Modelling the High-Frequency FX Market: An Agent-Based Approach

Monira Essa Aloud

A thesis submitted for the degree of Doctor of Philosophy

School of Computer Science and Electronic Engineering
University of Essex

April 2013
Abstract

In this thesis, we use an agent-based modelling (ABM) approach to model the trading activity in the Foreign Exchange (FX) market which is the most liquid financial market in the world. We first establish the statistical properties (stylized facts) of the trading activity in the FX market using a unique high-frequency dataset of anonymised individual traders’ historical transactions on an account level, spanning 2.25 years. To the best of our knowledge, this dataset is the biggest available high-frequency dataset of individual FX market traders’ historical transactions. We then construct an agent-based FX market (ABFXM) which features a number of distinguishing elements including zero-intelligence directional-change event (ZI-DCT0) trading agents and asynchronous trading-time windows. The individual agents are characterised by different levels of wealth, trading time windows, different profit objectives and risk appetites and initial activation conditions. Using the identified stylized facts as a benchmark, we evaluate the trading activity reproduced from the ABFXM and we establish that this resembles to a satisfactory level the trading activity of the real FX market.

In the course of this thesis, we study in depth the constructed ABFXM. We focus on performing a systematic exploration of the constituent elements of the ABFXM and their impact on the dynamics of the FX market behaviour. In particular, our study explores and identifies the essential elements under which the stylized facts of the FX market trading activity are exhibited in the ABFXM. Our study suggests that the key elements are the ZI-DCT0 agents, heterogeneity which has been embedded in our model in different ways, asynchronous trading time windows, initial activation conditions and the generation of limit orders. We also show that the dynamics of the market trading activity depend on the number of agents one considers.

We explore the emergence of the stylized facts in the trading activity when the ABFXM is populated with agents with three different strategies: a variation of the zero-intelligence with a constraint (ZI-CV) strategy; the ZI-DCT0 strategy; and a genetic programming-based (GP) strategy. Our results show that the ZI-DCT0 agents best reproduce and explain the stylized facts observed in the FX market transactions data. Our study suggests that some the observed stylized facts could be the result of introducing a threshold which triggers the agents to respond to fixed periodic patterns in the price time series.
To my Loving Dad, Mom and Husband!
Acknowledgements

I would like to express my sincere thanks to everyone who offered kind assistance or support to me during the course of my PhD. All praises and thanks are addressed to Allah for giving me the strength to successfully complete my PhD study.

I wish to express my deep thanks to my supervisors, Prof. Maria Fasli, Prof. Edward Tsang and Prof. Richard Olsen, for the guidance, constant support and bright ideas they have given me throughout my years of PhD study. Special thanks should go to my supervisor Prof. Maria Fasli for her invaluable guidance and continuous supervision; this PhD thesis could not have been possible without her and her patience. I am looking forward to continue working together in the nearest future.

Thank to OANDA Corporation\(^a\) for providing the FX market high-frequency datasets. I am also deeply thankful to Olsen Ltd.\(^b\) for their involvement in this study. I am very grateful to Dr. Alexandre Dupuis, head of quantitative research at Olsen Ltd., for his helpful discussions and for his constant valuable support and involvement in this study.

Many thanks to Marisa Bostock, Nick May and all the administrative staff at the School of Computer Science and Electronic Engineering. I am also grateful to the technical support officers in the School of Computer Science and Electronic Engineering; without their help and support I could not have accomplished all the necessary experiments. Thanks also to King Saud University for their scholarship and to the Saudi cultural bureau in London for their services and support. I wish to thank a special friend, Shaimaa Masry, whose support and cooperation was central during the course of my PhD.

I owe a debt of gratitude to my loving parents for simply everything; for blessing and nurture at every step of my life and for raising me to be an independent, motivated person who always aims high. For my parents also, special thanks for having an advanced interest in my research, and for your kind motivation to discuss my research topic. Also, I am grateful to my sisters and brothers, who have constantly encouraged and supported me in the pursuit of my goals, especially when I was distressed. I am indebted to my father-, mother- and sisters-in-law for their unconditional love and support.

The accomplishment of this thesis would never have come about without the kind, pleasant support and encouragement of my husband, Mohammed Aleisa, who thoughtfully followed every single step of my PhD study. Last but not least, I am also grateful to my children Ibrahim and Nora, for their patient understanding of my continued work. With them, the PhD journey was a pleasant experience.

