King Saud University, College of Sciences Mathematical Department.

Mid-Term Exam/S1/2022
Full Mark:30. Time 2H
05/10/2022

Question 1. $[5,4]$ a) Determine and sketch the largest local region of the $x y$-plane for which the initial value problem

$$
\left\{\begin{array}{c}
\left(x^{2}-1\right) d y+(3+y+\sqrt{y-4 x}) d x=0 \\
y(0)=2,
\end{array}\right.
$$

has a unique solution.
b) Find the general solution of the differential equation

$$
(x y+x) d x=\left(x^{2} y^{2}+x^{2}+y^{2}+1\right) d y=0 .
$$

Question 2. $[4,4]$. a) Show that $\mu(x, y)=x y$ is an integrating factor for the differential equation

$$
\left(\frac{y}{x^{2}}+\frac{2 \ln y}{y}\right) d x+\left(\frac{x}{y^{2}}+\frac{2 \ln x}{x}\right)=0, x>0, y>0
$$

and hence solve the differential equation.
b) obtain the general solution of the differential equation

$$
(2 x+y) \frac{d y}{d x}-1-(2 x+y)^{2}=0,2 x+y \neq 0
$$

Question 3. $[4,4]$. a) Solve the initial value problem

$$
\left\{\begin{array}{c}
\left(6 x y+2 y^{2}-5\right) d x+\left(3 x^{2}+4 x y-6\right) d y=0 \\
y(1)=1
\end{array}\right.
$$

b) Solve the differential equation

$$
5 x y^{2} y^{\prime}+y^{3}=32(1+\ln x) y^{-2}, \quad x>0, y \neq 0 .
$$

Question 4. [5] Assume that the rate at which a substance cools in moving air is proportional to the difference between the temperature of the substance and that of the air. If the temperature of the air is 290 K (here K stands for Kelvin) and the substance cools from $370 K$ to $330 K$ in 10 minutes, find when the temperature will be 295 K .

