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151 Discrete Mathematics 

K. Rosen, Discrete Mathematics and Its Applications, 7th edition 
 

Chapter 1 The Foundations: Logic and Proofs 
1.1. Propositional Logic 

Ex.1, Ex.2, Def.1, Ex.3, Ex.4, Def.2, Ex.5, Def.3, Ex.6, Def.5, Ex.7, converse, contrapositive, 
inverse, Def.6, Ex.10, Ex.11, precedence of logical operators. 
 

1.3. Propositional Equivalences 

Def.1, Ex.1, Def.2, Ex.2, Ex.3, Ex.4, Table 6, Table 7, Table 8, Ex.5, Ex.6, Ex.7, Ex.8. 
 

1.4. Predicates and Quantifiers 

Ex.1, Ex.2, Ex.3, Ex.4, Ex.5, P (x1, x2, · · ·, xn), Def.1, Ex.8, Ex.9, Ex.10, Ex.11, Ex.13, 

Def.2, Ex.14, Ex.15, Ex.16, Ex.17, negating expressions, Table 2, Ex.21, Ex.22. 
 

1.7. Introduction to Proofs 

Def.1, Ex.1, Ex.2, Ex.3, Ex.4, Ex.5, Ex.6, Def.2, Ex.7, Ex.8, Ex.10, Ex.11, Ex.12, Ex.13, 
Ex.14, Ex.15, Ex.18. 
 

1.8. Proof Methods and Strategy 

Ex.1, Ex.6, Ex.10, Ex.13, Ex.17. 
 

Chapter 5 Induction and Recursion  

                         5.1. Mathematical Induction  

Ex.1, Ex.2, Ex.3, Ex.4, Ex.5, Ex.6, Ex.8   
 

                          5.2. Strong Induction and Well-Ordering  

Ex.2.  

                                  Q.1. Let {𝑎𝑛} be a sequence defined inductively as: 

                                  𝑎1  =  1, 𝑎2 =  2, 𝑎𝑛+1 =  2𝑎𝑛  +  𝑎𝑛−1, ∀ 𝑛 ≥  2. Prove that: 𝑎𝑛 ≤ (
5

2
)

𝑛
, for all 𝑛 ≥  2. 

                                  Q.2. Let {𝑎𝑛} be Fibonacci sequence, which is defined inductively as:  

                                  𝑎1  =  1, 𝑎2 =  1, 𝑎𝑛 =  𝑎𝑛−1  + 𝑎𝑛−2 ∀ 𝑛 ≥  3. Prove that: 𝑎𝑛 ≤ (
1+√5

2
)

𝑛

, for all 𝑛 ≥  1. 

                                   Q.3. Let {𝑎𝑛} be a sequence defined inductively as: 
                                  𝑎0  =  1, 𝑎1 =  1, 𝑎𝑛 =  2𝑎𝑛−1  +  𝑎𝑛−2, ∀ 𝑛 ≥  2. Prove that: 𝑎𝑛 𝑖𝑠 𝑜𝑑𝑑, for all 𝑛 ≥  0. 

 

Chapter 9: Relations 
9.1. Relations and Their Properties 
     Def.1, Ex.2, Ex.3, Def.2, Ex.4, Ex.5, Def.3, Ex.7, Ex.8, Ex.9, Def.4, Ex.10, Ex.11, Ex.12, Def.5,           
Ex.13, Ex.14, Ex.15, Ex.17, Ex.18, Ex.19, Def.6, Ex.20, Ex.21, Def.7, Ex.22,Th.1-no proof. 
 (Definition of inverse relation and complementary relation, Exercise 27). 
                                          
9.3. Representing Relations 
       Ex.1, Ex.2, Ex.3, Ex.4, Ex.5, Ex.6, Def.1, Ex.7, Ex.8, Ex.9, Ex.10. 

 
                        9.5. Equivalence Relations 
                                  Def.1, Def.2, Ex.1, Ex.2, Ex.3, Ex.6, Ex.7, Def.3, Ex.8, Ex.9, Th.1 (no proof), Ex.12,  
                                   Th.2 (no proof), Ex.13, Ex.14. 

