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Abstract: The core purpose of this work is the formulation of a mathematical model by dint of a
new fractional modeling approach to study the dynamics of flow and heat transfer phenomena.
This approach involves the incorporation of the Prabhakar fractional operator in mathematical
analysis to transform the governing system from a conventional framework to a generalized one.
This generalized model evaluates the improvement in thermal efficacy of vacuum pump oil because
of the inclusion of aluminum alloy nanoparticles. The flow of the under-observation nanofluid
starts due to the combined effects of natural convection and the ramped velocity function at the
boundary. Meanwhile, an analysis of the energy equation is conducted by taking the Newtonian
heating mechanism into consideration. The characteristics of platelet-, brick-, cylinder-, and blade-
shaped alloy nanoparticles are incorporated into the primary system using shape-dependent relations
for thermal conductivity and viscosity. Both the classical and generalized models are solved to derive
the exact solutions by first inserting some dimension-independent quantities and then operating the
Laplace transform on the succeeding equations. These solutions are utilized for the development of
graphical illustrations to serve the purpose of covering all features of the problem under consideration.
Furthermore, changes in energy and flow functions due to the dominant influences of the relevant
contributing factors are delineated with appropriate physical arguments. In addition, the numerical
results of the skin friction coefficient and Nusselt number are displayed via multiple tables to analyze
the disturbance in shear stress and discuss the contribution of the fractional parameters, the volume
concentration of the considered nanoparticles, and the shape factor in the boost of the thermal
potential of the considered nanofluid. The findings imply that aluminum alloy nanoparticles have the
ability to produce a 44% enhancement in the thermal effectiveness of vacuum pump oil. Moreover,
the flow velocity is reduced as the loading range of the nanoparticles rises.

Keywords: Prabhakar fractional operator; shape factor; Newtonian heating; ramped velocity function;
nanofluid; heat transfer

1. Introduction

In this contemporary era of innovations and development, the technological sector is
concentrated on producing materials that are compact in terms of sizes and structures, but
at the same time, they efficiently satisfy practical needs. In this context, nanotechnology is
one of the most prominent fields, and in recent times, there have been significant advance-
ments in this domain. Nanotechnology is the maneuvering of matter, adapting exclusive
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strategies and methods to fabricate products at micro- and macro-scales for industrial
and commercial purposes. Some of its most paramount peculiarities that have drawn
the fascination of scientists are the efficient employment of resources, reduced fabrication
outlay, lower time consumption, better performances of developed products, and conse-
quently ameliorated standards of living. It offers scientific progress and leads the way
toward the development of innovative technologies across several industries, including
the pharmaceutical industry, energy sector, automobile manufacturing, nanoelectronics,
and mechanical engineering, just to name a few [1,2]. In addition, consumer products,
tissue engineering, elimination of cancer cells, cleansing of blood arteries, expeditious
healing of cuts via the infusion of silver with bandages, and preparation of electronic
devices that consume less power are cost-efficient and possess better displays, production
of improved construction items, paints, furniture polishes, household appliances, and
manufacturing of long-lasting and more durable products are some of the prominent areas
where nanotechnology contributes significantly.

Nanofluid is a fundamental feature of nanotechnology, and one of its primary functions
is to efficiently handle heat transfer challenges. The speedy disposal of redundant heat is
one of the main obstacles to the efficacious performance of several industrial and household
equipment such as energy storage instruments, computer processors, heat exchangers,
refrigerators, thermal plants, solar collectors, and so forth. The thermal propensities of
pure fluids involved in such systems are inadequate; therefore, experts have proposed
an assortment of approaches to strengthen their thermal effectiveness in order to serve
the purpose of achieving appropriate thermal management of exceptionally sensitive
operations. In this regard, a substantial change has been caused by the development of
nanofluid, which accelerates the rates at which heat is transported while simultaneously
enhancing the anti-wear and corrosion resistance attributes of standard fluids. In general,
solid particles composed of nitrides (silicon nitrides, aluminum nitrides), metal oxides
(CO2, silica), metals (copper, zinc, iron), and non-metals (carbon nanotubes, graphite)
are dispersed in standard fluids such as kerosene oil, blood, lubricants, and water for
the preparation of nanofluids [3]. These solid particles are below 100 nanometers in
terms of size. At this nanoscale, the materials begin to exhibit distinctive properties
that have a momentous impact on the biological, physical, and chemical behaviors of
carrier fluids. In comparison to standard fluids, nanofluids are more efficient when it
comes to the transportation of heat. Numerous advantageous effects of amalgamating
nanoparticles with standard fluids, for instance, improved tribological efficacy, diminished
parasitic loss, enhanced lubrication capacity, and boosted cooling performance, endorse
nanofluids as a beneficial substitute for standard fluids in various practical functions such as
pharmaceutical operations, optical sensors, combustion plants, grinding processes, nuclear
reactors, high-temperature drilling, cooling of microchips, and many others.

Multiple new disciplines of science and technology, including nanochemistry and
nanoelectronics, have emerged after the recognition of nanofluids. Recently, various
researchers across the globe arranged analytic and experimental studies to discuss the
efficiency of nanofluids in complicated physical situations. Wen et al. [4] proposed a
new algorithm to estimate the Nusselt number of water–ZnO nanofluid for flow in mini-
channels. Based on their experimental analysis, they remarked that the pressure drop
and heat-transportation rate are higher in the case of nanofluids as equated to those
of pure fluids. Rizwan et al. [5] compared the performances of three ethylene glycol-
based nanofluids and analyzed the effects of variations in diameter and proportion. They
discussed that, in response to diameter enhancement, the temperature increases and the
flow becomes decelerated, whereas a reverse behavior was reported when the proportion
of nanoparticles rises in the base fluid. Sarwar and Hussain [6] evaluated the flow features
of a blood- and silver-based nanofluid and concluded that an expansion in the size of
silver particles expedites the blood flow and escalates the temperature. Wang et al. [7]
considered round- and triangular-shaped heat exchangers and examined their performance
in the presence of a silica–water nanofluid. They communicated that the efficiency of
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heat exchangers rises 74.80% for round tubes and 55.97% for triangular tubes because
of the considered nanofluid. The impacts of the diameter and nanolayer on the thermal
behavior of a nanofluid containing graphene and water were studied by Acharya et al. [8].
They claimed a 84.61% augmentation in thermal performance for the flow induced due to
the spinning motion of a magnetized disk. To compare the heat-transportation potential
of γAl2O3–water and γAl2O3–ethylene glycol nanofluids, Salahuddin et al. [9] used
experimental relations for the estimation of viscous influences and thermal conductance.
Their results explain that γAl2O3 nanoparticles have a crucial contribution in strengthening
the thermal traits of ordinary fluids. Some recent analyses in the field of nanofluids are
documented in [10–14].