\(^a\)http://www.oanda.com/
\(^b\)http://www.olsen.ch/
Contents

1 Introduction 1
 1.1 Motivation 1
 1.2 Aim and Objectives 3
 1.3 Thesis Overview 4
 1.4 Thesis Structure 5
 1.5 Publications 8

2 Background and Literature Survey 10
 2.1 Introduction 10
 2.2 The Efficient Market Hypothesis 10
 2.3 Stylized Facts of Asset Returns 11
 2.4 Overview of the FX Market 13
 2.5 Empirical Studies of the FX Market Behaviour 14
 2.6 Agent-Based Financial Markets 15
 2.6.1 SF ASM 16
 2.6.2 CHASM Framework 16
 2.6.3 Minimal Agent-Based Model 17
 2.6.4 Other Agent-Based Financial Markets 18
 2.7 Design Choices in ABMs 19
 2.7.1 Agent Trading Strategy 20
 2.7.2 Market Mechanism 21
 2.7.3 Assets 22
 2.7.4 Time 22
 2.7.5 Benchmark and Validation 23
 2.8 Artificial Intelligence in Financial Forecasting 23
 2.8.1 Artificial Neural Networks 24
 2.8.2 Genetic Algorithms 24
 2.8.3 Learning Classifier Systems 24
 2.8.4 Genetic Programming 25
 2.9 High-Frequency Data 25
 2.9.1 Significance of High-Frequency Data 25
 2.9.2 Challenges Associated with High-Frequency Data 26
 2.10 Conclusion 26
3 The Directional-Change Event Approach

3.1 Introduction ... 29
3.2 Intrinsic Time ... 30
3.3 The Directional-Change Event 31
3.4 Spectral Analysis of Tick Data 33
3.5 The Price-Curve Coastline 34
3.6 ZI-DCT0 .. 39
 3.6.1 Experiment .. 39
 3.6.2 Results ... 39
3.7 Conclusion .. 40

4 Filtering of a High-Frequency FX Transactions Dataset

4.1 Introduction .. 42
4.2 Overview of the Dataset 43
4.3 Outliers .. 44
4.4 Filtering Process .. 45
 4.4.1 OANDA’s Internal System Procedure 45
 4.4.1.1 Storage of Transactions 45
 4.4.1.2 Interest Payment Procedure 48
 4.4.2 Flow of Transactions 48
 4.4.3 Results ... 50
4.5 Validation .. 50
4.6 Behaviour and Effects of the Filtered Dataset 51
4.7 Conclusion .. 52

5 Stylized Facts of Trading Activity in the FX Market

5.1 Introduction .. 53
5.2 Scaling Laws ... 54
 5.2.1 Empirical Evidence on Existing Stylized Facts 54
 5.2.2 The New Scaling Laws 57
 5.2.3 Discussion ... 60
5.3 Seasonality ... 61
 5.3.1 Intraday Seasonality 62
 5.3.2 Intraweek Seasonality 62
5.4 Correlation Behaviour 65
5.5 Conclusion .. 67

6 The Agent-Based FX Market

6.1 Introduction ... 69
6.2 General Setting of the ABFXM 69
6.3 The Market-Maker ... 71
6.4 Assets .. 71
6.5 Agent Design .. 72
6.5.1 Initial Wealth Distribution ... 72
6.5.2 Margin Trading ... 73
6.5.3 Portfolio ... 73
6.5.4 Profit Objective and Risk Appetite 74
6.5.5 Trading Strategy ... 75
6.5.6 Limit Orders .. 77
6.5.7 Random Trade .. 77
6.5.8 Order Size ... 77
6.5.9 Asynchronous Trading Time Window 78
 6.5.9.1 Initial Activation Condition 79
 6.5.9.2 Business Hours and Holidays 79
6.6 Trading Cycle .. 79
6.7 Market Clearance ... 80
6.8 The Platform ... 81
6.9 Validation ... 85
 6.9.1 Experimental Setup .. 85
 6.9.2 Validation Design ... 87
 6.9.3 Significance Testing Design 87
 6.9.4 Results .. 88
6.10 Conclusion ... 92

