M 104 - GENERAL MATHEMATICS -2-
 Dr. Tariq A. AlFadhel
 Solution of the Mid-Term Exam
 First Term 1444 H

Q. 1 Find the elements of the conic section of equation
$4 y^{2}=-9 x^{2}+18 x+27$, then sketch it. [4]

Solution :

$4 y^{2}=-9 x^{2}+18 x+27$
$9 x^{2}-18 x+4 y^{2}=27$
$9\left(x^{2}-2 x\right)+4 y^{2}=27$
By completing the square.
$9\left(x^{2}-2 x+1\right)+4 y^{2}=27+9$
$9(x-1)^{2}+4 y^{2}=36$
$\frac{9(x-1)^{2}}{36}+\frac{4 y^{2}}{36}=\frac{36}{36}$
$\frac{(x-1)^{2}}{4}+\frac{y^{2}}{9}=1$
The conic section is an ellipse.
The center is $P(1,0)$
$a^{2}=4 \Longrightarrow a=2$
$b^{2}=9 \Longrightarrow b=3$
$c^{2}=b^{2}-a^{2}=9-4=5 \Longrightarrow c=\sqrt{5}$
The vertices are $V_{1}(1,3)$ and $V_{2}(1,-3)$
The foci are $F_{1}(1, \sqrt{5})$ and $F_{2}(1,-\sqrt{5})$
The end-points of the minor axis are $W_{1}(-1,0)$ and $W_{2}(3,0)$

Q. 2 Find the standard equation of the parabola with vertex $(2,3)$ and Focus $(2,1)$, then sketch it. [4]

Solution :

The parabola opens downwards.
The standard equation of the parabola is $(x-2)^{2}=-4 a(y-3)$.
a is the distance between $V(2,3)$ and $F(2,1)$, hence $a=2$.
The standard equation of the parabola is $(x-2)^{2}=-8(y-3)$.
The equation of the directrix is $y=5$.

Q. 3 Calculate, whenever it is possible, $\mathbf{A}+\mathbf{B}^{T}$ and $\mathbf{A B}$ for matrices

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 1 & 2 \tag{4}\\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right), \mathbf{B}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
1 & 1 & -2
\end{array}\right)
$$

Solution :

$$
\begin{aligned}
& \mathbf{A}+\mathbf{B}^{T}=\left(\begin{array}{lll}
1 & 1 & 2 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right)+\left(\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & 1 \\
0 & 0 & -2
\end{array}\right)=\left(\begin{array}{lll}
2 & 0 & 3 \\
0 & 3 & 2 \\
0 & 0 & 0
\end{array}\right) \\
& \mathbf{A B}=\left(\begin{array}{lll}
1 & 1 & 2 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
1 & 1 & -2
\end{array}\right) \\
& =\left(\begin{array}{lll}
1-1+2 & 0+1+2 & 0+0-4 \\
0-2+1 & 0+2+1 & 0+0-2 \\
0+0+2 & 0+0+2 & 0+0-4
\end{array}\right)=\left(\begin{array}{ccc}
2 & 3 & -4 \\
-1 & 3 & -2 \\
2 & 2 & -4
\end{array}\right)
\end{aligned}
$$

Q. 4 Consider the system of the linear equations:

$$
\left\{\begin{array}{c}
2 x-2 y+z=2 \\
x-y+z=2 \\
2 x+2 y-z=2
\end{array}\right.
$$

(a) Solve this system using Cramer's rule. [4]
(b) Solve this system using Gauss-Jordan elimination method. [4]

Solution :

(a) Using Cramer's rule :
$\mathbf{A}=\left(\begin{array}{ccc}2 & -2 & 1 \\ 1 & -1 & 1 \\ 2 & 2 & -1\end{array}\right)$

$$
\begin{array}{ccccc}
2 & -2 & 1 & 2 & -2 \\
1 & -1 & 1 & 1 & -1 \\
2 & 2 & -1 & 2 & 2
\end{array}
$$

$|\mathbf{A}|=(2-4+2)-(-2+4+2)=0-4=-4 \neq 0$
$\mathbf{A}_{x}=\left(\begin{array}{ccc}2 & -2 & 1 \\ 2 & -1 & 1 \\ 2 & 2 & -1\end{array}\right)$

$$
\begin{array}{ccccc}
2 & -2 & 1 & 2 & -2 \\
2 & -1 & 1 & 2 & -1 \\
& 0 & 0 & 0
\end{array}
$$

$\left|\mathbf{A}_{x}\right|=(2-4+4)-(-2+4+4)=2-6=-4$
$x=\frac{\left|\mathbf{A}_{x}\right|}{|\mathbf{A}|}=\frac{-4}{-4}=1$
$\mathbf{A}_{y}=\left(\begin{array}{ccc}2 & 2 & 1 \\ 1 & 2 & 1 \\ 2 & 2 & -1\end{array}\right)$

2	2	1	2	2
1	2	1	1	2
2	2	-1	2	2

$\left|\mathbf{A}_{y}\right|=(-4+4+2)-(4+4-2)=2-6=-4$
$y=\frac{\left|\mathbf{A}_{y}\right|}{|\mathbf{A}|}=\frac{-4}{-4}=1$
$\mathbf{A}_{z}=\left(\begin{array}{ccc}2 & -2 & 2 \\ 1 & -1 & 2 \\ 2 & 2 & 2\end{array}\right)$

$$
\begin{array}{ccccc}
2 & -2 & 2 & 2 & -2 \\
1 & -1 & 2 & 1 & -1 \\
2 & 2 & 2 & 2 & 2
\end{array}
$$

$\left|\mathbf{A}_{z}\right|=(-4-8+4)-(-4+8-4)=-8-0=-8$
$z=\frac{\left|\mathbf{A}_{z}\right|}{|\mathbf{A}|}=\frac{-8}{-4}=2$
(b) Using Gauss-Jordan elimination method: The augmented matrix is
$\left(\begin{array}{ccc|c}2 & -2 & 1 & 2 \\ 1 & -1 & 1 & 2 \\ 2 & 2 & -1 & 2\end{array}\right) \xrightarrow{R_{1} \longleftrightarrow R_{2}}\left(\begin{array}{ccc|c}1 & -1 & 1 & 2 \\ 2 & -2 & 1 & 2 \\ 2 & 2 & -1 & 2\end{array}\right)$
$\xrightarrow{-2 R_{1}+R_{2}}\left(\begin{array}{ccc|c}1 & -1 & 1 & 2 \\ 0 & 0 & -1 & -2 \\ 2 & 2 & -1 & 2\end{array}\right) \xrightarrow{R_{2} \longleftrightarrow R_{3}}\left(\begin{array}{ccc|c}1 & -1 & 1 & 2 \\ 2 & 2 & -1 & 2 \\ 0 & 0 & -1 & -2\end{array}\right)$
$\xrightarrow{-2 R_{1}+R_{2}}\left(\begin{array}{ccc|c}1 & -1 & 1 & 2 \\ 0 & 4 & -3 & -2 \\ 0 & 0 & -1 & -2\end{array}\right) \xrightarrow{-R_{3}}\left(\begin{array}{ccc|c}1 & -1 & 1 & 2 \\ 0 & 4 & -3 & -2 \\ 0 & 0 & 1 & 2\end{array}\right)$
$\xrightarrow{3 R_{3}+R_{2}}\left(\begin{array}{ccc|c}1 & -1 & 1 & 2 \\ 0 & 4 & 0 & 4 \\ 0 & 0 & 1 & 2\end{array}\right) \xrightarrow{-R_{3}+R_{1}}\left(\begin{array}{ccc|c}1 & -1 & 0 & 0 \\ 0 & 4 & 0 & 4 \\ 0 & 0 & 1 & 2\end{array}\right)$
$\xrightarrow{\frac{1}{4} R_{2}}\left(\begin{array}{ccc|c}1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2\end{array}\right) \xrightarrow{R_{2}+R_{1}}\left(\begin{array}{lll|l}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2\end{array}\right)$

The solution is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$
Q. 5 Evaluate the integrals:
(a) $\int\left(4 x^{3}-\frac{2}{x^{3}}+e^{x}\right) d x[2]$
(b) $\int 20 x^{3}\left(x^{4}+2\right)^{4} d x[2]$
(c) $\int \sec ^{2} x \ln |\sin x| d x[3]$
(d) $\int \frac{x+1}{(x-2)(x-1)} d x[3]$

Solution :

(a) $\int\left(4 x^{3}-\frac{2}{x^{3}}+e^{x}\right) d x=\int 4 x^{3} d x-\int \frac{2}{x^{3}} d x+\int e^{x} d x$
$=\int 4 x^{3} d x-2 \int x^{-3} d x+\int e^{x} d x=x^{4}-2\left(\frac{x^{-2}}{-2}\right)+e^{x}+c$
$=x^{4}+x^{-2}+e^{x}+c$
(b) $\int 20 x^{3}\left(x^{4}+2\right)^{4} d x=5 \int\left(x^{4}+2\right)^{4}\left(4 x^{3}\right) d x$
$=5\left[\frac{\left(x^{4}+2\right)^{5}}{5}\right]+c=\left(x^{4}+2\right)^{5}+c$
Using the formula $\int[f(x)]^{n} f^{\prime}(x) d x=\frac{[f(x)]^{n+1}}{n+1}+c$, where $n \neq 1$
(c) $\int \sec ^{2} x \ln |\sin x| d x$