The natural flow and thermal attributes of the carrier fluid and volume concentration,
size, shapes, and types of nanoparticles are some of the most indispensable variables that
control the overall productivity and usability of nanofluids. When these factors are taken
into consideration, the question of which shape of nanoparticles is highly beneficial for
gaining the maximum boost in thermal properties and, as a result, improved thermal
effectiveness and stability, emerges as a significant issue. A meticulous analysis of the
literature indicates that only a few studies have been conducted in this regard, which shows
that this topic has not gained much attention. However, it is crucial to understand that
leaving out the shape factor in theoretical investigations reduces the practical relevance
of the presented results. Waqas et al. [15] examined the importance of differently shaped
gold nanoparticles for the thermal behavior of blood. They predicted the escalation in
the performance of blood due to sphere, hexahedron, cylinder, column, and tetrahedron
shapes of nanoparticles. Alqaed et al. [16] conducted a numerical analysis to scrutinize the
influences of the shape factor on entropy generation. They combined alumina boehmite
nanoparticles of diverse shapes with water and evaluated the thermal efficiency of the
resulting nanofluid for flow in heat sinks. Saranya and Al-Mdallal [17] investigated the
flow of alumina- and silicon oil-based nanofluid around a radially extending and rotating
surface to observe the contribution of radiative energy, magnetic force, and shape diversity
of nanoparticles in the development of flow and thermal fields. A comparative discus-
sion on entropy production and Nusselt number for needle-, sphere-, and disk-shaped
nanoparticles was presented by Ellahi et al. [18]. They noted that the needle-like shape of
nanoparticles leads to producing the maximum entropy generation and the highest thermal
profile. Saqib et al. [19] considered the Brinkman model and conducted a theoretical study
in a fractional setting to elucidate the control of shape effects on the thermal conduct of
nanofluid. They computed the exact solutions of the model and provided several graphs in
support of their results. A comprehensive review of shape effects on the thermal efficacy of
nanofluids was provided by Zahmatkesh et al. [20]. They covered cavity flows, boundary
layer flows, flows in heat exchangers and channels, and peristaltic flows. Some latest
findings regarding the shapes of nanoparticles can be observed from [21–25].

Fractional calculus is a rapidly growing new discipline, and the concept of generaliz-
ing standard models by dint of various fractional techniques is attributed for the existence
of this field. Recently, a number of researchers have modeled several physical problems
in fractional settings and carried out comparative studies. Based on their analyses, they
claimed that the precision and reliability of the results obtained in fractional frameworks
are relatively higher than those acquired in classical settings. Furthermore, they provide a
better and more accurate description of the problems being modeled. Such recommenda-
tions are further supported by the observation that an accurate accordance between the
experimental reports and the theoretic results produced through such fractional systems
can be established by appropriately modulating the fractional parameters. The aforemen-
tioned supplementary advantages of fractional modeling techniques have motivated a vast
range of scientists to organize comparative investigations in fractional and conventional
environments. Since the performance of a system at a particular level depends on its
history and current state, fractional models are more suitable to explain such performances
because they address the inherited features of the involved materials, self-similar attributes,
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and memory effects. These characteristics of fractional models are also effective for the
profound comprehension of viscoelastic impacts and the rheology of nanofluids. Hence, the
models developed operating fractional techniques are more efficient in terms of describing
the thermal behavior and flow patterns of nanofluids. In recent times, dynamical systems,
mathematical biology, thermal engineering, disease modeling, flows in cavities and porous
mediums, and economics are some of the various disciplines where fractional models are
being applied in full swing.

Numerous fractional operators have been developed to date, each having a unique
formulation, advantages, and limitations. The operators regarded as Riemann–Liouville
and Caputo are particularly prevalent [26]. The development of the foregoing operators
includes the convolution of the first derivative and a kernel based on the power-law.
Caputo–Fabrizio is another frequently employed derivative, whose mathematical relation
involves the convolution of an exponential kernel and the standard derivative [27]. To
efficaciously tackle the locality and singularity problems appearing when the aforesaid
derivatives are used for the formulation of models, a new derivative comprised of the
generalized Mittag–Leffler function was proposed by Atangana and Baleanu [28]. Later, the
Prabhakar fractional operator was introduced, which contains a multi-parametric Mittag–
Leffler function as a kernel [29]. Various modern-day researchers are fascinated by the
significant properties of fractional operators, thus they prefer fractional modeling tech-
niques. So far, a plethora of physical problems from diverse fields have been examined and
delineated by means of fractional models. Danane et al. [30] formulated a fractional model
to investigate the impacts of government measurements and the public’s risk awareness on
controlling the outbreak of COVID-19. They worked with actual data collected in Wuhan
and also incorporated zoonotic and person-to-person transmission effects in their model.
Akgul et al. [31] employed different fractional approaches to construct economic models.
They provided numerical schemes to estimate the solutions of these models and performed
comparative studies. A detailed report on how different fractional operators can be used
to comprehend and elucidate the thermal performance and flow behavior of fluids was
supplied by Siddique et al. [32]. Chen et al. [33] evaluated the influences of the slip velocity
condition on the flow patterns of Oldroyd-B fluid by generalizing Fick’s and Fourier’s law
via the Prabhakar fractional operator. Raza et al. [34] discussed the contribution of inclined
magnetic effects in varying the flow characteristics of viscous fluids. For this study, they
implemented a fractional model, which is based on a multi-parametric kernel. Some new
reports on modeling flow problems via fractional approaches are available in [35–38].

A lack of investigations on oil-based nanofluids is found through a critical analysis
of the literature. The majority of these studies were conducted via classical models, and
solution approximation techniques were operated for the development of graphs. Thus, the
research gap further expands if the derivation of analytic solutions employing fractional
models is taken into consideration. In addition, it is observed that most of these inves-
tigations communicate results only for spherically shaped nanoparticles, excluding the
influence of the shape factor. In the physical sense, the shape factor has a vital role regarding
the thermal performance and behavior of nanofluids. Therefore, this work is an attempt to
effectively address all these issues. The primary focus of this study is to anticipate how the
dispersion of differently shaped aluminum alloy nanoparticles (brick, platelet, blade, and
cylinder) affects the thermal efficiency and flow characteristics of vacuum pump oil. The
performance of vacuum pump oil in the presence of alloy nanoparticles is being evaluated
for the first time in this study. The formulation of a generalized model and the computation
of exact solutions are also the main objectives of this investigation. The Prabhakar fractional
operator is utilized to serve the former objective, and to solve the consequent system of
equations, the Laplace transform is exercised. The fractional model corresponds to Newto-
nian heating and ramped velocity conditions. The solutions are provided graphically to
examine the importance of the involved parameters regrading percentage augmentation
in heat-transportation rate, shear stress, and flow patterns. Furthermore, the primary
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functions (velocity and temperature) established for the fractional case are compared with
those of the classical case to highlight the significance of fractional models.

2. Statement and Model Formulation

This investigation is performed to analyze how the distribution of aluminum alloy
nanoparticles possessing multiple shapes ameliorates the thermal and physical attributes
of vacuum pump oil. The consideration of a ramped velocity relation at the bounding
surface causes the instigation of flow. Newtonian heating phenomena disrupt the system
initially for t∗ = 0+. The mathematical representation of this mechanism is composed of an
energy gradient and a temperature function, whereas the bounding surface is assumed to
execute a ramped motion. This type of motion is described through a piecewise function,
which contains time-dependent and constant parts. It indicates that the velocity depends
on time for a certain time duration (t∗ ≤ t0) such that V∗(t∗, 0) = V0(t∗/t0). Afterward,
for t∗ > t0, the bounding surface achieves constant velocity V0. At the far end, ambient
temperature >∞ is achieved and the nanofluid comes to a rest. Since the flow is uni-
directional and the vertical bounding surface is sufficiently long, the only independent
variables in the thermal and velocity equations are Υ∗ and t∗. This study is focused on
platelet-, brick-, cylinder-, and blade-type shapes of aluminum alloy nanoparticles, and a
thermal equilibrium is supposed to exist between the host fluid and dispersed particles.
The geometrical configuration and considered shapes of nanoparticles are portrayed in
Figure 1.
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Figure 1. Geometrical arrangement of the problem.
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Keeping view of the above description and taking Boussinesq’s approximation into
account, the principal model for this problem is formulated as [39]

(
1 + λ1

)
ρ̂n f

∂V∗(t∗, Υ∗)

∂t∗
= µ̂n f

(
1 + λ0

∂

∂t∗
)∂2V∗(t∗, Υ∗)

∂Υ∗2 +
(
1 + λ1

)(
ρ̂β̂
)

n f

(
>(t∗, Υ∗)−>∞

)
g, (1)

(
ρ̂Ĉp

)
n f

∂>∗(t∗, Υ∗)

∂t∗
= −∂q∗(t∗, Υ∗)