7 A Systematic Exploration of Market Features 94
 7.1 Introduction .. 94
 7.2 Number of Agents .. 94
 7.3 Initial Activation Condition 98
 7.4 Limit Orders .. 99
 7.5 Initial Wealth Distribution 102
 7.6 Distribution of the Profit Objective 105
 7.7 Risk Appetites ... 108
 7.8 Contrarian and Trend-Following Strategies 112
 7.9 Trading Time Window .. 116
 7.10 Order Size .. 119
 7.11 Simplicity and Heterogeneity 123
 7.12 Conclusion ... 124

8 The Impact of Trading Strategies on the Stylized Facts 126
 8.1 Introduction .. 126
 8.2 Related Work .. 126
 8.3 Agent Strategies ... 129
 8.3.1 ZI-CV Agents .. 129
 8.3.2 Genetic Programming-Based Agents 129
 8.3.2.1 The GPA Forecasting Mechanism 130
 8.3.2.2 Technical Indicators 132
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.2.3</td>
<td>Fundamental Analysis</td>
<td>134</td>
</tr>
<tr>
<td>8.4</td>
<td>Experiments</td>
<td>134</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Experimental Setup</td>
<td>135</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Results</td>
<td>135</td>
</tr>
<tr>
<td>8.5</td>
<td>Discussion and Conclusions</td>
<td>144</td>
</tr>
<tr>
<td>9</td>
<td>Conclusions</td>
<td>146</td>
</tr>
<tr>
<td>9.1</td>
<td>Summary</td>
<td>146</td>
</tr>
<tr>
<td>9.2</td>
<td>Contributions</td>
<td>148</td>
</tr>
<tr>
<td>9.3</td>
<td>Future Work</td>
<td>150</td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
<td>152</td>
</tr>
</tbody>
</table>
List of Algorithms