Using integration by parts:

$$
\begin{array}{ll}
u=\ln |\sin x| & d v=\sec ^{2} x d x \\
d u=\frac{\cos x}{\sin x} d x=\cot x d x & v=\tan x \\
\int \sec ^{2} x \ln |\sin x| d x=\tan x \ln |\sin x|-\int \tan x \cot x d x \\
=\tan x \ln |\sin x|-\int 1 d x=\tan x \ln |\sin x|-x+c
\end{array}
$$

(d) $\int \frac{x+1}{(x-2)(x-1)} d x$

Using the method of partial fractions :
$\frac{x+1}{(x-2)(x-1)}=\frac{A_{1}}{x-2}+\frac{A_{2}}{x-1}$
$\frac{x+1}{(x-2)(x-1)}=\frac{A_{1}(x-1)+A_{2}(x-2)}{(x-2)(x-1)}$
$x+1=A_{1}(x-1)+A_{2}(x-2)$
Put $x=2$ then $2+1=A_{1}(2-1)+A_{2}(2-2) \Longrightarrow A_{1}=3$
Put $x=1$ then $1+1=A_{1}(1-1)+A_{2}(1-2) \Longrightarrow 2=-A_{2} \Longrightarrow A_{2}=-2$
$\int \frac{x+1}{(x-2)(x-1)} d x=\int\left(\frac{3}{x-2}+\frac{-2}{x-1}\right) d x$
$=\int \frac{3}{x-2} d x+\int \frac{-2}{x-1} d x=3 \int \frac{1}{x-2} d x-2 \int \frac{1}{x-1} d x$
$=3 \ln |x-2|-2 \ln |x-1|+c$

Dr. Tariq A. AlFadhel
Solution of the Final Exam
First Term 1444 H
Q. 1 (a) Let $\mathbf{A}=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{cc}1 & -1 \\ 0 & 1 \\ 1 & 0\end{array}\right)$. Compute (if possible) $\mathbf{A B}$ and

BA. [3]
(b) Compute the determinant $\left|\begin{array}{ccc}1 & 1 & -1 \\ 0 & -2 & -5 \\ 1 & 2 & 1\end{array}\right|$.[2]
(c) Solve by using Gauss-Jordan Elimination Method the linear system

$$
\left\{\begin{aligned}
x+y-z & =-3 \\
-2 y+5 z & = \\
x+2 y+z & =1
\end{aligned}\right.
$$

Solution :

(a) $\mathbf{A B}$ can not be computed.

$$
\begin{aligned}
& \mathbf{B A}=\left(\begin{array}{cc}
1 & -1 \\
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1-1 & 0-1 \\
0+1 & 0+1 \\
1+0 & 0+0
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & 1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

(b) Using Sarrus Method

$$
\begin{gathered}
\begin{array}{ccccc}
1 & 1 & -1 & 1 & 1 \\
0 & -2 & -5 & 0 & -2 \\
1 & 2 & 1 & 1 & 2
\end{array} \\
\left|\begin{array}{ccc}
1 & 1 & -1 \\
0 & -2 & -5 \\
1 & 2 & 1
\end{array}\right|=(-2-5+0)-(2-10+0)=-7-(-8)=-7+8=1
\end{gathered}
$$

(c) Using Gauss-Jordan Elimination Method :

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 1 & -1 & -3 \\
0 & -2 & 5 & 1 \\
1 & 2 & 1 & 1
\end{array}\right) \xrightarrow{\xrightarrow{-R_{1}+R_{3}}}\left(\begin{array}{ccc|c}
1 & 1 & -1 & -3 \\
0 & -2 & 5 & 1 \\
0 & 1 & 2 & 4
\end{array}\right) \\
& \xrightarrow{R_{2} \longleftrightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & 1 & -1 & -3 \\
0 & 1 & 2 & 4 \\
0 & -2 & 5 & 1
\end{array}\right) \xrightarrow{\xrightarrow{2 R_{2}+R_{3}}\left(\begin{array}{ccc|c}
1 & 1 & -1 & -3 \\
0 & 1 & 2 & 4 \\
0 & 0 & 9 & 9
\end{array}\right)}
\end{aligned}
$$

$\xrightarrow{\frac{1}{9} R_{3}}\left(\begin{array}{ccc|c}1 & 1 & -1 & -3 \\ 0 & 1 & 2 & 4 \\ 0 & 0 & 1 & 1\end{array}\right) \xrightarrow{-2 R_{3}+R_{2}}\left(\begin{array}{ccc|c}1 & 1 & -1 & -3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1\end{array}\right)$
$\xrightarrow{R_{3}+R_{1}}\left(\begin{array}{ccc|c}1 & 1 & 0 & -2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1\end{array}\right) \xrightarrow{-R_{2}+R_{1}}\left(\begin{array}{ccc|c}1 & 0 & 0 & -4 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1\end{array}\right)$
The solution is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-4 \\ 2 \\ 1\end{array}\right)$
Q. 2 (a) Find the standard equation of the ellipse with end points of minor axis are $(1,4)$ and $(1,-2)$, and the distance between its foci is 8 , and then sketch its graph. [4]
(b) Find the elements of the conic section $y=4 x-x^{2}$ and then sketch it. [3]

Solution :

(a) The end points of minor axis are located on a line parallel to the y-axis.

The standard equation of the ellipse is $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$, where $a>b$.
$P(h, k)=\left(\frac{1+1}{2}, \frac{4+(-2)}{2}\right)=(1,1)$, hence $h=1$ and $k=1$
$2 b$ is the distance between the end points of minor axis,
hence $2 b=6 \Longrightarrow b=3$
$2 c$ is the distance between its two foci, hence $2 c=8 \Longrightarrow c=4$
$c^{2}=a^{2}-b^{2} \Longrightarrow 16=a^{2}-9 \Longrightarrow a^{2}=16+9=25 \Longrightarrow a=5$
The standard equation of the ellipse is $\frac{(x-1)^{2}}{25}+\frac{(y-1)^{2}}{9}=1$
The vertices are $V_{1}(-4,1)$ and $V_{2}(6,1)$.
The foci are $F_{1}(-3,1)$ and $F_{2}(5,1)$.

(b) $y=4 x-x^{2}$
$y=-x^{2}+4 x$
$y=-\left(x^{2}-4 x\right)$
By completing the square
$y=-\left(x^{2}-4 x+4\right)+4$
$(y-4)=-(x-2)^{2}$
The conic section is a parabola opens downwards.
The vertex is $V(2,4)$.
$-4 a=-1 \Longrightarrow a=\frac{1}{4}$.
The Focus is $V\left(2,4-\frac{1}{4}\right)=\left(2, \frac{15}{4}\right)$
The equation of the directrix is : $y=4+\frac{1}{4}=\frac{17}{4}$

Q. 3 (a) Compute the integrals : $[2,3,3]$
(i) $\int 8 x\left(x^{2}+24\right)^{3} d x$
(ii) $\int(\ln x)^{2} d x$
(iii) $\int \frac{3 x}{x^{2}-2 x-8} d x$
(b) Sketch the region bounded by the curves $y=x^{2}, y=2 x+3, x=1$ and $x=2$ and compute its area. [3]
(c) The region bounded by the curves curves $y=4 x-x^{2}$ and $y=x$ is rotated about the y-axis to form a solid S. Use the method of cylindrical shells to find the volume of S. [4]
(d) Give the Cartesian coordinates of the points in polar coordinates :
$M\left(\sqrt{2}, \frac{\pi}{4}\right)$ and $N(2, \pi)[2]$

Solution :

(a) (i) $\int 8 x\left(x^{2}+24\right)^{3} d x=4 \int\left(x^{2}+24\right)^{3}(2 x) d x$ $=4 \frac{\left(x^{2}+24\right)^{4}}{4}+c=\left(x^{2}+24\right)^{4}+c$
(ii) $\int(\ln x)^{2} d x$

Using integration by parts

$$
\begin{array}{ll}
u=(\ln x)^{2} & d v=d x \\
d u=2 \ln x\left(\frac{1}{x}\right) d x \quad & v=x \\
\int(\ln x)^{2} d x=x(\ln x)^{2}-\int 2 \ln x\left(\frac{1}{x}\right) x d x=x(\ln x)^{2}-2 \int \ln x d x
\end{array}
$$

Using integration by parts again

$$
\begin{aligned}
& u=\ln x \quad d v=d x \\
& d u=\frac{1}{x} d x \quad v=x \\
& \int(\ln x)^{2} d x=x(\ln x)^{2}-2\left(x \ln x-\int x \frac{1}{x} d x\right) \\
& =x(\ln x)^{2}-2 x \ln x+2 \int d x=x(\ln x)^{2}-2 x \ln x+2 x+c \\
& \text { (iii) } \int \frac{3 x}{x^{2}-2 x-8} d x
\end{aligned}
$$

Using the method of partial fractions
$\frac{3 x}{x^{2}-2 x-8}=\frac{3 x}{(x+2)(x-4)}=\frac{A_{1}}{x+2}+\frac{A_{2}}{x-4}$
$3 x=A_{1}(x-4)+A_{2}(x+2)$
Put $x=-2$: then $-6=-6 A_{1} \Longrightarrow A_{1}=1$
Put $x=4:$ then $12=6 A_{2} \Longrightarrow A_{2}=2$
$\int \frac{3 x}{x^{2}-2 x-8} d x=\int\left(\frac{1}{x+2}+\frac{2}{x-4}\right) d x$
$=\int \frac{1}{x+2} d x+2 \int \frac{1}{x-4} d x=\ln |x+2|+2 \ln |x-4|+c$
(b)
$y=x^{2}$ is a parabola opens upwards with vertex $(0,0)$.
$y=2 x+3$ is a straight line passing through $(0,3)$ and with slope 2 .
$x=1$ is a straight line parallel to the y-axis and passing through $(1,0)$.
$x=2$ is a straight line parallel to the y-axis and passing through $(2,0)$.