∂Υ∗
, (2)

q∗(t∗, Υ∗) = −K̂n f
∂>∗(t∗, Υ∗)

∂Υ∗
. (3)

The initial and boundary conditions associated with the above system are described as

V∗(0, Υ∗) = 0, >∗(0, Υ∗) = >∞, for Υ∗ > 0, (4)

V∗(t∗, 0) =

{
V0

t∗
t0

0 < t∗ ≤ t0

V0 t∗ > t0
,

(
h
K̂n f

)
>(t∗, 0) = −∂>∗(t∗, 0)

∂Υ∗
, (5)

V∗(t∗, Υ∗)→ 0, >(t∗, Υ∗)→ >∞, as Υ∗ → ∞, (6)

where q∗ is the thermal flux, V0 symbolizes the reference velocity, h specifies the heat
transport coefficient, the energy and flow functions are represented by >∗ and V∗, the
pull of gravity is characterized by g, >∞ denotes the ambient temperature, λi=0,1 are
specific parameters associated with Jeffery fluids, and the characteristic time t0 is defined

as t0 = 1
ν̂VPO

(
K̂VPO

h

)2
. The mathematical form of the physical and thermal characteristics

of the considered nanofluid is presented as [40,41]

Thermal conductivity:

K̂n f =

{
ϕ(α− 1)

(
K̂ANP − K̂VPO

)
+ K̂ANP + (α− 1)K̂VPO

ϕ
(
K̂VPO − K̂ANP

)
+ K̂ANP + K̂VPO(α− 1)

}
K̂VPO

Viscosity:

µ̂n f = µ̂VPO

(
1 + κ1 ϕ + κ1 ϕ2

)
Specific heat capacity:

(
ρ̂Ĉp

)
n f =

(
ρ̂Ĉp

)
VPO

1− ϕ

1−

(
ρ̂Ĉp

)
ANP(

ρ̂Ĉp
)

VPO




Thermal expansion coefficient:
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(
ρ̂β̂
)

n f =
(
ρ̂β̂
)

VPO

1− ϕ

1−

(
ρ̂β̂
)

ANP(
ρ̂β̂
)

VPO




Density:

ρ̂n f = ρ̂VPO

[
1− ϕ

{
1− ρ̂ANP

ρ̂VPO

}]
In the above expressions of thermo-physical characteristics, the subscripts “VPO”,

“ANP”, and “n f ” denote the association of specific properties with vacuum pump oil,
aluminum alloy nanoparticles, and the consequent nanofluid, respectively. The loading
range of nanoparticles is characterized by ϕ. The parameter α in the expression for thermal
conductivity is the shape factor, which plays a vital part in improving the heat transfer
capacity of the base fluid. The values of α for the considered shapes of nanoparticles
are displayed in Table 1. The respective table also provides values for κ1 and κ2, which
significantly affect the viscous nature of the base fluid.

Table 1. Values of α, κ1, and κ2 for multiple shapes of nanoparticles [42].

Shapes κ1 κ2 α

Blade 14.6 123.3 8.3

Platelet 37.1 612.6 5.7

Brick 1.9 471.4 3.7

Cylinder 13.5 909.4 4.9

3. Generalization of the Model and Mathematical Analysis

The prime focus of this section is to present the generalization of the governing model
in terms of the Prabhakar fractional derivative and then to compute the exact solutions of
the consequent equations. The well-known Laplace transformation technique will be taken
into consideration for the achievement of the latter purpose. Furthermore, mathematical
expressions for some fundamental quantities of practical fascination will be provided in
this section. Before the generalization of the governed model, the following unit-free
parameters will be introduced in the energy and flow equations:

Υ =

(
h
K̂VPO

)
Υ∗, V =

V∗

V0
, q =

(
1

h>∞

)
q∗,

t =
µ̂VPO

ρ̂VPO

(
h
K̂VPO

)2

t∗, > =
>∗ −>∞

>∞
. (7)

The unit-independent versions of the flow and temperature equations and their con-
nected conditions are acquired in the following form:
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ξ1(1 + λ1)
∂V(t, Υ)

∂t
= ξ2Gr(1 + λ1)>(t, Υ) + ξ3

(
1 + λ2

∂

∂t

)
∂2V(t, Υ)

∂Υ2 , (8)

(Prξ4)
∂>(t, Υ)

∂t
= −∂q(t, Υ)

∂Υ
, (9)

q(t, Υ) = −ξ5
∂>(t, Υ)

∂Υ
, (10)

for Υ > 0 : >(0, Υ, ) = 0, V(0, Υ) = 0, (11)

V(t, 0) =
{

t 0 < t ≤ 1
1 t > 1

,
1
ξ5

[
1 +>(t, 0)

]
+

∂>(t, 0)
∂Υ

= 0, (12)

for Υ → ∞ : >(t, Υ)→ 0, V(t, Υ)→ 0. (13)

The parameters depending on the volume fraction of nanoparticles and other param-
eters emerging in Equations (8)–(13) are given in Table 2. To transmute the model from
the classical setting to the fractional setting, we operated the Prabhakar fractional deriva-
tive, which utilizes the generalized Fourier law to cope with heat flux. The generalized
mathematical expression of the Fourier law for this problem is provided as

q(t, Υ) = −ξ5

[
D

ψ
η,Ω,a

∂>(t, Υ)

∂Υ

]
. (14)

Let Cy(0, n) represent the set of those functions, which have continuous derivatives
of order (y − 1) on the interval (0, n) such that, for an arbitrary function H ∈ Cy(0, n),
H(y−1)(ω) is an absolutely continuous function. Considering of the above statement, the
mathematical interpretation of the Prabhakar fractional derivative is supplied as [43]

D
ψ
η,Ω,a

{
H(ω)

}
= E−ψ

η,y−Ω,aH
(y)(ω) = e−ψ

η,y−Ω(a; ω) ∗ H(y)(ω)

=

ω∫
0

(ω− t)y−Ω−1E−ψ
η,y−Ω(a(ω− t)η)Hy(t)dt, (15)

where the integer part of Ω is symbolized as y such that y = [Ω]. In Equation (15), the
Prabhakar kernel, Prabhakar integral, and Mittag–Leffler function for multiple parameters
are, respectively, provided as [44]

eψ
η,Ω(a; ω) = ωΩ−1Eψ

η,Ω
(
aωη

)
,

Eψ
η,Ω,aH(ω) =

ω∫
0

(ω− t)(Ω−1)Eψ
η,Ω
(
a(ω− t)η

)
H(t)dt,

Eψ
η,Ω(r) =

∞

∑
m=0

rmΓ(m + ψ)

m!Γ(ψ)Γ(Ω + ηm)
. (16)
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Since the Laplace transform is considered in this work as a primary tool to derive the
exact solutions of the under-observation model, therefore, before directly applying it to
the generalized equations, it is important to mention the Laplace transformed version of
the Prabhakar fractional derivative. Thus, the Laplace transform will be applied to the
Prabhakar fractional derivative in the following manner:

L
[
D

ψ
η,Ω,a

{
H(ω)

}]
= L

[
e−ψ

η,y−Ω(a; ω) ∗ H(y)(ω)
]

= L
[
e−ψ

η,y−Ω(a; ω)
]
L
[
H(y)(ω)

]
= pΩ−y(1− ap−η)ψ L

[
Hy(ω)

]
. (17)

Table 2. Parameters appearing in Equations (8)–(13).

