area of the region bounded by the curves: $y=4-x^{2}$ and $y=x 3$.
(c) The region bounded by the curves curves $y=\sqrt{x}, y=1, y=2$ and $x=0$ is rotated about the y-axis to form a solid S. Find the volume of S.

Solution :

(a) (i) $\int x \sqrt{x^{2}+4} d x=\int x\left(x^{2}+4\right)^{\frac{1}{2}} d x \frac{1}{2} \int\left(x^{2}+4\right)^{\frac{1}{2}}(2 x) d x$
$=\frac{1}{2} \frac{\left(x^{2}+4\right)^{\frac{3}{2}}}{\frac{3}{2}}+c=\frac{1}{3}\left(x^{2}+4\right)^{\frac{3}{2}}+c$
(ii) $\int \tan ^{-1} x d x$

Using integration by parts

$$
\begin{array}{ll}
u=\tan ^{-1} x x & d v=d x \\
d u=\frac{1}{1+x^{2}} d x \quad & v=x \\
\int \tan ^{-1} x d x=x & \tan ^{-1} x-\int x \frac{1}{1+x^{2}} d x
\end{array}
$$

$=x \tan ^{-1} x-\frac{1}{2} \int \frac{2 x}{1+x^{2}} d x=x \tan ^{-1} x-\frac{1}{2} \ln \left|1+x^{2}\right|+c$
(iii) $\int \frac{x+3}{(3-x)(x-2)} d x$

Using the method of partial fractions
$\frac{x+3}{(3-x)(x-2)}=\frac{A_{1}}{3-x}+\frac{A_{2}}{x-2}$
$x+3=A_{1}(x-2)+A_{2}(3-x)$
Put $x=3$ then $3+3=A_{1}(3-2) \Longrightarrow A_{1}=6$
Put $x=2$ then $2+3=A_{2}(3-2) \Longrightarrow A_{2}=5$
$\int \frac{x+3}{(3-x)(x-2)} d x=\int\left(\frac{6}{3-x}+\frac{5}{x-2}\right) d x$
$=-6 \int \frac{-1}{3-x} d x+5 \int \frac{1}{x-2} d x=-6 \ln |3-x|+5 \ln |x-2|+c$
(b) $y=4-x^{2}$ is a parabola opens downwards with vertex $(0,4)$.
$y=3$ is a straight line parallel to the x-axis and passing through $(0,3)$.

Points of intersection of $y=4-x^{2}$ and $y=3$:

$$
\begin{aligned}
& 3=4-x^{2} \Longrightarrow x^{2}-1=0 \Longrightarrow(x-1)(x+1)=0 \Longrightarrow x=-1, x=1 \\
& \text { Area }=\int_{-1}^{1}\left[\left(4-x^{2}\right)-3\right] d x=\int_{-1}^{1}\left(1-x^{2}\right) d x=\left[x-\frac{x^{3}}{3}\right]_{-1}^{1} \\
& =\left(1-\frac{1^{3}}{3}\right)-\left(-1-\frac{(-1)^{3}}{3}\right)=1-\frac{1}{3}-\left(-1+\frac{1}{3}\right) \\
& =1-\frac{1}{3}+1-\frac{1}{3}=2-\frac{2}{3}=\frac{4}{3}
\end{aligned}
$$

(c) $x=0$ is the y-axis .
$y=1$ is a straight line parallel to the x-axis and passes through $(0,1)$. $y=2$ is a straight line parallel to the x-axis and passes through $(0,2)$. $y=\sqrt{x}$ is the upper-half of the parabola $x=y^{2}$ which opens to the right with vertex $(0,0)$,

$y=\sqrt{x} \Longrightarrow x=y^{2}$
Using Disk Method :
Volume $=\pi \int_{1}^{2}\left(y^{2}\right)^{2} d y=\pi \int_{1}^{2} y^{4} d y=\pi\left[\frac{y^{5}}{5}\right]_{1}^{2}$
$=\pi\left[\frac{2^{5}}{5}-\frac{1^{5}}{5}\right]=\pi\left(\frac{32-1}{5}\right)=\frac{31 \pi}{5}$
Q. 4 (a) We define $z(x, y)$ implicitly by the equation $x^{2} y+\sin (x y z)=1$. Compute the partial derivative $\frac{\partial z}{\partial y}$.
(b) Solve the differential equation : $x y^{2}+y^{\prime} e^{-x}=0$.

Solution :
(a) $x^{2} y+\sin (x y z)=1 \Longrightarrow x^{2} y+\sin (x y z)-1=0$.

Put $F(x, y, z)=x^{2} y+\sin (x y z)-1$, then $F(x, y, z)=0$.
$\frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}=-\frac{x^{2}+\cos (x y z)(x z)-0}{0+\cos (x y z)(x y)-0}=-\frac{x^{2}+x z \cos (x y z)}{x y \cos (x y z)}$
(b) $x y^{2}+y^{\prime} e^{-x}=0$
$y^{\prime} e^{-x}=-x y^{2}$
$\frac{d y}{d x} e^{-x}=-x y^{2}$
$\frac{1}{y^{2}} d y=-x e^{x} d x$
It is a separable differential equation.

$$
\begin{aligned}
& \int \frac{1}{y^{2}} d y=-\int x e^{x} d x \\
& \frac{y^{-1}}{-1}=-\left(x e^{x}-e^{x}+c\right) \\
& \frac{1}{y}=x e^{x}-e^{x}+c \\
& y=\frac{1}{x e^{x}-e^{x}+c} .
\end{aligned}
$$

Note that $\int x e^{x} d x$ can be solved by parts :

$$
\begin{array}{ll}
u=x & d v=e^{x} d x \\
d u=d x & v=e^{x} \\
\int x e^{x} d x=x e^{x}-\int e^{x} d x=x e^{x}-e^{x}+c
\end{array}
$$

