King Saud University, Department of Mathematics Math 204 (2H), 30/100, Mid term Exam S2. 41/42

Question $1[4,3]$ a) Find and sketch the largest region in \mathbb{R}^{2}, for wich the following initial value problem admits a unique solution

$$
\left\{\begin{array}{c}
\left(2^{\sqrt{y}}+\sqrt{x+y}\right) d x-\ln \left(1-x^{2}\right) d y=0 \\
y\left(-\frac{1}{2}\right)=1
\end{array}\right.
$$

b) Solve the differential equation

$$
\tan y-x \frac{d y}{d x}=4 x^{2} \tan y, \quad y \in(0, \pi), x>0 .
$$

Question $2[3,3]$ a) Find the general solution of the differential equation

$$
\left(x \cos \frac{y}{x}+y\right) d x-y d y=0
$$

b) Use the substitution $u=\ln y$ to reduce the differential equation

$$
x \frac{d y}{d x}=2 x^{2} y+y \ln y, \quad x>0, y>0 .
$$

to a linear equation, and then solve it.
Question 3. $[3,3]$. a) Solve the initial value problem

$$
\left\{\begin{array}{c}
\frac{d y}{d x}=3-\sqrt{x+y-1} \\
y(0)=1
\end{array}\right.
$$

Question $4[3,3]$. b) Obtain the general solution of the following differential equation

$$
\left(y e^{-2 x}+y^{3}\right) d x-e^{-2 x} d y=0
$$

Question 5 [5] Initially there were 60 grams of a radioactive material present. After 8 hours the mass decreases by 4%. We suppose that the rate of decay is proportional to the amount of the material at time t. Determine the half life of this material.