Points of intersection of $y=x^{2}$ and $y=2 x+3$
$x^{2}=2 x+3 \Longrightarrow x^{2}-2 x-3=0$
$\Longrightarrow(x+1)(x-3)=0 \Longrightarrow x=-1, x=3$

Area $=\int_{1}^{2}\left[(2 x+3)-x^{2}\right] d x=\int_{1}^{2}\left(-x^{2}+2 x+3\right) d x=\left[-\frac{x^{3}}{3}+x^{2}+3 x\right]_{1}^{2}$
$=\left(-\frac{2^{3}}{3}+2^{2}+3(2)\right)-\left(-\frac{1^{3}}{3}+1^{2}+3(1)\right)=\left(-\frac{8}{3}+4+6\right)-\left(-\frac{1}{3}+1+3\right)$
$=-\frac{8}{3}+10-\left(-\frac{1}{3}+4\right)=10-4-\frac{8}{3}+\frac{1}{3}=6-\frac{7}{3}=\frac{18-7}{3}=\frac{11}{3}$
(c)

$y=4 x-x^{2}=-x^{2}+4 x=-\left(x^{2}-4 x\right)=-\left(x^{2}-4 x+4\right)+4=-(x-2)^{2}+4$.
$y=4 x-x^{2}$ is a parabola opens downwards with vertex $(2,4)$.
$y=x$ is a straight line passing through $(0,0)$ and with slope 1.
Points of intersection of $y=4 x-x^{2}$ and $y=x$

$$
x=4 x-x^{2} \Longrightarrow x^{2}-3 x=0 \Longrightarrow x(x-3)=0 \Longrightarrow x=0, x=3
$$

Using Cylindrical Shells method :
Volume $=2 \pi \int_{0}^{3} x\left[\left(4 x-x^{2}\right)-x\right] d x=2 \pi \int_{0}^{3} x\left(3 x-x^{2}\right) d x$
$=2 \pi \int_{0}^{3}\left(3 x^{2}-x^{3}\right) d x=2 \pi\left[x^{3}-\frac{x^{4}}{4}\right]_{0}^{3}$
$=2 \pi\left[\left(3^{3}-\frac{3^{4}}{4}\right)-\left(0^{3}-\frac{0^{4}}{4}\right)\right]=2 \pi\left(27-\frac{81}{4}\right)=\frac{27 \pi}{2}$
(d) $M\left(\sqrt{2}, \frac{\pi}{4}\right): r=\sqrt{2}$ and $\theta=\frac{\pi}{4}$
$x=r \cos \theta=\sqrt{2} \cos \left(\frac{\pi}{4}\right)=\sqrt{2} \frac{1}{\sqrt{2}}=1$
$y=r \sin \theta=\sqrt{2} \sin \left(\frac{\pi}{4}\right)=\sqrt{2} \frac{1}{\sqrt{2}}=1$
The Cartesian coordinates of M is $(1,1)$.
$N(2, \pi): r=2$ and $\theta=\pi$
$x=r \cos \theta=2 \cos (\pi)=2(-1)=-2$
$y=r \cos \theta=2 \sin (\pi)=2(0)=0$
The Cartesian coordinates of N is $(2,0)$.
Q. 4 (a) Let $z=x y^{2}+\sin (x y)$, where $x=s^{2} t$ and $y=\frac{t}{s}$. Use the chain rule to compute the partial derivatives $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$. [3]
(b) Solve the differential equation : $x y^{\prime}+y=3 x^{2}+1$. [4]

Solution :

(a) $\frac{\partial z}{\partial x}=y^{2}(1)+\cos (x y) y=y^{2}+y \cos (x y)$

$$
\begin{aligned}
& \frac{\partial z}{\partial y}=x(2 y)+\cos (x y) x=2 x y+x \cos (x y) \\
& \frac{\partial x}{\partial s}=t(2 s)=2 s t, \frac{\partial y}{\partial s}=t\left(-s^{-2}\right)=\frac{-t}{s^{2}}
\end{aligned}
$$

$\frac{\partial x}{\partial t}=s^{2}(1)=s^{2}, \frac{\partial y}{\partial t}=\frac{1}{s}(1)=\frac{1}{s}$
$\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$
$=\left[y^{2}+y \cos (x y)\right](2 s t)+[2 x y+x \cos (x y)]\left(\frac{-t}{s^{2}}\right)$
$=\left[\frac{t^{2}}{s^{2}}+\frac{t}{s} \cos \left(s t^{2}\right)\right](2 s t)+\left[2 s t^{2}+s^{2} t \cos \left(s t^{2}\right)\right]\left(\frac{-t}{s^{2}}\right)$
$\frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$
$=\left[y^{2}+y \cos (x y)\right]\left(s^{2}\right)+[2 x y+x \cos (x y)]\left(\frac{1}{s}\right)$
$=\left[\frac{t^{2}}{s^{2}}+\frac{t}{s} \cos \left(s t^{2}\right)\right] s^{2}+\left[2 s t^{2}+s^{2} t \cos \left(s t^{2}\right)\right]\left(\frac{1}{s}\right)$
(b) $x y^{\prime}+y=3 x^{2}+1$
$y^{\prime}+\left(\frac{1}{x}\right) y=3 x+\frac{1}{x}$
It is a First-order differential equation .
$P(x)=\frac{1}{x}$ and $Q(x)=3 x+\frac{1}{x}$
The integrating factor is :
$u(x)=e^{\int P(x) d x}=e^{\int \frac{1}{x} d x}=e^{\ln |x|}=x$.
The general solution of the differential equation is :
$y=\frac{1}{u(x)} \int u(x) Q(x) d x=\frac{1}{x} \int x\left(3 x+\frac{1}{x}\right) d x=\frac{1}{x} \int\left(3 x^{2}+1\right) d x$
$=\frac{1}{x}\left(x^{3}+x+c\right)=x^{2}+1+\frac{c}{x}$

M 104-GENERAL MATHEMATICS -2-

Dr. Tariq A. AlFadhel
Solution of the Mid-Term Exam Second Term 1444 H
Q. 1 Find the elements of the conic section of equation
$y^{2}-4 y-8 x-12=0$, then sketch it. [4]

Solution :

$y^{2}-4 y-8 x-12=0$
$y^{2}-4 y=8 x+12$
By completing the square.
$y^{2}-4 y+4=8 x+12+4$
$(y-2)^{2}=8 x+16$
$(y-2)^{2}=8(x+2)$
The conic section is a parabola opens to the right.
The vertex is $V(-2,2)$

$$
4 a=8 \Longrightarrow a=\frac{8}{4}=2
$$

The focus is $F(0,2)$
The directrix is : $x=-2-2=-4$

Q. 2 Find the standard equation of the ellipse with foci at $(1,5),(1,-3)$ and vertex $(1,6)$, then sketch it. [4]

Solution :

Note that the two foci lies on a line parallel to the y-axis .
The standard equation of the ellipse is $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$, where $b>a$.
The center is $P(h, k)=\left(\frac{5+(-3)}{2}, \frac{1+1}{2}\right)=(1,1)$
c is the distance between $F_{1}(1,5)$ and $P(1,1)$, hence $c=4$.
b is the distance between $V_{1}(1,6)$ and $P(1,1)$, hence $b=5$.
$c^{2}=b^{2}-a^{2} \Longrightarrow 16=25-a^{2} \Longrightarrow a^{2}=25-16=9 \Longrightarrow a=3$
The standard equation of the ellipse is $\frac{(x-1)^{2}}{9}+\frac{(y-1)^{2}}{25}=1$
The other vertex $V_{2}(1,-4)$.
The end-points of the minor axis are $W_{1}(-2,1)$ and $W_{2}(4,1)$

Q. 3 Calculate, whenever it is possible, $\mathbf{A B}$ and $2 \mathbf{A}+\mathbf{B}^{T}$ for matrices

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 1
\end{array}\right), \mathbf{B}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right)
$$