Symbols Parameters Mathematical Relations

Pr Prandtl number
(
Ĉp µ̂

K̂

)
VPO

λ2 Jeffery parameter λ0(ν̂VPO )

(
h

K̂VPO

)2

Gr Grashof number
(
K̂VPO

h

)2
g>∞

V0

(
β̂
ν̂

)
VPO

ξ1

Parameters depending on

[
1− ϕ

(
ρ̂VPO−ρ̂ANP

ρ̂VPO

)]
ξ2

volume proportion

[
1− ϕ

{ (
ρ̂β̂
)

VPO
−
(

ρ̂β̂
)

ANP(
ρ̂β̂
)

VPO

}]
ξ3

of nanoparticles

(
1 + κ1 ϕ + κ2 ϕ2

)
ξ4

[
1− ϕ

{ (
ρ̂Ĉp
)

VPO
−
(

ρ̂Ĉp
)

ANP(
ρ̂Ĉp
)

VPO

}]

ξ5
ϕ(α−1)

(
K̂ANP−K̂VPO

)
+K̂ANP +(α−1)K̂VPO

ϕ
(
K̂VPO−K̂ANP

)
+K̂ANP +K̂VPO(α−1)

3.1. Solution for Fractional Temperature Distribution

The application of the Laplace transform on the generalized Fourier law (Equation (14)),
energy equation (Equation (9)), and corresponding conditions (Equations (12) and (13)) yields
the following system for the temperature field:

q(p, Υ) = −ξ5

{
pΩ

(1− ap−η)−ψ

}
d>(p, Υ)

dΥ
, (18)

p{>(p, Υ)} = −
(

1
Prξ4

)
dq(p, Υ)

dΥ
, (19)

− 1
ξ5

[
1
p
+>(p, 0)

]
=

d>(p, 0)
dΥ

and >(p, Υ)→ 0 for Υ → ∞. (20)

Here, first we substitute Equation (18) in Equation (19) after taking its derivative, and
then we perform some simplification steps to obtain the following expression:

d2>(p, Υ)

dΥ2 −
[

Prξ4

ξ5

{
p

pΩ(1− ap−η)ψ

}]
>(p, Υ) = 0. (21)
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The solution of Equation (21) with respect to the conditions provided in Equation (20)
is determined as

>(p, Υ) =
1

p
(√

p(ξ4ξ5)Pr
pΩ(1−ap−η)ψ − 1

) exp

(
−

√
p(ξ4ξ5)Pr

pΩ(1− ap−η)ψ
Υ

)
. (22)

Equation (22) is quite complex, and its transformation to the real-domain is not possible
from the current form. To handle this problem effectively, we assigned new parameters to
some complicated expressions of the above equation as follows:

>0(p, Υ) =
exp

(
−
√

f0(p)Υ
)

√
f0(p)− 1

and f0(p) =
p(ξ4ξ5)Pr

pΩ(1− ap−η)ψ
. (23)

The Laplace inversion of an arbitrary function of the following form,

f1(p, Υ) =
exp

(
−√pΥ

)
√

p− 1
, (24)

is supplied as

f1(t, Υ) = e(t−Υ) erfc
(

Υ√
4t
−
√

t
)
+

{(
πt2
)−1/2

}
e
(
− Υ2

4t

)
. (25)

For the under-observation problem, >0(p, Υ) = f1( f0(p), Υ). Thus, the inverse trans-
formation of the function >0(p, Υ) is computed as

>0(t, Υ) =

∞∫
0

f1(ζ, Υ) f2(t, ζ)dζ, (26)

where

f2(t, ζ) =
∞

∑
n=0

(−Pr(ξ4ξ5)ζ)
n

n!
t(Ω−1)n−1Enψ

η,(Ω−1)n(atη). (27)

The inverse transformation of the energy function (>(p, Υ)) to the real coordinates
((t, Υ)) is performed in light of Equations (23)–(27) as follows:

>(t, Υ) = H(t) ∗ >0(t, Υ) =

t∫
0

>0(z, Υ)dz. (28)

Here, H(t) symbolizes the Heaviside step function and * denotes the convolution product.

3.2. Solution for Classical Temperature Distribution

In order to compare the results for the generalized and standard frameworks, the
solution of the energy equation is also derived by using the classical Fourier law. The final
form of this solution in the Laplace domain is presented as
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>(p, Υ) =

 ξ6√
p− 1√

(ξ4ξ5)Pr

exp
(
−
√

p(ξ4ξ5)PrΥ
)

p
. (29)

After operating the Laplace inversion on Equation (29), the energy function is trans-
formed back to the real-domain as

>(t, Υ) = ξ6 f3(t) ∗ erfc

(√
(ξ4ξ5)PrΥ√

4t

)
, (30)

where

f3(t) = π−1/2t−1/2 +
exp

(
t

(ξ4ξ5)Pr

)
√
(ξ4ξ5)Pr

erfc

(
−

√
t√

(ξ4ξ5)Pr

)
, ξ6 =

1√
(ξ4ξ5)Pr

. (31)

3.3. Solution for Fractional Velocity Distribution

To determine the solution of the flow equation, the Laplace transform is applied to
Equation (8) and the respective conditions given in Equations (12) and (13). The Laplace
domain system for the flow field is established as

ξ1(1 + λ1)pV(p, Υ) = ξ2(1 + λ1)Gr>(p, Υ) + ξ3
(
1 + λ2 p

)d2V(p, Υ)

dΥ2 , (32)

V(p, 0) = − e−p

p2 +
1
p2 and V(p, Υ)→ 0 for Υ → ∞. (33)

After substituting the value of the energy function (>(p, Υ)) from Equation (22),
Equation (32) takes the following form:

{
ξ1(1 + λ1)p

}
V(p, Υ) =

ξ2(1 + λ1)Gr

p
(√

p(ξ4ξ5)Pr
pΩ(1−ap−η)ψ − 1

) exp

(
−

√
p(ξ4ξ5)Pr

pΩ(1− ap−η)ψ
Υ

)

+
{

ξ3
(
1 + λ2 p

)}d2V(p, Υ)

dΥ2 . (34)

Further simplification of the above equation for the convenient determination of the
exact solution yields

d2V(p, Υ)

dΥ2 =
ξ1

ξ3

{
(1 + λ1)p(
1 + λ2 p

)}V(p, Υ)

−
{

ξ2(1 + λ1)Gr

ξ3
(
1 + λ2 p

) } 1

p
(√

p(ξ4ξ5)Pr
pΩ(1−ap−η)ψ − 1

) exp

(
−

√
p(ξ4ξ5)Pr

pΩ(1− ap−η)ψ
Υ

)
. (35)

On solving Equation (35), in light of the conditions provided in Equation (33), we
obtain the following expression for the flow function:
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V(p, Υ) =

(
− e−p

p2 +
1
p2

)
exp

(
−
√

p(1 + λ1)ξ1

ξ3
(
1 + λ2 p

)Υ

)

+
ξ7Gr

(√
f0(p)− 1

)−1

p
{

ξ8
(
1 + λ2 p

)
f0(p)− p

}[exp

(
−
√

p(1 + λ1)ξ1

ξ3
(
1 + λ2 p

)Υ

)
− exp

(
−
√

f0(p)Υ
)]

. (36)

For convenient application of the Laplace inversion, Equation (36) is modified as

V(p, Υ) = J (p, Υ)− exp(−p)J (p, Υ)

+ ξ7GrH1(p)H2(p)

exp
(
−
√

pσ1
σ2+p Υ

)
p

−
exp

(
−
√

f0(p)Υ
)

p

, (37)

where

ξ7 =
ξ2

ξ1
, ξ8 =

ξ3

ξ1(1 + λ1)
, ξ9 =

ξ3ξ4ξ5

ξ1(1 + λ1)
, ξ0 =

ξ1(1 + λ1)

ξ3
,

H1(p) =
1√

f0(p)− 1
, H2(p) =

1(
1 + λ2 p

)
f4(p)− p

, σ1 =
ξ0

λ2
,

f4(p) =
(Prξ9)p

pΩ(1− ap−η)ψ
, J (p, Υ) =

exp
(
−
√

pξ0
1+λ2 p Υ

)
p2 , σ2 =

1
λ2

. (38)

