King Saud University, College of Sciences Mathematical Department.

Mid-Term Exam/S2/2023
Full Mark:30. Time 2H
11/01/2022

Question 1. $[\mathbf{5}, \mathbf{4}]$ a) Determine and sketch the largest local region of the $x y$-plane for which the initial value problem

$$
\left\{\begin{array}{c}
\left(x^{2}-4 x+3\right) \frac{d y}{d x}=\sqrt{1-\ln (1-y)} \\
y(2)=0
\end{array}\right.
$$

has a unique solution.
b) Find the solution of the differential equation

$$
\frac{d y}{d x}=x y+\sqrt{x y}+x \sqrt{y}+y \sqrt{x}, x>0, y>0
$$

Question 2. $[4,4]$. a) Solve the initial value problem

$$
\left\{\begin{array}{c}
\left(x^{2}-x \sec ^{2} y\right) d y+(2 x y-\tan y) d x=0 \\
y(1)=\pi
\end{array}\right.
$$

b) Obtain the solution of the differential equation

$$
x^{2}\left(x^{2}+1\right) \frac{d y}{d x}-\left[\ln \left(x^{2}+1\right)+1\right] y^{4}-x\left(x^{2}+1\right) y=0, \quad x>0 .
$$

Question 3. [4, 4]. a) Solve the initial value problem

$$
\left\{\begin{array}{c}
x \sin \left(\frac{y}{x}\right) \frac{d y}{d x}=y \sin \left(\frac{y}{x}\right)-x, \quad x>0 \\
y(1)=\frac{\pi}{2} .
\end{array}\right.
$$

b) Verify that $\mu(x, y)=x^{-2} y^{-2}$ is an integrating factor for the differential equation

$$
\left(x^{2} y-2 x y^{2}\right) d x-\left(x^{3}-3 x^{2} y\right) d y=0, \quad x>0, y>0 .
$$

Then solve it.
Question 4. [5] In a murder investigation a corpse was found by a detective at exactly 8 PM. Being alert, the detective also measured the body temperature and found it to be $70^{\circ} \mathrm{F}$. Two hours later, the detective measured the body temperature again and found it to be $60^{\circ} F$. If the room temperature is $50^{\circ} F$, and assuming that the temperature of the person before death was $99^{\circ} F$, at what time did the murder occur?.