                                   Example: Let R be the relation defined on the integers set ℤ , such that: 

𝑎, 𝑏 ∈ ℤ , 𝑎 𝑅 𝑏 ⇔ 6𝑎 ≡ 𝑏 ( 𝑚𝑜𝑑 5 ) ⇔ 5|(6𝑎 − 𝑏) , 5 divides ( 6𝑎 − 𝑏 ) 

(𝑖) Show that 𝑅 is an equivalence relation. 

(𝑖𝑖) Find the equivalence class [0] . 
                                    (𝑖𝑖𝑖) Decide whether 9 ∈ [4] or not . 
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                           9.6. Partial Orderings 
                                   Def.1, Ex.1, Ex.2, Ex.3, Ex.4, Def.2, Ex.5, Def.3, Ex.6, Ex.7, Hasse diagrams, Ex.12&13. 
                                             

Chapters 10: Graphs 

                          10.1: Graphs and Graph Models 

                                  All until graph models (which is not included).  

                          10.2: Graph Terminology and special Types of Graphs 

Def.1, Def.2, Def.3, Ex.1, Th.1, Ex.3, Th.2 (no proof), Def.4, Definition of (n-regular) 
before exercise 53 page 667, Example: Find the regularity type of the following graphs: 

 

  

 

 Theorem: If 𝐺 = (𝑉, 𝐸) is an r-regular graph with |𝑉|=𝑛 , then |𝐸|=
𝑛.𝑟

2
.  

 Apply the previous theorem on Figure 1, Ex.5 (Complete graph) p.655, Ex. 6,  

Theorem: If 𝐾𝑛 = (𝑉, 𝐸), then |𝐸|= 
𝑛(𝑛−1)

2
.  

Def.6(Bipartite graph) p. 656, Ex.9, Ex.10, Ex.11, Ex.13(Complete bipartite graph) p.658. 

                                   Theorem: If 𝐾𝑚,𝑛 = (𝑉1 ∪ 𝑉2, 𝐸) such that |𝑉1| = 𝑚 and |𝑉2| = 𝑛 , then |𝐸| = 𝑚𝑛. 
                               

                            10.3: Representing Graphs and Graph Isomorphism 

       Ex.1, Ex.3, Ex.4, Ex.6, Def.1, Ex.8, Ex.9, Ex.10.  

                             10.4: Connectivity  

                                        Def.1, Ex.1, Def.2, Def.3, Ex.4, Th.1 (no proof), Ex.5. 
 

Chapters 11: Trees 

11.1: Introduction to Trees 

      Def. 1, Ex.1, Th.1(no proof), Def. 2, Ex.2, Def.3, Ex.3, Ex.4, Th.2(no proof).  

11.2: Applications of Trees 

         Ex.1. 

11.4: Spanning Trees 

        Def.1, Ex.1, depth-first search tree (with choosing a specific root), Ex.3, Ex.4,  
Exercise 13 p.795, breadth-first search tree (with choosing a specific root), Ex. 5, 

Example: For the graph G,  

           
  
   
  
  

d 
  

  

                        (a) Find (breadth-first search tree) with root g         (b) Find (depth-first search tree) with root g.  
 

Chapter 12: Boolean Algebra 

12.1: Boolean Functions 

         Ex.1, Ex.4, Ex.5, Table 5, Ex.10, Ex.11, Ex.12. 
 

12.2: Representing Boolean Functions  
         Look at the attached file for this section. 

12.4: Minimization of Circuits 

         Ex.1, Ex.2, Ex.3, Ex.4 and all definitions up to page. 835. 

Figure 1 

g  
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12.2: 

 
Ex 1, Def 1, Ex 2, 
 
Definition: The sum-of-products expansion 𝐶𝑆𝑃(𝑓) is the sum of minterms that represent the 
function, i.e., the minterms that has the value 1. 