Employing the Laplace inverse transformation on Equation (37) to transmute it back
from the Laplace domain to the original domain, we obtained the following solution of the
velocity field:

V(t, Υ) = J (t, Υ)−J (t− 1, Υ, )H(t− 1, Υ)

+ ξ7GrH1(t) ∗ H2(t) ∗

Θ
(
t, Υ, σ1, σ2

)
−

∞

∑
j=0

(−Υ)j(Prξ4ξ5)
j
2

j!
E

jψ
2

η,1+ j(1−Ω)
2

(atη)

, (39)

where
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J (t, Υ) =
ξ0

λ2

∞∫
0

t∫
0

exp
(

u + r(ξ0)

λ2

)
erfc

(
Υ

2
√

r

)
I0

(
2

λ2

√
ξ0(ur)

)
dudr,

H1(t) =
∞

∑
j=1

(−Prξ4ξ5)
j

j!
t(j−1)Ω−1Ejψ

η,(j−1)Ω(atη)

∞∫
0

ζ ju(ζ)dζ + δ(t)
∞∫

0

u(ζ)dζ,

H2(t) = −
∞

∑
j=0

∞

∑
k=0

(Prξ9)
j λk

2 j!
k!(j− k)!

t(jΩ−k)Ejψ
η,jΩ−k+1(atη),

Θ
(
t, Υ, σ1, σ2

)
= 1− 2σ1

π

∞∫
0

sin(Υs)
s(σ1 + s2)

exp
(
−σ2s2t
σ1 + s2

)
ds. (40)

3.4. Solution for Classical Velocity Distribution

The solution of the flow equation for the case of classical framework is evaluated as

V(p, Υ) = J (p, Υ)− exp(−p)J (p, Υ)

+
(ξ7Gr)H3(p)

(ξ9Pr)λ2

[
1

λ2
+ p− 1

(ξ9Pr)λ2

]
exp

(
−
√

pσ1
σ2+p Υ

)
p

−
exp

(
−
√

p(ξ4ξ5)PrΥ
)

p

. (41)

By applying the Laplace inverse transform on Equation (41), the following version of
the flow function is derived in the primary domain:

V(t, Υ) = J (t, Υ)−J (t− 1, Υ)H(t− 1, Υ)

+
ξ7Gr

(ξ9Pr)λ2
H3(t) ∗ exp

(
1− ξ9Pr

λ2(ξ9Pr)
t
)
∗
[

Θ
(
t, Υ, σ1, σ2

)
− erfc

(√
(ξ4ξ5)PrΥ

2
√

t

)]
, (42)

whereH3(p) andH3(t) are specified as

H3(p) =
1

p
(√

p(ξ4ξ5)Pr − 1
) , H3(t) =

[
erf

( √
t√

(ξ4ξ5)Pr

)
+ 1

]
exp

(
t

(ξ4ξ5)Pr

)
− 1. (43)

3.5. Pertinent Physical Quantities

The skin friction coefficient and Nusselt number are two important mathematical
quantities to study shear stress and heat transfer phenomena. For the current model, the
expressions for these quantities are provided as

Nu =
q∗

h>∞
, C f =

τ∗

µ̂VPO

(
hV0
K̂VPO

) , (44)

where the relations for q∗ and τ∗ are supplied as
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q∗ = −K̂n f
∂>∗(t∗, Υ∗)

∂Υ∗

∣∣∣∣
Υ∗=0

, τ∗ =
µ̂n f

1 + λ1

(
1 + λ0

∂

∂t∗

)
∂V∗(t∗, Υ∗)

∂Υ∗

∣∣∣∣
Υ∗=0

. (45)

On solving Equations (44) and (45) and simplifying, we acquired the following unit-
independent expressions for the Nusselt number and skin friction coefficient:

Nu = −ξ5
∂>(t, Υ)

∂Υ

∣∣∣∣
Υ=0

, C f =
ξ3

1 + λ1

(
1 + λ2

∂

∂t

)
∂V(t, Υ)

∂Υ

∣∣∣∣
Υ=0

. (46)

4. Results and Discussion

This study focuses on the development of a mathematical model to examine how
vacuum pump oil’s heat-transporting characteristics are affected by the distribution of
aluminum alloy nanoparticles. To understand the relevance of the shape component, the
chosen nanoparticles are assumed to have multiple shapes (blade, platelet, cylinder, and
brick). This investigation is performed by bringing the Prabhakar fractional operator into
play for the establishment of a generalized model. This model is comprised of coupled
equations that deal with the formation and variation of thermal and velocity boundary
layers. The development of flow is aided by a ramped flow function, whereas heat transfer
through an infinitely long surface begins as a result of the Newtonian heating process.
Corresponding to non-uniform conditions, the analytic treatment of generalized mathe-
matical systems for the evaluation of analytic solutions becomes exceedingly complex, and
in such cases, numerical or semi-analytic solutions are favored. However, a special effort
to attain exact solutions is made in this work, and the constituted model is successfully
solved in both conventional and fractional environments. The motive of establishing exact
solutions is achieved by executing the Laplace transform on basic and fractional equations.
This section is dedicated to a comprehensive interpretation of the behavior of the principal
quantities with the assistance of tabular data and graphical illustrations. These quantities
include velocity function, Nusselt number, energy function, and shear stress. For a thor-
ough observation of the transient effects, graphs and tables are developed for multiple time
values. To highlight the significance of the following fractional approaches for modeling
purposes, a comparison of the velocity and energy fields is drawn for the conventional and
fractional models. This section also discusses how alteration of the associated parameters
attenuates or expands the thickness of the boundary layers. Moreover, some comparative
illustrations and tables are presented to examine the effects of four different shapes of
nanoparticles on the properties of the host fluid. The computational values for thermal and
physical attributes of vacuum pump oil and nanoparticles are imparted in Table 3.

Table 3. Computational values for thermal and physical characteristics of aluminum alloy nanoparti-
cles and vacuum pump oil [45,46].