Solution :

$$
\begin{aligned}
& \mathbf{A B}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1+0+1 & 0+0+1 \\
-1+0+1 & 0+2+1
\end{array}\right)=\left(\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right) \\
& 2 \mathbf{A}+\mathbf{B}^{T}=2\left(\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 1
\end{array}\right)+\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 2 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
2 & 0 & 2 \\
-2 & 2 & 2
\end{array}\right)+\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 1
\end{array}\right)=\left(\begin{array}{ccc}
2+1 & 0+0 & 2+1 \\
-2+0 & 2+2 & 2+1
\end{array}\right)=\left(\begin{array}{ccc}
3 & 0 & 3 \\
-2 & 4 & 3
\end{array}\right)
\end{aligned}
$$

Q. 4 Consider the system of the linear equations:

$$
\left\{\begin{aligned}
x-y+z & =5 \\
2 x+y+5 z & =1 \\
2 y+3 z & =-6
\end{aligned}\right.
$$

(a) Solve this system using Cramer's rule. [4]
(b) Solve this system using Gauss elimination method. [4]

Solution :

(a) Using Cramer's rule :

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & -1 & 1 \\
2 & 1 & 5 \\
0 & 2 & 3
\end{array}\right)
$$

1	-1	1	1	-1
2	1	5	2	1
0	2	3	0	2

$|\mathbf{A}|=(3+0+4)-(0+10-6)=7-4=3 \neq 0$
$\mathbf{A}_{x}=\left(\begin{array}{ccc}5 & -1 & 1 \\ 1 & 1 & 5 \\ -6 & 2 & 3\end{array}\right)$

5	-1	1	5	-1
1	1	5	1	1
-6	2	3	-6	2

$\left|\mathbf{A}_{x}\right|=(15+32)-(-6+50-3)=47-41=6$
$x=\frac{\left|\mathbf{A}_{x}\right|}{|\mathbf{A}|}=\frac{6}{3}=2$
$\mathbf{A}_{y}=\left(\begin{array}{ccc}1 & 5 & 1 \\ 2 & 1 & 5 \\ 0 & -6 & 3\end{array}\right)$
$\begin{array}{ccccc}1 & 5 & 1 & 1 & 5 \\ 2 & 1 & 5 & 2 & 1 \\ 0 & -6 & 3 & 0 & -6\end{array}$
$\left|\mathbf{A}_{y}\right|=(3+0-12)-(0-30+30)=-9-0=-9$
$y=\frac{\left|\mathbf{A}_{y}\right|}{|\mathbf{A}|}=\frac{-9}{3}=-3$
$\mathbf{A}_{z}=\left(\begin{array}{ccc}1 & -1 & 5 \\ 2 & 1 & 1 \\ 0 & 2 & -6\end{array}\right)$

$$
\begin{array}{ccccc}
1 & -1 & 5 & 1 & -1 \\
2 & 1 & 1 & 2 & 1 \\
0 & 2 & -6 & 0 & 2
\end{array}
$$

$\left|\mathbf{A}_{z}\right|=(-6+0+20)-(0+2+12)=14-14=0$
$z=\frac{\left|\mathbf{A}_{z}\right|}{|\mathbf{A}|}=\frac{0}{3}=0$
(b) Using Gauss elimination method: The augmented matrix is
$\left(\begin{array}{ccc|c}1 & -1 & 1 & 5 \\ 2 & 1 & 5 & 1 \\ 0 & 2 & 3 & -6\end{array}\right) \xrightarrow{-2 R_{1}+R_{2}}\left(\begin{array}{ccc|c}1 & -1 & 1 & 5 \\ 0 & 3 & 3 & -9 \\ 0 & 2 & 3 & -6\end{array}\right)$
$\xrightarrow{\frac{1}{3} R_{2}}\left(\begin{array}{ccc|c}1 & -1 & 1 & 5 \\ 0 & 1 & 1 & -3 \\ 0 & 2 & 3 & -6\end{array}\right) \xrightarrow{-2 R_{2}+R_{3}}\left(\begin{array}{ccc|c}1 & -1 & 1 & 5 \\ 0 & 1 & 1 & -3 \\ 0 & 0 & 1 & 0\end{array}\right)$
$z=0$
$y+z=-3 \Longrightarrow y+0=-3 \Longrightarrow y=-3$
$x-y+z=5 \Longrightarrow x-(-3)+0=5 \Longrightarrow x+3=5 \Longrightarrow x=2$
The solution is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}2 \\ -3 \\ 0\end{array}\right)$
Q. 5 Evaluate the integrals:
(a) $\int\left(2 e^{x}+\frac{3}{x}-4 \sin x\right) d x[2]$
(b) $\int 6 \cos x(\sin x)^{5} d x[2]$
(c) $\int \frac{9 x^{2}}{\left(x^{3}+1\right)^{4}} d x[3]$
(d) $\int\left(3 x^{2}+2 x+1\right) \ln |x| d x[3]$

Solution :

(a) $\int\left(2 e^{x}+\frac{3}{x}-4 \sin x\right) d x=\int 2 e^{x} d x+\int \frac{3}{x} d x-\int 4 \sin x d x$
$=2 \int e^{x} d x+3 \int \frac{1}{x} d x-4 \int \sin x d x=2 e^{x}+3 \ln |x|-4(-\cos x)+c$
$=2 e^{x}+3 \ln |x|+4 \cos x+c$
(b) $\int 6 \cos x(\sin x)^{5} d x=6 \int(\sin x)^{5} \cos x d x$
$=6 \frac{(\sin x)^{6}}{6}+c=(\sin x)^{6}+c$
Using the formula $\int[f(x)]^{n} f^{\prime}(x) d x=\frac{[f(x)]^{n+1}}{n+1}+c$, where $n \neq 1$
(c) $\int \frac{9 x^{2}}{\left(x^{3}+1\right)^{4}} d x=3 \int\left(x^{3}+1\right)^{-4}\left(3 x^{2}\right) d x$
$=3 \frac{\left(x^{3}+1\right)^{-3}}{-3}+c=-\left(x^{3}+1\right)^{-3}+c$
Using the formula $\int[f(x)]^{n} f^{\prime}(x) d x=\frac{[f(x)]^{n+1}}{n+1}+c$, where $n \neq 1$
(d) $\int\left(3 x^{2}+2 x+1\right) \ln |x| d x$

Using integration by parts:

$$
\begin{aligned}
& u=\ln |x| \quad d v=\left(3 x^{2}+2 x+1\right) d x \\
& d u=\frac{1}{x} d x \quad v=x^{3}+x^{2}+x \\
& \int\left(3 x^{2}+2 x+1\right) \ln |x| d x=\left(x^{3}+x^{2}+x\right) \ln |x|-\int\left(x^{3}+x^{2}+x\right) \frac{1}{x} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\left(x^{3}+x^{2}+x\right) \ln |x|-\int \frac{x^{3}+x^{2}+x}{x} d x \\
& =\left(x^{3}+x^{2}+x\right) \ln |x|-\int\left(\frac{x^{3}}{x}+\frac{x^{2}}{x}+\frac{x}{x}\right) d x \\
& =\left(x^{3}+x^{2}+x\right) \ln |x|-\int\left(x^{2}+x+1\right) d x \\
& =\left(x^{3}+x^{2}+x\right) \ln |x|-\left(\frac{x^{3}}{3}+\frac{x^{2}}{2}+x\right)+c \\
& =\left(x^{3}+x^{2}+x\right) \ln |x|-\frac{x^{3}}{3}-\frac{x^{2}}{2}-x+c
\end{aligned}
$$

M 104-GENERAL MATHEMATICS -2-

Dr. Tariq A. AlFadhel
Solution of the Final Exam Second Term 1444 H
Q. 1 (a) Let $\mathbf{A}=\left(\begin{array}{ccc}1 & 2 & 0 \\ -1 & -1 & 1\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{cc}1 & 1 \\ -1 & 1 \\ 1 & 0\end{array}\right)$. Compute (if possible)
$\mathbf{A B}$ and $2 \mathbf{A}+\mathbf{B}^{T}$. [3]
(b) Compute the determinant $\left|\begin{array}{ccc}2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 0 & 2\end{array}\right|$. [2]
(c) Solve by using Gauss Elimination Method the linear system

$$
\left\{\begin{array}{c}
2 x+y+2 z=4 \\
x-2 y+3 z=4 \\
2 x+y+3 z=5
\end{array}\right.
$$

Solution :

(a) $\mathbf{A B}=\left(\begin{array}{ccc}1 & 2 & 0 \\ -1 & -1 & 1\end{array}\right)\left(\begin{array}{cc}1 & 1 \\ -1 & 1 \\ 1 & 0\end{array}\right)$
$=\left(\begin{array}{cc}1-2+0 & 1+2+0 \\ -1+1+1 & -1-1+0\end{array}\right)=\left(\begin{array}{cc}-1 & 3 \\ 1 & -2\end{array}\right)$
$2 \mathbf{A}+\mathbf{B}^{T}=\left(\begin{array}{ccc}2 & 4 & 0 \\ -2 & -2 & 2\end{array}\right)+\left(\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & 0\end{array}\right)$
$=\left(\begin{array}{ccc}2+1 & 4-1 & 0+1 \\ -2+1 & -2+1 & 2+0\end{array}\right)=\left(\begin{array}{ccc}3 & 3 & 1 \\ -1 & -1 & 2\end{array}\right)$
(b) Using Sarrus Method