3.1 Defining directional-change (DC) and overshoot (OS) events .. 35
6.1 The core trading mechanism for the two groups of ZI-DCT0 agents 76
8.1 Pseudo code for the forecasting mechanism that the GPAs follow. 131
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The core flow of the study described in this thesis.</td>
<td>6</td>
</tr>
<tr>
<td>1.2</td>
<td>Thesis structure.</td>
<td>7</td>
</tr>
<tr>
<td>3.1</td>
<td>Price activities for EUR/USD on January 7, 2009 - daily price return</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>Price activities for EUR/USD on January 7, 2009 - hourly price return</td>
<td>32</td>
</tr>
<tr>
<td>3.3</td>
<td>Intrinsic time price activity</td>
<td>33</td>
</tr>
<tr>
<td>3.4</td>
<td>Price curve composed of directional-change (DC) and overshoot (OS) events</td>
<td>34</td>
</tr>
<tr>
<td>3.5</td>
<td>Number of DC events in EUR/USD mid-price time series</td>
<td>36</td>
</tr>
<tr>
<td>3.6</td>
<td>Number of events in EUR/CHF mid-price time series</td>
<td>37</td>
</tr>
<tr>
<td>3.7</td>
<td>Comparison between intrinsic and physical time</td>
<td>38</td>
</tr>
<tr>
<td>4.1</td>
<td>Snapshot of a sample from the high-frequency dataset of transactions</td>
<td>44</td>
</tr>
<tr>
<td>4.2</td>
<td>Sample of five accounts’ aggregated number of transactions over minute bases</td>
<td>45</td>
</tr>
<tr>
<td>4.3</td>
<td>An example of the first group of associated transactions</td>
<td>47</td>
</tr>
<tr>
<td>4.4</td>
<td>An example of the second group of associated transactions</td>
<td>47</td>
</tr>
<tr>
<td>4.5</td>
<td>An example of the third group of associated transactions</td>
<td>47</td>
</tr>
<tr>
<td>4.6</td>
<td>Sample of spurious transactions encompass a traded amount value of zero</td>
<td>48</td>
</tr>
<tr>
<td>4.7</td>
<td>The total number of transactions for each month in the dataset before and after the filtering process respectively against the total number of accounts</td>
<td>48</td>
</tr>
<tr>
<td>4.8</td>
<td>The number of high-frequency accounts in each month in the dataset.</td>
<td>49</td>
</tr>
<tr>
<td>4.9</td>
<td>Correlation between the total numbers of daily transactions placed by high-frequency (HF) accounts, and the total numbers of transactions in each month.</td>
<td>49</td>
</tr>
<tr>
<td>4.10</td>
<td>Example of the filtered dataset validation results</td>
<td>50</td>
</tr>
<tr>
<td>4.11</td>
<td>The intraday seasonality of trade numbers from the original unfiltered dataset and the filtered dataset</td>
<td>51</td>
</tr>
<tr>
<td>5.1</td>
<td>Scaling laws 0b, 0c and 0d</td>
<td>56</td>
</tr>
<tr>
<td>5.2</td>
<td>Scaling law (1): trade numbers</td>
<td>58</td>
</tr>
<tr>
<td>5.3</td>
<td>Scaling law (2): trade volumes</td>
<td>59</td>
</tr>
<tr>
<td>5.4</td>
<td>Scaling law (3): number of opening positions</td>
<td>59</td>
</tr>
<tr>
<td>5.5</td>
<td>Scaling law (4): number of closing positions</td>
<td>60</td>
</tr>
<tr>
<td>5.6</td>
<td>The intraday seasonality of the trade numbers made in terms of 48 different currency pairs</td>
<td>63</td>
</tr>
<tr>
<td>5.7</td>
<td>The intraday seasonality for the EUR/USD trades</td>
<td>63</td>
</tr>
<tr>
<td>5.8</td>
<td>The intraweek seasonality of the trade numbers made in terms of 48 different currency pairs</td>
<td>64</td>
</tr>
</tbody>
</table>
5.9 The intraweek seasonality for the EUR/USD trades .. 64
5.10 The correlation of EUR/USD trading activity ... 66
6.1 The main components of the ABFXM and their interaction 70
6.2 The platform’s main screen .. 82
6.3 The market and traders parameters windows .. 83
6.4 The market-maker parameters windows .. 84
6.5 The currency-pair parameters window .. 84
6.6 Intraday and intraweek seasonality of EUR/USD trades from the real data and the simulation results ... 89
6.7 Scaling laws of EUR/USD transactions for (a) the real data and (b) the simulation results ... 91
7.1 Intraday seasonality of trade numbers from the simulation results for different number of agents ... 95
7.2 Intraday seasonality of trade volumes from the simulation results for different number of agents ... 95
7.3 Scaling laws are plotted from simulation results for different total number of agents ... 97
7.4 Intraday seasonality of trade numbers without the INAC 98
7.5 Scaling laws are plotted from simulation results without the activation of the initial condition being set up ... 100
7.6 Intraday seasonality of trade numbers and volumes from the simulation results without the limit orders being generated 101
7.7 Scaling laws are plotted from simulation results without limit orders being generated ... 101
7.8 Intraday seasonality of trade numbers and volumes from two different settings for the initial wealth distribution in the simulation ... 103
7.9 Scaling laws are plotted from the simulation results with different settings for the initial wealth distribution ... 104
7.10 Intraday seasonality of trade numbers and volumes from two different settings of the simulation run for the distribution of the agents’ profit objectives ... 106
7.11 Scaling laws are plotted from two different settings of the simulation run for the distribution method for the agents’ profit objectives ... 107
7.12 Intraday seasonality of trade numbers and volumes from the simulation results with different settings of the agents’ risk appetites ... 109
7.13 Scaling laws are plotted from the simulation results with different settings of the agents’ risk appetites ... 110
7.14 The intraday seasonality of trade numbers with the inclusion of heterogeneity in terms of the agents’ adopted trading strategies ... 113
7.15 Scaling laws are plotted from the simulation results with different settings of the agents’ trading strategies ... 115
7.16 Intraday seasonality of trade numbers from the simulation results, without incorporating the role of FX market trading sessions ... 117
7.17 Scaling laws are plotted from the simulation results without incorporating the role of FX market trading sessions ... 118
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.18</td>
<td>Intraday seasonality of trade numbers and volumes from the simulation results with two different settings of the order size parameter</td>
<td>120</td>
</tr>
<tr>
<td>7.19</td>
<td>Scaling laws are plotted from the simulation results with two different settings of the order size parameter</td>
<td>122</td>
</tr>
<tr>
<td>8.1</td>
<td>The Backus Naur Form (BNF) of a decision tree</td>
<td>130</td>
</tr>
<tr>
<td>8.2</td>
<td>Example of a decision tree and a decision rule derived from the decision tree</td>
<td>130</td>
</tr>
<tr>
<td>8.3</td>
<td>The intraday seasonality of the trade numbers from the different data samples</td>
<td>136</td>
</tr>
<tr>
<td>8.4</td>
<td>Scaling laws (1) from the different data samples</td>
<td>140</td>
</tr>
<tr>
<td>8.5</td>
<td>Scaling laws (2) from the different data samples</td>
<td>141</td>
</tr>
<tr>
<td>8.6</td>
<td>Scaling laws (3) from the different data samples</td>
<td>142</td>
</tr>
</tbody>
</table>
List of Tables