Properties Units
Host Fluid Nanoparticles

Vacuum Pump Oil Aluminum Alloy

Ĉp J kg−1K−1 2320 960

ρ̂ kg m−3 870 2810
K̂ W m−1K−1 0.13 173

The overall influence of the fractional parameters (ψ, η, and Ω) on velocity and energy
distributions is investigated in Figures 2a,b and 3a,b. These graphs are developed to accom-
modate a wide range of larger and smaller time magnitudes in order to provide thorough
insight. For rising alterations of fractional parameters, the graph of the temperature field is
shown to express a declining pattern for larger time values, while the choice of a minimum
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magnitude of time causes an upsurge in the value of the energy function. The behavior of
the velocity graph subject to modification of fractional parameters is no different from that
of the temperature curve. Since the ramped condition for the flow function is employed,
therefore, when t ≤ 1, the starting point of the flow function is separate for different values
of time. However, when t > 1, the curve of the flow function initiates from the same
point for two dissimilar values of time. This is how the application of a ramped velocity
condition offers better control over the flow during complex and flow-sensitive operations.
The kernel of a fractional operator is the key factor for particular behaviors of thermal and
velocity functions. For the current study, this dual behavior of the principle functions for
higher and smaller time values is attributed to the multiparametric kernel. The memory-
retaining characteristic of the fractional derivative allows it to remember the history of the
involved functions at prior steps and apply that information to subsequent steps. For a
greater comprehension of flow and thermal patterns and to emphasize the contribution
of the considered conditions, three-dimensional (3D) illustrations of energy and velocity
functions are, respectively, provided in Figure 4a,b. According to Figure 4a, an elevation
in the thermal profile takes place at the solid–nanofluid interface, corresponding to a rise
in time values, which is unusual since it does not occur when an isothermal condition is
considered. Meanwhile, the 3D illustration of the flow field is composed of two regions.
The gray region is associated with the time-independent part of the velocity constraint;
therefore, the flow profile in this region starts from the same point at the boundary for
all values of time. On the other end, the flow function and time have the same values
at the solid–nanofluid interface in the red region because the flow patterns in this region
correspond to the part of the velocity condition that depends on time inputs. After con-
sidering the combined impacts of all the fractional parameters, it is worth investigating
the conduct of velocity and thermal profiles for the adjustment of an individual fractional
parameter. In this regard, Figures 5 and 6 are prepared for multiple values of η and t. It
can be seen that both profiles exhibit the same prior behavior, which is a drop for a higher
value of time and an elevation for smaller time inputs. Hence, it is concluded that both
individual parameter adjustments and a combination of these parameter variations have
the same effects on thermal and velocity profiles. These findings indicate that the fractional
model is highly efficient as compared to a conventional model since it offers more freedom
to manage flow and energy fields. In addition to this, it is quite clear that differences in
thermal profiles because of the modification of fractional parameters are more explicit for
greater time inputs. Moreover, when the velocity patterns for variable and constant parts
of the ramped velocity relation are compared, it is perceived that the graph of the velocity
field is always superior for the case of a constant velocity function at the solid–nanofluid
interface. Applying such conditions is useful to successfully achieve improved control on
the flow because, in the presence of a ramped velocity function, time variations have a
substantial impact on the formation of flow patterns at the boundary.
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Figure 2. (a) Thermal profile corresponding to variation of ψ, η, and Ω for smaller time inputs.
(b) Thermal profile corresponding to variation of ψ, η, and Ω for larger time inputs.
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Figure 3. (a) Flow profile corresponding to variation of ψ, η, and Ω for smaller time inputs. (b) Flow
profile corresponding to variation of ψ, η, and Ω for larger time inputs.
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Figure 4. (a) Three-dimensional illustration of thermal profile. (b) Three-dimensional illustration of
flow profile.
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Figure 5. (a) Thermal patterns corresponding to change in η for smaller time inputs. (b) Flow patterns
corresponding to change in η for smaller time inputs.
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Figure 6. (a) Thermal patterns corresponding to change in η for larger time inputs. (b) Flow patterns
corresponding to change in η for larger time inputs.

There are several key advantages of using fractional models for the explanation of
flow and thermal distributions that cannot be obtained by applying classical governing
models. For instance, the memory-retaining characteristics of a fractional model allow it to
remember the history of the involved functions at prior steps and apply that information
to subsequent steps. In this way, more generalized solutions are developed, which can be
modified with the adjustment of the fractional parameter. The fractional model formulated
through a particular fractional derivative effectively captures all viscous, material, and
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elastic features of fluids. As compared to conventional models, fractional models provide
better control over flow and heat transfer mechanisms, which is crucial for ultrasensitive
processes. The fractional operators adequately elucidate crossover behaviors and rheologi-
cal attributes because of their self-similar properties. In addition, an accurate accordance
between the experimental reports and the theoretic results produced through fractional
systems can be established by appropriately modifying the fractional parameters. The
precision and reliability of the results obtained in fractional frameworks are relatively
higher than those acquired in classical settings. Thus, it can be concluded that fractional
models provide a better and more accurate description of the problems being modeled.

Figures 7 and 8 are constructed to highlight the thermal and flow behavior of vacuum
pump oil under the effects of different shapes of aluminum alloy nanoparticles. These
figures delineate that the thermal function is enhanced to its optimum capacity when
alloy particles of blade-like shapes are distributed in the host fluid. Contrary to that,
the suspension of brick-shaped nanoparticles produces the least improvement in thermal
function. The trend exhibited by the thermal profile for the distinct shapes of nanoparticles
is mainly influenced by the sphericity of these nanoparticles. The fraction of a sphere’s
surface area to that of actual particles with equivalent volumes is referred to as sphericity.
To deal with the shape-dependent thermal conductivity of nanoparticles, the Hamilton
and Crosser relation [40] is utilized for this study. In this relation, the shape component
α encounters the sphericity (Ψ) of nanoparticles as α = 3/Ψ. The direct correlation of
thermal conductivity and viscosity may also be ascribed for the present behavior. It is
conspicuous from the superior thermal curves of platelet- and blade-shaped nanoparticles
in Figures 7a and 8a as particles of these shapes possess higher thermal conductivities as
equated to those nanoparticles, which have brick- and cylinder-like shapes. Meanwhile,
a different pattern of flow field subject to changes of nanoparticles’ shape is witnessed
in Figures 7b and 8b. It is noted that adding platelet-shaped particles to vacuum pump
oil significantly decelerates the motion of the consequent nanofluid. On the opposite
end, the highest flow profile is associated with blade-shaped nanoparticles. The trend
followed by the velocity function for these shapes is the same for larger and lower values
of time; however, the differences in curves are more clear for the former case. The principal
quantities due to which the velocity function of nanofluid specifies a particular pattern of
the flow profile are shape constants κ1 and κ2. Depending on how nanoparticles are shaped,
these two parameters either maximize or diminish the viscosity of the nanofluid. Keeping
a view of Figures 7b and 8b, it can be remarked that when nanoparticles of a platelet-shape
are dispensed in vacuum pump oil, the resulting nanofluid becomes highly viscous. Since
the tendency of cylinder-, brick-, and blade-shaped particles to make the host fluid viscous
is comparatively lower than that of platelet-shaped particles, the velocity curves associated
with these particles are higher.

Figures 9 and 10 serve as support for the investigation into the effects of altering the
loading range (ϕ) of nanoparticles in the host fluid on velocity and thermal distributions. The
profiles of thermal and flow fields for three different ϕ inputs are portrayed in these figures.
Figures 9a and 10a demonstrate an elevation in the profile of the thermal field as a consequence
of a positive alteration of ϕ. It is also identified that the temperature distribution communicates
the lowest profile for the case of pure vacuum pump oil. This difference in thermal profiles
highlights the weak tendency of vacuum pump oil to facilitate heat transfer. However, when
alloy particles are added to it, their strong thermal features boost the heat-transporting ability
of vacuum pump oil. Due to this advancement in thermal properties, the resulting nanofluid is
capable of absorbing more heat at the boundary; therefore, the heat transfer process takes place
at an improved rate at the interface. Consequently, higher temperature profiles, indicating a
significant rise in energy function, are observed in Figures 9a and 10a. Contrary to that, the
flow profile of the nanofluid shows a decreasing behavior when the proportion of particles
in the host fluid is magnified, as depicted in Figures 9b and 10b. The corresponding figures
further reveal that the flow function of pure vacuum pump oil possesses greater values
than that of the consequent nanofluid. The viscosity of the host fluid keeps enhancing as
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long as the concentration of nanoparticles in the fluid continues to improve, which is one of
the fundamental features of nanoparticles in the physical sense. For the maximum loading
range of alloy nanoparticles, the under-observation nanofluid is more viscous in nature than
regular vacuum pump oil; therefore, a decline in flow patterns can be specified from the
respective figures. The purpose of producing Figure 11a,b is to examine the participation of
the relaxation parameter (λ1) in the development of flow patterns. The impacts of λ1 on the
velocity distribution are fascinating because the graphs of the flow function for smaller and
higher values of t are a little different from each other. For t = 0.3 and t = 0.5, the velocity
of the nanofluid diminishes in consequence to the augmenting variation of λ1. Whereas, for
the case of higher time inputs, a dual behavior of the flow function is witnessed against the
changing values of λ1. In the physical sense, when the influence of parameter λ1 becomes
dominant, the thickness of the flow boundary layer extends. The parameter λ1 represents
the elasticity and viscous nature of the nanofluid, thus, it is obvious that the nanofluid will
have stronger viscous and elastic properties for higher values of λ1. As a consequence, the
flow occurs at a slower rate. However, for a longer duration, this effect comes into existence
comparatively later than it appears in the case of lower time values. Finally, at the far end, the
flow function of the presented nanofluid obtains a zero value as the influence of acting forces
becomes insignificant.
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Figure 7. (a) Thermal patterns for different shapes of nanoparticles and smaller time inputs. (b) Flow
patterns for different shapes of nanoparticles and smaller time inputs.
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Figure 8. (a) Thermal patterns for different shapes of nanoparticles and larger time inputs. (b) Flow
patterns for different shapes of nanoparticles and larger time inputs.
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Figure 9. (a) Thermal patterns corresponding to variations of ϕ for smaller time inputs. (b) Flow
patterns corresponding to variations of ϕ for smaller time inputs.
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Figure 10. (a) Thermal patterns corresponding to variations of ϕ for larger time inputs. (b) Flow
patterns corresponding to variations of ϕ for larger time inputs.
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Figure 11. (a) Flow patterns corresponding to variations of λ1 for smaller time inputs. (b) Flow
patterns corresponding to variations of λ1 for larger time inputs.