2	3	4	2	3
1	2	3	1	2
-1	0	2	-1	0

$$
\left|\begin{array}{ccc}
2 & 3 & 4 \\
1 & 2 & 3 \\
-1 & 0 & 2
\end{array}\right|=(8-9+0)-(-8+0+6)=-1-(-2)=-1+2=1
$$

(c) Using Gauss Elimination Method :

$$
\left(\begin{array}{ccc|c}
2 & 1 & 2 & 4 \\
1 & -2 & 3 & 4 \\
2 & 1 & 3 & 5
\end{array}\right) \xrightarrow{R_{1} \longleftrightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & -2 & 3 & 4 \\
2 & 1 & 2 & 4 \\
2 & 1 & 3 & 5
\end{array}\right)
$$

$\xrightarrow{-2 R_{1}+R_{2}}\left(\begin{array}{ccc|c}1 & -2 & 3 & 4 \\ 0 & 5 & -4 & -4 \\ 2 & 1 & 3 & 5\end{array}\right) \xrightarrow{-2 R_{1}+R_{3}}\left(\begin{array}{ccc|c}1 & -2 & 3 & 4 \\ 0 & 5 & -4 & -4 \\ 0 & 5 & -3 & -3\end{array}\right)$
$\xrightarrow{-R_{2}+R_{3}}\left(\begin{array}{ccc|c}1 & -2 & 3 & 4 \\ 0 & 5 & -4 & -4 \\ 0 & 0 & 1 & 1\end{array}\right)$
$z=1$
$5 y-4 z=-4 \Longrightarrow 5 y-4=-4 \Longrightarrow 5 y=0 \Longrightarrow y=0$
$x-2 y+3 z=4 \Longrightarrow x-2(0)+3(1)=4 \Longrightarrow x+3=4 \Longrightarrow x=1$
The solution is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$
Q. 2 (a) Find the standard equation of the hyperbola with foci $(-1,1)$ and $(9,1)$, and the distance between the two vertices is 8 , and then sketch its graph. [4]
(b) Find the elements of the conic section $y^{2}-6 y+4 x+17=0$ and then sketch it. [3]

Solution :

(a) The two foci are located on a line parallel to the x-axis.

The standard equation of the hyperbola is $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$.
$P(h, k)=\left(\frac{-1+9}{2}, \frac{1+1}{2}\right)=(4,1)$, hence $h=4$ and $k=1$
$2 c$ is the distance between its two foci, hence $2 c=10 \Longrightarrow c=5$
$2 a$ is the distance between the two vertices, hence $2 a=8 \Longrightarrow a=4$
$c^{2}=a^{2}+b^{2} \Longrightarrow 25=16+b^{2} \Longrightarrow b^{2}=9 \Longrightarrow b=3$
The standard equation of the hyperbola is $\frac{(x-4)^{2}}{16}-\frac{(y-1)^{2}}{9}=1$
The vertices are $V_{1}(0,1)$ and $V_{2}(8,1)$.
The equations of the asymptotes are :
$L_{1}: y-1=\frac{3}{4}(x-4)$ and $L_{2}: y-1=-\frac{3}{4}(x-4)$.

(b) $y^{2}-6 y+4 x+17=0$
$y^{2}-6 y=-4 x-17$
By completing the square
$y^{2}-6 y+9=-4 x-17+9$
$(y-3)^{2}=-4 x-8$
$(y-3)^{2}=-4(x+2)$
The conic section is a parabola opens to the left.
The vertex is $V(-2,3)$.
$-4 a=-4 \Longrightarrow a=1$.
The Focus is $V(-2-1,3)=(-3,3)$
The equation of the directrix is : $x=-2+1=-1$

Q. 3 (a) Compute the integrals : $[2,2,4]$
(i) $\int\left(3 x^{2}+2 \cos x-\frac{1}{x^{2}}\right) d x$
(ii) $\int x e^{\left(x^{2}-3\right)} d x$
(iii) $\int \frac{1}{x^{2}(x+1)} d x$
(b) Sketch the region bounded by the curves $y=x^{2}-4$ and $y=4-x^{2}$ and compute its area. [3]
(c) The region bounded by the curves curves $y=\sqrt{x}, y=0$ and $x=4$ is rotated about the y-axis to form a solid S. Use the method of cylindrical shells to find the volume of S. [4]
(d) Give the polar coordinates of the points in Cartesian coordinates :
$M(-1, \sqrt{3})$ and $N(0,2)[2]$

Solution :

(a) (i) $\int\left(3 x^{2}+2 \cos x-\frac{1}{x^{2}}\right) d x=\int 3 x^{2} d x+2 \int \cos x d x-\int x^{-2} d x$ $=x^{3}+2 \sin x-\frac{x^{-1}}{-1}+c=x^{3}+2 \sin x+\frac{1}{x}+c$
(ii) $\int x e^{\left(x^{2}-3\right)} d x=\frac{1}{2} \int e^{\left(x^{2}-3\right)}(2 x) d x=\frac{1}{2} e^{\left(x^{2}-3\right)}+c$
(iii) $\int \frac{1}{x^{2}(x+1)} d x$

Using the method of partial fractions
$\frac{1}{x^{2}(x+1)}=\frac{A_{1}}{x}+\frac{A_{2}}{x^{2}}+\frac{A_{3}}{x+1}$
$\frac{1}{x^{2}(x+1)}=\frac{A_{1} x(x+1)}{x^{2}(x+1)}+\frac{A_{2}(x+1)}{x^{2}(x+1)}+\frac{A_{3} x^{2}}{x^{2}(x+1)}$
$1=A_{1} x(x+1)+A_{2}(x+1)+A_{3} x^{2}$
$1=A_{1} x^{2}+A_{1} x+A_{2} x+A_{2}+A_{3} x^{2}$
$1=\left(A_{1}+A_{3}\right) x^{2}+\left(A_{1}+A_{2}\right) x+A_{2}+A_{2}$
$A_{1}+A_{3}=0 \quad \longrightarrow \quad(1)$
$A_{1}+A_{2}=0 \quad \longrightarrow \quad(2)$

$$
A_{2}=1 \quad \longrightarrow \quad(3)
$$

From equation (2) : $A_{1}+1=0 \Longrightarrow A_{1}=-1$
From equation (1): $-1+A_{3}=0 \Longrightarrow A_{3}=1$
$\int \frac{1}{x^{2}(x+1)} d x=\int\left(\frac{-1}{x}+\frac{1}{x^{2}}+\frac{1}{x+1}\right) d x$
$=-\int \frac{1}{x} d x+\int x^{-2} d x+\int \frac{1}{x+1} d x$
$=-\ln |x|-\frac{x^{-1}}{-1}+\ln |x+1|+c=-\ln |x|+\frac{1}{x}+\ln |x+1|+c$
(b) $y=x^{2}-4$ is a parabola opens upwards with vertex $(0,-4)$.
$y=4-x^{2}$ is a parabola opens downwards with vertex $(0,4)$.

Points of intersection of $y=x^{2}-4$ and $y=4-x^{2}$
$x^{2}-4=4-x^{2} \Longrightarrow 2 x^{2}-8=0 \Longrightarrow x^{2}-4=0$
$\Longrightarrow(x-2)(x+2)=0 \Longrightarrow x=-2, x=2$
Area $=\int_{-2}^{2}\left[\left(4-x^{2}\right)-\left(x^{2}-4\right)\right] d x=\int_{-2}^{2}\left(8-2 x^{2}\right) d x=\left[8 x-2 \frac{x^{3}}{3}\right]_{-2}^{2}$
$=\left[8(2)-2 \frac{(2)^{3}}{3}\right]-\left[8(-2)-2 \frac{(-2)^{3}}{3}\right]=16-\frac{16}{3}-\left(-16+\frac{16}{3}\right)$
$=32-\frac{32}{3}=\frac{64}{3}$
(c) $y=\sqrt{x}$ is the upper half of a parabola opens to the right and with vertex $(0,0)$.
$y=0$ is the x-axis.
$x=4$ is a straight line parallel to the y-axis and passing through $(4,0)$.