 Ex 3. 

 

Definition: A maxterm of the Boolean variables 𝑥1,𝑥2, ⋯ 𝑥𝑛 is a Boolean sum 𝑦1 + 𝑦2 + ⋯ + 𝑦𝑛, where 
𝑦𝑖 = 𝑥𝑖 or 𝑦𝑖 = �̅�𝑖. Hence, a maxterm is a sum of n literals, with one literal for each variable. 

Definition: The product-of-sum expansion 𝐶𝑃𝑆(𝑓) is the product of maxterms that has the value 0. 

 

Example: Find the 𝐶𝑃𝑆(𝑓) of the function in example 3. 

1- Using tables: 

𝐶𝑃𝑆(𝑓) = (�̅� + �̅� + 𝑧̅)(�̅� + 𝑦 + 𝑧̅)(𝑥 + �̅� + 𝑧̅)(𝑥 + 𝑦 + 𝑧̅)(𝑥 + 𝑦 + 𝑧). 

2- Using Boolean identities: 

𝐶𝑃𝑆(𝑓) = [𝐶𝑆𝑃(𝑓𝑑)]
𝑑

 

∗ 𝑓𝑑(𝑥, 𝑦, 𝑧) = 𝑥𝑦 + 𝑧̅ 

∗ 𝐶𝑆𝑃(𝑓𝑑) = 𝑥𝑦(𝑧 + 𝑧̅) + (𝑥 + �̅�)(𝑦 + �̅�)𝑧̅ 

                     = 𝑥𝑦𝑧 + 𝑥𝑦𝑧̅ + 𝑥𝑦𝑧̅ + 𝑥�̅�𝑧̅ + �̅�𝑦𝑧̅ + �̅��̅�𝑧̅ 
                    = 𝑥𝑦𝑧 + 𝑥𝑦𝑧̅ + 𝑥�̅�𝑧̅ + �̅�𝑦𝑧̅ + �̅��̅�𝑧̅ 

*[𝐶𝑆𝑃(𝑓𝑑)]
𝑑

= (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧̅)(𝑥 + �̅� + 𝑧̅)(�̅� + 𝑦 + 𝑧̅)(�̅� + �̅� + 𝑧̅)               

Thus, 𝐶𝑃𝑆(𝑓) = (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧̅)(𝑥 + �̅� + 𝑧̅)(�̅� + 𝑦 + 𝑧̅)(�̅� + �̅� + 𝑧̅).               

 

Example: 

Find CSP(f) and CPS(f) where 𝑓(𝑥, 𝑦) = �̅� + 𝑦. 

The table for 𝑓(𝑥, 𝑦) is: 

𝒙 𝒚 �̅� 𝒇(𝒙, 𝒚) = �̅� + 𝒚 

𝟏 1 0 1 

𝟏 0 0 0 

𝟎 1 1 1 

𝟎 0 1 1 

 

Thus, from table we have: 

1- 𝐶𝑆𝑃(𝑓) = 𝑥𝑦 + �̅�𝑦 + �̅��̅�. 

2- 𝐶𝑃𝑆(𝑓) = (�̅� + 𝑦). 

Using Boolean identities: 

 

1- 𝐶𝑆𝑃(𝑓) = �̅�(𝑦 + �̅�) + (𝑥 + �̅�)𝑦 
            = �̅�𝑦 + �̅��̅� + 𝑥𝑦 + �̅�𝑦 
            = �̅�𝑦 + �̅��̅� + 𝑥𝑦. 

 

2- 𝐶𝑃𝑆(𝑓) = [𝐶𝑆𝑃(𝑓𝑑)]
𝑑

 

                = [𝐶𝑆𝑃( �̅�𝑦)]𝑑 
                = [�̅�𝑦]𝑑 
                = �̅� + 𝑦. 

 


