Differential and Integral Calculus (MATH-205)

MT Exam/Semester I (2022-23) Time Allowed: 120 Minutes

Note: Attempt all SIX questions and give detailed solutions. Read statements of the questions carefully and make sure you have answered each question completely.

Question 1: $\left(4^{\circ}\right)$ Determine whether the following sequence converges or diverges. Find its limiting value as $n \rightarrow \infty$.

$$
\left\{\left(1+\frac{7}{8 n^{3}}\right)^{n^{3}}\right\}_{n=1}^{\infty}
$$

Question 2: $\left(5^{\circ}\right)$ Determine whether the series $\sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1}\right)$ converges or diverges. Find its sum, if it converges.

Question 3: $\left(3^{\circ}\right)$ Determine whether the infinite series $\sum_{n=1}^{\infty} n \tan \frac{1}{n}$ converges or diverges. Is it a positive term series?

Question 4: $\left(6^{\circ}\right)$ Find the power series representation of $f(x)=\frac{1+x}{(1-x)^{2}}$. Find interval of convergence of this series. Hence, find the sum of the series $\sum_{n=0}^{\infty} \frac{2 n+1}{2^{n}}$.
Question 5: (6°) Approximate $\int_{0}^{\frac{1}{2}} x^{2} \cos x^{3} d x$ using first four non-zero terms of the Maclaurin series. Find the exact value of the definite integral and the absolute error. Use 5 decimal point accuracy in your working.

Question 6: $\left(6^{\circ}\right)$ Given points $A(4,2,3), \underline{B(8,1,8), C}(6,4,7)$, and $D(12,5,5)$. Find (i) the angle (in degrees) between $\overrightarrow{A B}$ and $\overrightarrow{C D}$, (ii) the component of $\overrightarrow{C D}$ along $\overrightarrow{A B}$ and vice versa, (iii) a vector of magnitude $\sqrt{2}$ in the direction of $\overrightarrow{A C}$, and (iv) find k if the magnitude of $\overrightarrow{A E}$ is $\sqrt{17}$, where $E\left(k,-1, \frac{1}{3}\right)$.

- Good Luck --