Using Cylindrical Shells method :
Volume $=2 \pi \int_{0}^{4} x \sqrt{x} d x=2 \pi \int_{0}^{4} x^{\frac{3}{2}} d x=2 \pi\left[\frac{2}{5} x^{\frac{5}{2}}\right]_{0}^{4}$
$=2 \pi\left[\frac{2}{5}(4)^{\frac{5}{2}}-\frac{2}{5}(0)^{\frac{5}{2}}\right]=2 \pi\left(\frac{2}{5}(32)\right)=\frac{128 \pi}{5}$
(d) $M(-1, \sqrt{3}): x=-1$ and $y=\sqrt{3}$
$r=\sqrt{x^{2}+y^{2}}=\sqrt{(-1)^{2}+(\sqrt{3})^{2}}=\sqrt{1+3}=\sqrt{4}=2$
$\cos \theta=\frac{x}{r}=\frac{-1}{2}$ and $\sin \theta=\frac{y}{r}=\frac{\sqrt{3}}{2}$
So, $\theta=\frac{2 \pi}{3}$. (Note that this point is located in the second quadrant).
The polar coordinates of M is $(r, \theta)=\left(2, \frac{2 \pi}{3}\right)$.
$N(0,2): x=0$ and $y=2$
$r=\sqrt{x^{2}+y^{2}}=\sqrt{(0)^{2}+(2)^{2}}=\sqrt{0+4}=\sqrt{4}=2$
$\cos \theta=\frac{x}{r}=\frac{0}{2}=0$ and $\sin \theta=\frac{y}{r}=\frac{2}{2}=1$
So, $\theta=\frac{\pi}{2}$. (Note that this point is located on the y-axis).
The polar coordinates of M is $(r, \theta)=\left(2, \frac{\pi}{2}\right)$.
Q. 4 (a) We define $z(x, y)$ implicitly by the equation $x^{2} y+z^{2}+\sin (x y z)=0$. Compute the partial derivatives $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$. [3]
(b) Solve the differential equation : $\frac{4}{x} y^{\prime}-\frac{1}{y^{3}} e^{x}=0$. [4]

Solution :

(a) Let $F(x, y, z)=x^{2} y+z^{2}+\sin (x y z)$, then $F(x, y, z)=0$.
$F_{x}=\frac{\partial F}{\partial x}=y(2 x)+0+\cos (x y z) y z(1)=2 x y+y z \cos (x y z)$
$F_{y}=\frac{\partial F}{\partial y}=x^{2}(1)+0+\cos (x y z) x z(1)=x^{2}+x z \cos (x y z)$
$F_{z}=\frac{\partial F}{\partial z}=0+2 z+\cos (x y z) x y(1)=2 z+x y \cos (x y z)$
$\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}=-\frac{2 x y+y z \cos (x y z)}{2 z+x y \cos (x y z)}$
$\frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}=-\frac{x^{2}+x z \cos (x y z)}{2 z+x y \cos (x y z)}$
(b) $\frac{4}{x} y^{\prime}-\frac{1}{y^{3}} e^{x}=0$
$\frac{4}{x} \frac{d y}{d x}-\frac{1}{y^{3}} e^{x}=0$
$\frac{4}{x} \frac{d y}{d x}=\frac{1}{y^{3}} e^{x}$
$4 y^{3} d y=x e^{x} d x$
It is a Separable differential equation.
$\int 4 y^{3} d y=\int x e^{x} d x$
$y^{4}=x e^{x}-e^{x}+c$
$y=\sqrt[4]{\left|x e^{x}-e^{x}+c\right|}$

M 104-GENERAL MATHEMATICS -2
 Dr. Tariq A. AlFadhel
 Solution of the Mid-Term Exam
 Third Term 1444 H

Q. 1 Find the elements of the conic section of equation
$16 x^{2}-y^{2}-32 x+4 y+28=0$, then sketch it. [4]

Solution :

$16 x^{2}-y^{2}-32 x+4 y+28=0$
$16 x^{2}-32 x-y^{2}+4 y=-28$
$16\left(x^{2}-2 x\right)-\left(y^{2}-4 y\right)=-28$
By completing the square.
$16\left(x^{2}-2 x+1\right)-\left(y^{2}-4 y+4\right)=-28+16-4$
$16(x-1)^{2}-(y-2)^{2}=-16$
$\frac{16(x-1)^{2}}{-16}-\frac{(y-2)^{2}}{-16}=\frac{-16}{-16}$
$-\frac{(x-1)^{2}}{1}+\frac{(y-2)^{2}}{16}=1$
$\frac{(y-2)^{2}}{4^{2}}-\frac{(x-1)^{2}}{1^{2}}=1$

The conic section is a hyperbola.

The center is $P(1,2)$
$b^{2}=16 \Longrightarrow b=4$, and $a^{2}=1 \Longrightarrow a=1$
$c^{2}=a^{2}+b^{2}=1+16=17 \Longrightarrow c=\sqrt{17}$

The vertices are : $V_{1}(1,6)$ and $V_{2}(1,-2)$

The foci are : $F_{1}(1,2+\sqrt{17})$ and $F_{2}(1,2-\sqrt{17})$

The equations of the asymptotes are :
$L_{1}: y-2=4(x-1)$ and $L_{2}: y-2=-4(x-1)$

Q. 2 Find the standard equation of the ellipse with vertices at $(-5,1),(5,1)$ and focus at $(-4,1)$, then sketch it. [4]

Solution :

Note that the two vertices lies on a line parallel to the x-axis .
The standard equation of the ellipse is $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$, where $a>b$.

The center is $P(h, k)=\left(\frac{5+(-5)}{2}, \frac{1+1}{2}\right)=(0,1)$
a is the distance between $V_{1}(-5,1)$ and $P(0,1)$, hence $a=5$.
c is the distance between $F_{1}(-4,1)$ and $P(0,1)$, hence $c=4$.
$c^{2}=a^{2}-b^{2} \Longrightarrow 16=25-b^{2} \Longrightarrow b^{2}=25-16=9 \Longrightarrow b=3$
The standard equation of the ellipse is $\frac{x^{2}}{25}+\frac{(y-1)^{2}}{9}=1$
The other focus is $F_{2}(4,1)$.
The end-points of the minor axis are $W_{1}(0,4)$ and $W_{2}(0,-2)$

Q. 3 Calculate, whenever it is possible, $\mathbf{A}+2 \mathbf{B}$ and $\mathbf{A B}$, for matrices

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 2 & -1 \\
0 & -1 & 1 \\
3 & 1 & 2
\end{array}\right), \mathbf{B}=\left(\begin{array}{lll}
1 & 0 & 2 \\
3 & 1 & 0 \\
0 & 1 & 2
\end{array}\right) .[4]
$$

Solution :

$$
\begin{aligned}
& \mathbf{A}+2 \mathbf{B}=\left(\begin{array}{ccc}
1 & 2 & -1 \\
0 & -1 & 1 \\
3 & 1 & 2
\end{array}\right)+\left(\begin{array}{lll}
2 & 0 & 4 \\
6 & 2 & 0 \\
0 & 2 & 4
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1+2 & 2+0 & -1+4 \\
0+6 & -1+2 & 1+0 \\
3+0 & 1+2 & 2+4
\end{array}\right)=\left(\begin{array}{lll}
3 & 2 & 3 \\
6 & 1 & 1 \\
3 & 3 & 6
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{A B}=\left(\begin{array}{ccc}
1 & 2 & -1 \\
0 & -1 & 1 \\
3 & 1 & 2
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & 0 & 2 \\
3 & 1 & 0 \\
0 & 1 & 2
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1+6+0 & 0+2-1 & 2+0-2 \\
0-3+0 & 0-1+1 & 0+0+2 \\
3+3+0 & 0+1+2 & 6+0+4
\end{array}\right)=\left(\begin{array}{ccc}
7 & 1 & 0 \\
-3 & 0 & 2 \\
6 & 3 & 10
\end{array}\right)
\end{aligned}
$$

Q. 4 Consider the system of the linear equations:

$$
\left\{\begin{array}{cccc}
x-y+2 z & =-1 \\
-x+2 y+z & =6 \\
2 x+y+z & =1
\end{array}\right.
$$

(a) Solve this system using Cramer's rule. [4]
(b) Solve this system using Gauss elimination method. [4]

Solution :

(a) Using Cramer's rule :

$$
\left.\mathbf{A}=\left(\begin{array}{ccc}
1 & -1 & 2 \\
-1 & 2 & 1 \\
2 & 1 & 1
\end{array}\right) . \begin{array}{ccccc}
1 & -1 & 2 & 1 & -1 \\
& & \begin{array}{ccccc}
\\
& 2 & 2 & 1 & -1
\end{array} & 2 \\
& & & 1 & 2
\end{array}\right]
$$

$$
|\mathbf{A}|=(2-2-2)-(8+1+1)=-2-10=-12 \neq 0
$$

$$
\mathbf{A}_{x}=\left(\begin{array}{ccc}
-1 & -1 & 2 \\
6 & 2 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

$$
\begin{array}{ccccc}
-1 & -1 & 2 & -1 & -1 \\
6 & 2 & 1 & 6 & 2 \\
1 & 1 & 1 & 1 & 1
\end{array}
$$

$$
\left|\mathbf{A}_{x}\right|=(-2-1+12)-(4-1-6)=9-(-3)=9+3=12
$$

$$
x=\frac{\left|\mathbf{A}_{x}\right|}{|\mathbf{A}|}=\frac{12}{-12}=-1
$$

$$
\mathbf{A}_{y}=\left(\begin{array}{ccc}
1 & -1 & 2 \\
-1 & 6 & 1 \\
2 & 1 & 1
\end{array}\right)
$$

$$
\begin{array}{ccccc}
1 & -1 & 2 & 1 & -1 \\
-1 & 6 & 1 & -1 & 6 \\
2 & 1 & 1 & 2 & 1
\end{array}
$$

$\left|\mathbf{A}_{y}\right|=(6-2-2)-(24+1+1)=2-26=-24$
$y=\frac{\left|\mathbf{A}_{y}\right|}{|\mathbf{A}|}=\frac{-24}{-12}=2$
$\mathbf{A}_{z}=\left(\begin{array}{ccc}1 & -1 & -1 \\ -1 & 2 & 6 \\ 2 & 1 & 1\end{array}\right)$

$$
\begin{array}{ccccc}
1 & -1 & -1 & 1 & -1 \\
-1 & 2 & 6 & -1 & 2 \\
2 & 1 & 1 & 2 & 1
\end{array}
$$