3.1 The average lengths of the annualized EUR/USD coastline measured by physical time and intrinsic time ... 37
3.2 The average lengths of the annualized EUR/CHF coastline measured by physical time and intrinsic time ... 38
3.3 Experiment’s results of the effectiveness and significance of the ZI-DCT0 ... 40
5.1 Scaling laws 0b, 0c and 0d: estimated regression parameters .. 56
5.2 Estimated regression parameters for the new scaling laws .. 61
5.3 FX market opening and closing business time for different geographical markets. .. 61
5.4 Correlation coefficients computed for the different EUR/USD trading activity 66
5.5 Descriptive statistics for the hourly aggregated EUR/USD trading activity .. 66
6.1 The opening and closing times for the FX markets .. 79
6.2 Initial market parameters configuration in the simulation. .. 86
6.3 Initial agent parameters configuration in the simulation. .. 86
6.4 T-statistic (t_{sv}) and Pearson correlation (corr) values - Intraday seasonality statistic from the simulation results. .. 90
6.5 T-statistic (t_{sv}) and Pearson correlation (corr) values - Intraweek seasonality statistic from the simulation results. .. 90
6.6 Correlation coefficients computed for the different EUR/USD trading activity from (a) the real data and (b) the simulation results. .. 90
6.7 The adjusted R^2 values of the fits, plus their standard errors, for the scaling laws measured from the simulation results .. 91
7.1 Intraday seasonality statistic from simulation results for different number of agents 95
7.2 Correlation coefficients for the EUR/USD trading activity from the simulation results with different number of agents .. 96
7.3 The adjusted R^2 values of the fits, plus their standard errors (SE), for the scaling laws measured from simulation results for different number of agents .. 96
7.4 T-statistic (t_{sv}) and Pearson correlation values without the INAC .. 98
7.5 Correlation coefficients without the INAC ... 99
7.6 The adjusted R^2 values and standard errors (SE) of the scaling laws without the INAC 99
7.7 Intraday seasonality statistic from the simulation results without limit orders being generated 100
7.8 Correlation coefficients for the EUR/USD trading activity from the simulation results without limit orders being generated .. 101
7.9 The adjusted R^2 values of the fits, plus their standard errors, for the scaling laws measured from the simulation results without limit orders being generated .. 102
7.10 Intraday seasonality statistic from two different settings for the initial wealth distribution in the simulation .. 103
7.11 Correlation coefficients of the EUR/USD trading activities from the simulation results with different settings for the initial wealth distribution .. 103
7.12 The adjusted R^2 values of the fits, plus their standard errors, for the scaling laws measured from the simulation results with different settings for the initial wealth distribution 105
7.13 Intraday seasonality statistic for two different settings of the simulation for the distribution of the agents’ profit objectives .. 106
7.14 Correlation coefficients for the EUR/USD trading activity for two different settings of the simulation run for the distribution of the agents’ profit objectives .. 106
7.15 The adjusted R^2 values of the fits, plus their standard errors (SE), for the scaling laws measured from two different settings of the simulation run for the distribution method for the agents’ profit objectives .. 108
7.16 Intraday seasonality statistic of trade numbers and volumes from the simulation results with different settings of the agents’ risk appetites .. 109
7.17 Correlation coefficients for the EUR/USD trading activity from the simulation results with different settings of the agents’ risk appetites .. 110
7.18 The adjusted R^2 values of the fits, plus their standard errors, for the scaling laws measured from the simulation results with different settings of the agents’ risk appetites .. 111
7.19 Basic descriptive statistics of the agents’ ROI from four independent runs of the simulation .. 112
7.20 T-statistic (t_{sv}) and Pearson correlation (corr) values with the inclusion of heterogeneity in terms of the agents’ adopted trading strategies .. 114
7.21 Correlation coefficients for the EUR/USD trading activity from three different simulation results with the inclusion of heterogeneity in terms of the agents’ adopted trading strategies. 114
7.22 The adjusted R^2 values of the fits, plus their standard errors, for the scaling laws measured from five different simulation results with the inclusion of heterogeneity in terms of the agents’ adopted trading strategies .. 114
7.23 Intraday seasonality statistic from simulation results without incorporating the role of FX market trading sessions .. 117
7.24 Correlation coefficients for the EUR/USD trading activity from the simulation results without incorporating the role of FX market trading sessions .. 117
7.25 The adjusted R^2 values of the fits, plus their standard errors, for the scaling laws measured from the simulation results without incorporating the role of FX market trading sessions 118
7.26 Intraday seasonality statistic from the simulation results with two different settings of the order size parameter .. 120
7.27 Correlation coefficients for the EUR/USD trading activity from the simulation results with two different settings of an agents order size parameter .. 121
LIST OF TABLES

