## King Saud University, Department of Mathematics Math 204 (2H), 30/100, Mid term Exam S1. 42/43

Question $1[4,3]$ a) Find and sketch the largest local region in $\mathbb{R}^{2}$, for wich the following initial value problem admits a unique solution

$$
\left\{\begin{array}{c}
(x-3) \frac{d y}{d x}+y \ln x=2 x \\
y(1)=2
\end{array}\right.
$$

b) Solve the differential equation

$$
\frac{d y}{d x}=\frac{\sin x+x \cos x}{y(2 \ln y+1)}, y>0
$$

Question $2[3,3]$ a) Find the general solution of the differential equation

$$
\left(x+y^{2}+\sin ^{-1} y\right) d x+\left(2 x y+\frac{x}{\sqrt{1-y^{2}}}\right) d y=0
$$

b) Solve the initial value problem

$$
\left\{\begin{array}{c}
(x-y) d x+(3 x+y) d y=0 \\
y(3)=-2
\end{array}\right.
$$

Question 3. $[3,3]$. a) Find the largest interval for which the following initial value problem has a unique solution

$$
\left\{\begin{array}{c}
(x-1)(x+4) y^{\prime \prime}+\frac{\ln (x-2)}{x^{2}+1} y^{\prime}+e^{x} y=4 x^{2}+1 \\
y(4)=-1, y^{\prime}(4)=2
\end{array}\right.
$$

b) determine whether the functions $f_{1}=1+x, f_{2}=x, y_{3}=2 x+3$ are linearly dependent or linearly independent on $\mathbb{R}$.

Question 4 [5]. A culture has initially $y_{0}$ number of bacteria. After one hour the number of bacteria is measured to be $\frac{5}{2} y_{0}$. If the rate of growth is proportional to the number of bacteria $y(t)$, present at time $t$, then determine the time necessary for the number of bacteria to be quadruple.