$\left|\mathbf{A}_{z}\right|=(2-12+1)-(-4+6+1)=-9-3=-12$
$z=\frac{\left|\mathbf{A}_{z}\right|}{|\mathbf{A}|}=\frac{-12}{-12}=1$
(b) Using Gauss elimination method: The augmented matrix is
$\left(\begin{array}{ccc|c}1 & -1 & 2 & -1 \\ -1 & 2 & 1 & 6 \\ 2 & 1 & 1 & 1\end{array}\right) \xrightarrow{R_{1}+R_{2}}\left(\begin{array}{ccc|c}1 & -1 & 2 & -1 \\ 0 & 1 & 3 & 5 \\ 2 & 1 & 1 & 1\end{array}\right)$
$\xrightarrow{-2 R_{1}+R_{3}}\left(\begin{array}{ccc|c}1 & -1 & 2 & -1 \\ 0 & 1 & 3 & 5 \\ 0 & 3 & -3 & 3\end{array}\right) \xrightarrow{-3 R_{2}+R_{3}}\left(\begin{array}{ccc|c}1 & -1 & 2 & -1 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & -12 & -12\end{array}\right)$
$-12 z=-12 \Longrightarrow z=\frac{-12}{-12}=1$
$y+3 z=5 \Longrightarrow y+3=5 \Longrightarrow y=5-3=2$
$x-y+2 z=-1 \Longrightarrow x-2+2=-1 \Longrightarrow x=-1$
The solution is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right)$
Q. 5 Evaluate the integrals:
(a) $\int\left(\frac{4}{x}-3 \sqrt{x}+3 e^{x}\right) d x[2]$
(b) $\int 6 x \cos \left(x^{2}+1\right) d x[2]$
(c) $\int 16 x^{3} \ln |x| d x[3]$
(d) $\int \frac{4}{(x-1)(x+3)} d x[3]$

Solution :

(a) $\int\left(\frac{4}{x}-3 \sqrt{x}+3 e^{x}\right) d x=\int \frac{4}{x} d x-\int 3 \sqrt{x} d x+\int 3 e^{x} d x$ $=4 \int \frac{1}{x} d x-3 \int x^{\frac{1}{2}} d x+3 \int e^{x} d x=4 \ln |x|-3 \frac{x^{\frac{3}{2}}}{\frac{3}{2}}+3 e^{x}+c$ $=4 \ln |x|-2 x^{\frac{3}{2}}+3 e^{x}+c$
(b) $\int 6 x \cos \left(x^{2}+1\right) d x=3 \int \cos \left(x^{2}+1\right)(2 x) d x=3 \sin \left(x^{2}+1\right)+c$

Using the formula $\int \cos (f(x)) f^{\prime}(x) d x=\sin (f(x))+c$.
(c) $\int 16 x^{3} \ln |x| d x$

Using integration by parts:

$$
\begin{aligned}
& u=\ln |x| \quad d v=16 x^{3} d x \\
& d u=\frac{1}{x} d x \quad v=16\left(\frac{x^{4}}{4}\right)=4 x^{4} \\
& \int 16 x^{3} \ln |x| d x=4 x^{4} \ln |x|-\int 4 x^{4} \frac{1}{x} d x \\
& =4 x^{4} \ln |x|-\int 4 x^{3} d x=4 x^{4} \ln |x|-x^{4}+c \\
& \text { (d) } \int \frac{4}{(x-1)(x+3)} d x
\end{aligned}
$$

Using the method of partial fractions:
$\frac{4}{(x-1)(x+3)}=\frac{A_{1}}{x-1}+\frac{A_{2}}{x+3}$
$\frac{4}{(x-1)(x+3)}=\frac{A_{1}(x+3)+A_{2}(x-1)}{(x-1)(x+3)}$
$4=A_{1}(x+3)+A_{2}(x-1)$
Put $x=1$ then $4=A_{1}(1+3)+A_{2}(1-1) \Longrightarrow 4 A_{1}=4 \Longrightarrow A_{1}=1$
Put $x=-3$ then $4=A_{1}(-3+3)+A_{2}(-3-1) \Longrightarrow 4=-4 A_{2}$
$\Longrightarrow A_{2}=-1$
$\int \frac{4}{(x-1)(x+3)} d x=\int\left(\frac{1}{x-1}+\frac{-1}{x+3}\right) d x$
$=\int \frac{1}{x-1} d x-\int \frac{1}{x+3} d x=\ln |x-1|-\ln |x+3|+c$

Dr. Tariq A. AlFadhel
Solution of the Final Exam Third Term 1444 H
Q. 1 (a) Let $\mathbf{A}=\left(\begin{array}{ccc}1 & -1 & 2 \\ 0 & 3 & 1\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{cc}1 & -1 \\ 1 & 0 \\ 1 & -2\end{array}\right)$. Compute (if possible)
$\mathbf{B A}$ and $\mathbf{A}^{T}-2 \mathbf{B}$. [3]
(b) Compute the determinant $\left|\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 0 \\ 2 & 0 & 1\end{array}\right|$. [2]
(c) Solve by using Gauss-Jordan Elimination Method the linear system

$$
\left\{\begin{align*}
x+y-3 z & =6 \tag{4}\\
x+2 y+z & =3 \\
-2 x+3 y+z & =-2
\end{align*}\right.
$$

Solution :

(a) $\mathbf{B A}=\left(\begin{array}{cc}1 & -1 \\ 1 & 0 \\ 1 & -2\end{array}\right)\left(\begin{array}{ccc}1 & -1 & 2 \\ 0 & 3 & 1\end{array}\right)$
$=\left(\begin{array}{lll}1+0 & -1-3 & 2-1 \\ 1+0 & -1+0 & 2+0 \\ 1+0 & -1-6 & 2-2\end{array}\right)=\left(\begin{array}{lll}1 & -4 & 1 \\ 1 & -1 & 2 \\ 1 & -7 & 0\end{array}\right)$
$\mathbf{A}^{T}-2 \mathbf{B}=\left(\begin{array}{cc}1 & 0 \\ -1 & 3 \\ 2 & 1\end{array}\right)-\left(\begin{array}{cc}2 & -2 \\ 2 & 0 \\ 2 & -4\end{array}\right)$
$=\left(\begin{array}{cc}1-2 & 0+2 \\ -1-2 & 3-0 \\ 2-2 & 1+4\end{array}\right)=\left(\begin{array}{cc}-1 & 2 \\ -3 & 3 \\ 0 & 5\end{array}\right)$
(b) Using Sarrus Method

$$
\begin{array}{lllll}
0 & 1 & 2 & 0 & 1 \\
1 & 2 & 0 & 1 & 2 \\
2 & 0 & 1 & 2 & 0
\end{array}
$$

$\left|\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 0 \\ 2 & 0 & 1\end{array}\right|=(0+0+0)-(8+0+1)=0-9=-9$
(c) Using Gauss-Jordan Elimination Method:

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
1 & 1 & -3 & 6 \\
1 & 2 & 1 & 3 \\
-2 & 3 & 1 & -2
\end{array}\right) \xrightarrow{-R_{1}+R_{2}}\left(\begin{array}{ccc|c}
1 & 1 & -3 & 6 \\
0 & 1 & 4 & -3 \\
-2 & 3 & 1 & -2
\end{array}\right) \\
& \xrightarrow{2 R_{1}+R_{3}}\left(\begin{array}{ccc|c}
1 & 1 & -3 & 6 \\
0 & 1 & 4 & -3 \\
0 & 5 & -5 & 10
\end{array}\right) \xrightarrow{-5 R_{2}+R_{3}}\left(\begin{array}{ccc|c}
1 & 1 & -3 & 6 \\
0 & 1 & 4 & -3 \\
0 & 0 & -25 & 25
\end{array}\right) \\
& \xrightarrow{\frac{-1}{25} R_{3}}\left(\begin{array}{ccc|c}
1 & 1 & -3 & 6 \\
0 & 1 & 4 & -3 \\
0 & 0 & 1 & -1
\end{array}\right) \xrightarrow{-4 R_{3}+R_{2}}\left(\begin{array}{ccc|c}
1 & 1 & -3 & 6 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right) \\
& \xrightarrow{3 R_{3}+R_{1}}\left(\begin{array}{lll|c}
1 & 1 & 0 & 3 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right) \xrightarrow{-R_{2}+R_{1}}\left(\begin{array}{lll|c}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -1
\end{array}\right) \\
& \text { The solution is }\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right)
\end{aligned}
$$

Q. 2 (a) Find the standard equation of the ellipse with vertices $(1,5)$ and $(1,-1)$, and the length of its minor axis is 4 , and then sketch its graph. [4]
(b) Find the elements of the conic section $x^{2}-4 x-8 y+12=0$ and then sketch it. [3]

Solution :