The forces resisting or favoring the motion of a nanofluid are primarily distributed
into two categories based on their behavior. The first category of forces, which is important
for the expedition of flow, includes the buoyancy force. On the other hand, viscous forces
belong to the second type and produce substantial opposition to the motion of nanofluids
and act against the direction of flow. To properly comprehend such practical operations that
involve fluid transportation and heat transfer, accurate forecasting of the aforementioned
forces is absolutely indispensable. These forces can be appropriately estimated by the
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dint of a single quantity titled the Grashof number (Gr) for those physical phenomena
where the development of flow is significantly attributed to natural convection. When
it comes to discuss the Grashof number from the mathematical point of view, it is a
proportion of viscous and buoyancy effects such that it maintains an inverse relation with
the former and a direct relation with the latter. An amelioration in the magnitude of Gr
depicts that the boundary has received additional heat, which boosts the temperature of the
bounding surface. This augmentation leads to several physical consequences that take part
in controlling the flow performance of the nanofluid. In particular, the neighboring layers of
the presented fluid adjacent to the fluid–solid interface exhibit peculiar weight disparities.
Aside from that, depletion in the dominance of internal friction is also accredited to this
enhanced temperature. Considering the dominant influences of Gr on the flow mechanism,
Figure 12a,b are composed to scrutinize the repercussions of varying Gr values on the
flow conduct of the considered nanofluid. The elevation of the velocity profiles in the
respective figures by virtue of Gr increment signifies that the flow becomes accelerated in
this case. From the physical perspective, additional heating causes a density shift in the
flow region, which eventuates the development of a convectional current. Furthermore,
the convectional current produces a buoyant force and also serves to boost its intensity,
making the control of viscous effects on the flow minimal. As a consequence, the nanofluid
encounters insignificant resistance during the flow, due to which its velocity is expedited,
and the flow function specifies an elevated profile, as displayed in Figure 12a,b.

Figure 13a,b are imparted to examine how the Jeffery parameter (λ2) affects the flow
patterns. To thoroughly evaluate the ramifications of λ2 modification, these figures are
created for a wide range of time inputs. It is found that λ2 and the flow function are directly
related for lower time inputs. Meanwhile, for a longer time duration, the behavior of the
flow function is dual, i.e., it reduces initially, but later on, it increases. On comparison, it
can be perceived that the conduct of the flow profiles for λ1 and λ2 are quite contrasting to
each other. Equation (8) provides mathematical support for this conduct of the flow profile
because λ1 and λ2 share an inverse relationship with the velocity function in this equation.
The aim of Figures 14 and 15 is to compare the solutions of energy and velocity functions
for conventional and fractional mathematical systems. According to Figure 14a, when t
has lower values, the thermal profile obtained by virtue of the conventional model is lower
than the thermal profile of the generalized model. Contrary to that, for the case of larger t
inputs, the classical temperature function produces a higher thermal profile as portrayed in
Figure 14b. In a similar manner, Figure 15a reveals that the flow curve associated with the
generalized velocity field is superior to the flow curve acquired via the classical system. The
aforementioned observation is for lower inputs of t; however, a reverse pattern is identified
when greater values of time are considered. In this case, the fractional model provides a
lower profile of velocity distribution, as demonstrated in Figure 15b. It is also evaluated
from Figure 15a,b that in comparison to a ramped boundary velocity condition, the flow
profile of the nanofluid is substantially higher for uniform movement of the bounding
surface. Furthermore, the thickness of the momentum boundary layer is also greater in the
case of a constant boundary flow function. These results accentuate that the aim of having
appropriate control over the flow mechanism can be achieved through the utilization of
ramped velocity conditions.
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Figure 12. (a) Flow patterns corresponding to variations of Gr for smaller time inputs. (b) Flow
patterns corresponding to variations of Gr for larger time inputs.
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Figure 13. (a) Flow patterns corresponding to variations of λ2 for smaller time inputs. (b) Flow
patterns corresponding to variations of λ2 for larger time inputs.
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Figure 14. (a) Thermal profile corresponding to fractional and classical cases for smaller time inputs.
(b) Thermal profile corresponding to fractional and classical cases for larger time inputs.
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Figure 15. (a) Flow profile corresponding to fractional and classical cases for smaller time inputs. (b)
Flow profile corresponding to fractional and classical cases for larger time inputs.

The results of simulations for the Nusselt number (Nu) are enclosed in Table 4 to
anticipate the improvement and growth percentage in the heat-transporting tendency
of vacuum pump oil in correspondence to an increased proportion (ϕ) of alloy particles.
The respective table describes that a slight enhancement in the loading range of particles
eventuates significant amelioration in the thermal efficiency of the presented nanofluid.
For the maximum loading range of alloy particles (ϕ = 0.04), the considered nanofluid
performs 44.53% better than regular vacuum pump oil. This advancement in heat transfer
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performance is quite substantial and justifies the usefulness of the considered nanofluid
for impetuous cooling of conduits and expeditious disposal of redundant heat. Hence,
highly sensitive thermal processes can be effectively managed by using nanofluids. Table 5
contains computational estimations of Nu to examine the participation of the shape factor in
the betterment of the thermal impacts of the considered nanofluid. The highest and lowest
Nu values are observed for blade- (Nu = 2.1480) and brick- (Nu = 1.7700) shaped alloy
particles, respectively. While anticipating the improvement of thermal behavior with respect
to percentage, it is discerned that alloy nanoparticles of brick-like shapes escalate the heat
transportation rate of vacuum pump oil up to 19.10%. However, this escalation is 44.53%,
29.97%, and 25.56% for blade-, platelet-, and cylinder-shaped nanoparticles, respectively.
These striking disparities in augmentation percentage subject to shape differences enlighten
the significance of taking shape factors into account for practical applications. These
outcomes also highlight that one of the major factors to strengthen the inadequate thermal
attributes of carrier fluids is the shape of the distributed nano-sized particles. These results
imply that leaving out the shape component in theoretical investigations reduces the
usefulness of the provided findings for practical circumstances.

Table 4. Investigation of Nu and augmentation percentage for variation of ϕ.

ϕ ψ η Ω Nu % Augmen-
tation

0.00 0.2 0.5 0.9 1.4862 -

0.005 0.2 0.5 0.9 1.5622 5.11

0.01 0.2 0.5 0.9 1.6400 10.35

0.015 0.2 0.5 0.9 1.7197 15.71

0.020 0.2 0.5 0.9 1.8013 21.20

0.025 0.2 0.5 0.9 1.8849 26.83

0.03 0.2 0.5 0.9 1.9705 32.59

0.035 0.2 0.5 0.9 2.0582 38.49

0.040 0.2 0.5 0.9 2.1480 44.53

Table 5. Investigation of Nu for multiple shapes of nanoparticles.

