King Saud University, Department of Mathematics Math 204 (2H), 30/100, Mid term Exam S1. 42/43

Question 1 [4,3] a) Find and sketch the largest local region in \mathbb{R}^2 , for wich the following initial value problem admits a unique solution

$$\begin{cases} (x-3)\frac{dy}{dx} + y\ln x = 2x\\ y(1) = 2. \end{cases}$$

b) Solve the differential equation

$$\frac{dy}{dx} = \frac{\sin x + x \cos x}{y(2\ln y + 1)}, \ y > 0.$$

Question 2 [3,3] a) Find the general solution of the differential equation

$$(x+y^2+\sin^{-1}y)\,dx+(2xy+\frac{x}{\sqrt{1-y^2}})dy=0.$$

b) Solve the initial value problem

$$\begin{cases} (x-y)dx + (3x+y)dy = 0\\ y(3) = -2 \end{cases}$$

Question 3. [3,3]. a) Find the largest interval for which the following initial value problem has a unique solution

$$\begin{cases} (x-1)(x+4)y'' + \frac{\ln(x-2)}{x^2+1}y' + e^x y = 4x^2 + 1\\ y(4) = -1, \ y'(4) = 2 \end{cases}$$

b) determine whether the functions $f_1 = 1 + x$, $f_2 = x$, $y_3 = 2x + 3$ are linearly dependent or linearly independent on \mathbb{R} .

Question 4 [5]. A culture has initially y_0 number of bacteria. After one hour the number of bacteria is measured to be $\frac{5}{2}y_0$. If the rate of growth is proportional to the number of bacteria y(t), present at time t, then determine the time necessary for the number of bacteria to be quadruple.