(a) The two vertices are located on a line parallel to the y-axis.
The standard equation of the ellipse is $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$, where $b>a$.
$P(h, k)=\left(\frac{1+1}{2}, \frac{5+(-1)}{2}\right)=(1,2)$,
hence $h=1$ and $k=2$
$2 b$ is the distance between its two vertices,
hence $2 b=6 \Longrightarrow b=3$
The length of its minor axis is 4,
hence $2 a=4 \Longrightarrow a=2$
$c^{2}=b^{2}-a^{2} \Longrightarrow c^{2}=9-4=5 \Longrightarrow c=\sqrt{5}$

The standard equation of the ellipse is $\frac{(x-1)^{2}}{4}+\frac{(y-2)^{2}}{9}=1$
The Foci are $V_{1}(1,2+\sqrt{5})$ and $V_{2}(1,2-\sqrt{5})$.
The endpoints of the minor axis are $W_{1}(-1,2)$ and $W_{2}(3,2)$.
(b) $x^{2}-4 x-8 y+12=0$
$x^{2}-4 x=8 y-12$
By completing the square
$x^{2}-4 x+4=8 y-12+4$
$(x-2)^{2}=8 y-8$
$(x-2)^{2}=8(y-1)$
The conic section is a parabola opens upwards.
The vertex is $V(2,1)$.
$4 a=8 \Longrightarrow a=2$.
The Focus is $F(2,1+2)=(2,3)$
The equation of the directrix is : $y=1-2=-1$

Q. 3 (a) Compute the integrals: [2,3,4]
(i) $\int \frac{4 x}{\left(1+x^{2}\right)^{3}} d x$
(ii) $\int 9 x \cos (3 x) d x$
(iii) $\int \frac{x^{2}+1}{x(x-1)(x+1)} d x$
(b) Sketch the region bounded by the curves $y=x^{2}$ and $y=4 x$ and compute its area. [3]
(c) The region bounded by the curves curves $y=x^{2}$ and $y=1$ is rotated about the x-axis to form a solid S. Find the volume of S. [4]

Solution :
(a) (i) $\int \frac{4 x}{\left(1+x^{2}\right)^{3}} d x=\int 4 x\left(1+x^{2}\right)^{-3} d x=2 \int\left(1+x^{2}\right)^{-3} 2 x d x$ $=2 \frac{\left(1+x^{2}\right)^{-2}}{-2}+c=\frac{-1}{\left(1+x^{2}\right)^{2}}+c$
(ii) $\int 9 x \cos (3 x) d x$

Using integration by parts

$$
\begin{aligned}
& u=x \quad d v=9 \cos (3 x) d x \\
& d u=d x \quad v=3 \sin (3 x) \\
& \int 9 x \cos (3 x) d x=x(3 \sin (3 x))-\int 3 \sin (3 x) d x \\
& =3 x \sin (3 x)-(-\cos (3 x))+c=3 x \sin (3 x)+\cos (3 x)+c \\
& \text { (iii) } \int \frac{x^{2}+1}{x(x-1)(x+1)} d x
\end{aligned}
$$

Using the method of partial fractions
$\frac{x^{2}+1}{x(x-1)(x+1)}=\frac{A_{1}}{x}+\frac{A_{2}}{x-1}+\frac{A_{3}}{x+1}$
$\frac{x^{2}+1}{x(x-1)(x+1)}=\frac{A_{1}(x-1)(x+1)}{x(x-1)(x+1)}+\frac{A_{2} x(x+1)}{x(x-1)(x+1)}+\frac{A_{3} x(x-1)}{x(x-1)(x+1)}$
$x^{2}+1=A_{1}(x-1)(x+1)+A_{2} x(x+1)+A_{3} x(x-1)$
$x^{2}+1=A_{1}\left(x^{2}-1\right)+A_{2}\left(x^{2}+x\right)+A_{3}\left(x^{2}-x\right)$
$x^{2}+1=A_{1} x^{2}-A_{1}+A_{2} x^{2}+A_{2} x+A_{3} x^{2}-A_{3} x$
$x^{2}+1=\left(A_{1}+A_{2}+A_{3}\right) x^{2}+\left(A_{2}-A_{3}\right) x-A_{1}$
$A_{1}+A_{2}+A_{3}=1 \quad \longrightarrow \quad(1)$
$A_{2}-A_{3}=0 \quad \longrightarrow \quad(2)$
$-A_{1}=1 \quad \longrightarrow \quad(3)$
From equation (3) : $A_{1}=-1$
Equation (1) + Equation (2) : $A_{1}+2 A_{2}=1 \Longrightarrow-1+2 A_{2}=1$
$\Longrightarrow 2 A_{2}=2 \Longrightarrow A_{2}=1$
From equation (2) : $1-A_{3}=0 \Longrightarrow A_{3}=1$
$\int \frac{x^{2}+1}{x(x-1)(x+1)} d x=\int\left(\frac{-1}{x}+\frac{1}{x-1}+\frac{1}{x+1}\right) d x$
$=-\int \frac{1}{x} d x+\int \frac{1}{x-1} d x+\int \frac{1}{x+1} d x$
$=-\ln |x|+\ln |x-1|+\ln |x+1|+c$
(b) $y=x^{2}$ is a parabola opens upwards with vertex $(0,0)$.
$y=4 x$ is a straight line passing through $(0,0)$ with slope equals 4 .

Points of intersection of $y=x^{2}$ and $y=4 x$
$x^{2}=4 x \Longrightarrow x^{2}-4 x=0$
$\Longrightarrow x(x-4)=0 \Longrightarrow x=0, x=4$

Area $=\int_{0}^{4}\left(4 x-x^{2}\right) d x=\left[2 x^{2}-\frac{x^{3}}{3}\right]_{0}^{4}$
$=\left(2\left(4^{2}\right)-\frac{4^{3}}{3}\right)-\left(2\left(0^{2}\right)-\frac{0^{3}}{3}\right)$
$=32-\frac{64}{3}=\frac{96-64}{3}=\frac{32}{3}$

(c) $y=x^{2}$ is a parabola opens upwards with vertex $(0,0)$.
$y=1$ is a straight line parallel to the x-axis and passing through $(0,1)$.

Points of intersection of $y=x^{2}$ and $y=1$:

$$
x^{2}=1 \Longrightarrow x=-1, x=1
$$

Using Washer method :
Volume $=\pi \int_{-1}^{1}\left[(1)^{2}-\left(x^{2}\right)^{2}\right] d x=\pi \int_{-1}^{1}\left(1-x^{4}\right) d x=\pi\left[x-\frac{x^{5}}{5}\right]_{-1}^{1}$
$=\pi\left[\left(1-\frac{1^{5}}{5}\right)-\left(-1-\frac{(-1)^{5}}{5}\right)\right]=\pi\left[1-\frac{1}{5}-\left(-1+\frac{1}{5}\right)\right]$

$$
=\pi\left(1-\frac{1}{5}+1-\frac{1}{5}\right)=\pi\left(2-\frac{2}{5}\right)=\frac{8 \pi}{5}
$$

Q. 4 (a) Let $z=x^{2}-2 x y+2 y^{2}$ with $x=\cos \theta+\sin \theta$ and $y=\sin \theta$. Use the chain rule to compute the partial derivative $\frac{d z}{d \theta}$. [4]
(b) Solve the differential equation : $x y^{\prime}+2 y=4 x^{2}+3 x$. [4]

Solution :

(a) $\frac{d z}{d \theta}=\frac{\partial z}{\partial x} \frac{d x}{d \theta}+\frac{\partial z}{\partial y} \frac{d y}{d \theta}$
$\frac{\partial z}{\partial x}=2 x-2 y=2(x-y)$
$\frac{\partial z}{\partial y}=-2 x+4 y=2(2 y-x)$
$\frac{d x}{d \theta}=-\sin \theta+\cos \theta$ and $\frac{d y}{d \theta}=\cos \theta$
$\frac{d z}{d \theta}=2(x-y)(\cos \theta-\sin \theta)+2(2 y-x) \cos \theta$
$=2 \cos \theta(\cos \theta-\sin \theta)+2(\sin \theta-\cos \theta) \cos \theta$
$=2 \cos \theta(\cos \theta-\sin \theta)-2(\cos \theta-\sin \theta) \cos \theta=0$
(b) $x y^{\prime}+2 y=4 x^{2}+3 x$
$y^{\prime}+\left(\frac{2}{x}\right) y=4 x+3$
It is a First-order differential equation .
$P(x)=\frac{2}{x}$ and $Q(x)=4 x+3$
The integrating factor is :
$u(x)=e^{\int P(x) d x}=e^{\int \frac{2}{x} d x}=e^{2 \int \frac{1}{x} d x}=e^{2 \ln |x|}=e^{\ln x^{2}}=x^{2}$.
The general solution of the differential equation is :

$$
\begin{aligned}
& y=\frac{1}{u(x)} \int u(x) Q(x) d x=\frac{1}{x^{2}} \int x^{2}(4 x+3) d x=\frac{1}{x^{2}} \int\left(4 x^{3}+3 x^{2}\right) d x \\
& =\frac{1}{x^{2}}\left(x^{4}+x^{3}+c\right)=x^{2}+x+\frac{c}{x^{2}}
\end{aligned}
$$