ϕ
Nu

Cylinder Brick Blade Platelet

0.010 1.5762 1.5538 1.6400 1.5912

0.015 1.6224 1.5884 1.7197 1.6452

0.020 1.6695 1.6236 1.8013 1.7003

0.025 1.7174 1.6593 1.8849 1.7564

0.030 1.7662 1.6956 1.9705 1.8137

0.035 1.8159 1.7325 2.0582 1.8721

0.040 1.8665 1.7700 2.1480 1.9317

The enhancement and diminution of Nu and C f in response to the modification of
parameters ψ, η, and Ω are discussed with the support of Tables 6 and 7. To thoroughly
investigate the behavior of Nu and C f , these tables are developed for t = 0.5 and t = 7.0.
For proliferating variation of ψ and η, Table 6 divulges that Nu illustrates opposite behavior
for greater and lower time inputs. For the former situation, the value of Nu declines,
whereas for the latter situation, an increment in Nu is noted. Contrary to that, Nu follows
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a uniform pattern for Ω. For both t = 0.5 and t = 7.0, the magnitude of Nu reduces in
response to rising inputs of Ω. The variation in shear stress is analyzed by communicating
the outcomes for numerical simulations of C f via Table 7. The mathematical settings
for this analysis are exactly the same as those mentioned for Table 6. It is evaluated
that parameters ψ, η, and Ω control the shear stress in identical manners as they control
the Nusselt number. For t = 0.5, the magnitude of C f rises due to the alteration of ψ
and η, and a reverse pattern is identified for a greater time value. However, a decline
in the value of C f takes place when Ω increases. The results in Tables 6 and 7 give
prominence to the fact that the fractional system formulated in the presented work provides
more effective control over the behavior of boundary layers in comparison to that of a
classical system. Moreover, accurate accordance between experimental reports and theoretic
results produced through such fractional systems can be established by appropriately
altering the fractional parameters. The respective tables also describe that shear stress
is strengthened and heat transfer occurs at an expeditious rate corresponding to time
advancement. Engineers are concerned that high shear stress causes a plethora of difficulties
with regard to the practical utilization of fluids during industrial processes, such as the fact
that it demands significantly boosted pumping power. So, one of the important targets
is minimizing shear stress by dint of practical and efficacious measures. For the current
analysis, C f appears to have a lower magnitude for the under-observation nanofluid than it
does for pure vacuum pump oil. While taking the drawbacks of dominant shear stress into
consideration, this finding suggests that the presented nanofluid is a viable replacement
for traditional fluids. Additionally, significantly greater outcomes of Nu in the case of
the nanofluid as equated to that of regular vacuum pump oil describe that the thermal
efficiency of working nanofluid is comparatively higher. The aforementioned claim receives
further endorsement from this comparative analysis.

Table 6. Investigation of Nu for various values of ψ, η, and Ω.

ψ η Ω

Nu

t = 0.5 t = 7.0

0.1 0.8 0.9 1.7563 1.9221

0.4 - 1.7608 1.8793

0.7 - 1.7658 1.7861

0.9 - - 1.7701 1.7550

0.2 0.1 - 1.6629 2.9781

- 0.4 - 1.7081 2.4028

- 0.7 - 1.7476 2.0089

- 0.9 - 1.7649 1.8243

- 0.8 0.1 1.7788 2.7058

- - 0.4 1.7707 2.6537

- - 0.7 1.7628 2.6040

- - 0.9 1.7576 2.5722
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Table 7. Investigation of C f for various values of ψ, η, and Ω.

ψ η Ω

C f

t = 0.5 t = 7.0

0.1 0.8 0.9 0.2863 3.2052

0.4 - 0.3211 2.8217

0.7 - 0.3568 2.2613

0.9 - - 0.3782 1.7696

0.2 0.1 - 0.0955 9.7889

- 0.4 - 0.2026 8.0036

- 0.7 - 0.3593 4.0280

- 0.9 - 0.4143 2.3205

- 0.8 0.1 0.4425 3.6520

- - 0.3 0.3867 3.4328

- - 0.5 0.3325 3.2259

- - 0.8 0.2973 3.0945

5. Conclusions

In this work, a combination of vacuum pump oil and aluminum alloy nanoparticles is
investigated to anticipate the escalation in thermal efficiency of vacuum pump oil because
of the effective thermo-physical attributes of alloy nanoparticles. The shape of nanoparticles
is highly critical as far as the thermal performance of the resulting nanofluid is concerned;
therefore, this analysis is conducted for platelet, brick, cylinder, and blade shapes of the
considered nanoparticles. For the first time, this combination of host fluid and nanoparticles
is examined with a boundary condition that contains the temperature function and its
gradient. For the case of the flow phenomenon, free convection and the ramped velocity
function jointly contribute to starting the process. Initially, the considered problem is
described in terms of a partially coupled system that contains energy and velocity equations.
Later, this system is transmuted to the fractional environment using a generalized Fourier
law. To accomplish the generalization purpose, a Prabhakar fractional operator is put into
action. The target of acquiring exact solutions is achieved by introducing mathematical
relations for thermo-physical features and unit-independent quantities in the basic model
and then executing the Laplace transform. These analytic solutions are employed for the
preparation of graphs and tables to study various essential phenomena such as variations
in boundary layers, heat transfer, and shear stress. Some vital findings of this investigation
are highlighted as follows:

• Vacuum pump oil’s thermal efficiency can be augmented by 44% when aluminum
alloy nanoparticles are added to it.

• The viscosity of vacuum pump oil enhances due to material features and various
shapes of suspended alloy nanoparticles. This increasing variation leads to raising the
boiling point of the nanofluid, which strengthens its heat-transporting capacity, and
the nanofluid indicates a higher thermal stability.

• The graph of the flow function declines, corresponding to the growing loading range
of nanoparticles, whereas the temperature field exhibits a contrary behavior.

• The skin friction coefficient can be effectively controlled by means of the generalized
model, which is helpful in limiting shear stress.

• The dispersion of blade-shaped nanoparticles induces the maximum boost in the
heat-transporting performance of vacuum pump oil.

• A dual behavior of velocity and thermal fields is observed for shorter and longer time
intervals subject to modification of fractional parameters.
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• In contrast to a classical model, a better explanation of heat flux is provided by the
generalized Fourier law due to the memory effect of the fractional model.

• The considered nanofluid is significantly better than ordinary vacuum pump oil in
terms of heat transfer performance. Moreover, the skin friction coefficient is minimum
for the former fluid.

• Thermal and flow fields show the highest graphs for the blade-like shape of nanopar-
ticles. However, the brick and platelet shapes produce the lowest curves for thermal
and flow fields, respectively.

• It is perceived that the coupled use of the ramped velocity function and a generalized
model helps to control the flow efficaciously. Furthermore, the management of practical
operations in terms of temperature adjustments can be performed in a better way.

6. Future Research Directions

• This work can be conducted for two- or three-dimensional unsteady problems.
• This model can be modified to investigate flow and heat transfer phenomena in more

complex geometries such as cylinder, wedge, or disk.
• The presented fractional approach can be applied to other models to evaluate the

performance of different hybrid nanofluids.
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Nomenclature

V∗ Nanofluid velocity > Nanofluid temperature
V0 Reference velocity λ0, λ1 Jeffery parameters
t0 Characteristic time >∞ Ambient temperature
ρ̂ Density K̂ Thermal conductivity
β̂ Thermal expansion coefficient ν̂ Kinematic viscosity
µ̂ Dynamic viscosity Ĉp Specific heat capacity
Υ∗ Space coordinate ϕ Volume proportion of nanoparticles
t∗ Time τ∗ Viscous drag
q∗ Thermal flux h Heat transfer coefficient
g Gravitational acceleration p Laplace parameter
> Unit-free temperature Nu Nusselt number
Υ Unit-free space coordinate C f Skin friction coefficient
η, Ω, ψ Fractional parameters V Unit-free velocity
q Unit-free thermal flux t Unit-free time
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