7.28 The adjusted R^2 values and standard errors of the scaling law fits from the simulation results with two different settings of the order size parameter ... 121

8.1 The indicators used by GPAs to form decision rules and their respective short and long-term periods. ... 132

8.2 Initial configuration for the GP parameter values used for the GPAs. 135

8.3 T-statistic and Pearson correlation from the different data samples 137

8.4 Correlation coefficients computed for the different EUR/USD trading activity from the different data samples .. 138

8.5 The adjusted R^2 values of the fits, plus their standard errors, for the scaling laws from the different data samples .. 139

8.6 Descriptive statistics of the agents’ ROI from the different data samples 143
Chapter 1

Introduction

1.1 Motivation

Classical theories of economics are founded on strong assumptions such as perfect rationality, homogeneity and efficient market hypothesis [25, 59, 61, 79]. Some of these assumptions used in classical economic theories are flawed. Classical economic theories fail to explain the dynamics of financial market behaviour and the forces that drive such behaviour [33, 102, 148, 155, 156, 216, 220]. In order to better understand and analyse financial and other markets, researchers attempt to identify patterns in the data. The observed statistical properties of the financial market data are referred to as stylized facts [63]. The variance between classical economics theories and the empirical stylized facts observed in financial markets data are the main driving force for the development and the usage of different approaches to studying the behaviour of such markets. For instance, the concept of bounded rationality has exclusively replaced the concept of full rational homogeneous representative agents [20, 21, 204–206]. Such a change in conception motivates the need to study and revise some of the existing economic theories which are based upon many idealised assumptions.

Three major approaches have been used to study and analyse the behaviour of the Foreign Exchange (FX) market in the literature: behavioural finance, analytical models and agent-based modelling. The behavioural finance approach is a theory which employs psychology to explore and describe the behaviour of financial market traders and their behavioural influence on the market dynamics. A good review of behavioural finance is provided in [29, 203, 211]. A substantial number of studies have established the existence of several psychological underpinnings for FX market traders’ behaviour. For example, these include studies of financial market traders’ herding behaviour [125], feedback trading in the market [1, 38, 136], traders’ heterogeneous expectations and beliefs [87, 88, 116, 162, 173, 178], traders’ overconfidence [28, 97, 179], and loss aversion bias [180]. The second approach employs analytical models to study FX market behaviour. A number of studies in this area, have considered the effect of order flow [34, 75, 77], market news arrival [10, 14, 47, 76, 78], fundamentals trading on price movements [75, 78], and behaviour of market participants. The major weakness of the analytical models is the lack of direct insight into the microscopic nature of the market stylized facts [131].

Due to the current large number and complexity of financial market data, especially high-frequency data, compared to earlier times, traditional analytical models present some difficulties in analysing financial market behaviour [172]. Agent-based markets (ABMs) have emerged as an alternative approach for exploring and studying dynamic behaviour in financial and other markets, especially where the application of analytical models is difficult and their use may be not be able to yield satisfactory results or useful in-
CHAPTER 1. INTRODUCTION

An ABM uses computer programs to model the behaviour of a real market which is made up of various aspects such as a trading mechanism, traded assets and trading agents that may emulate human traders. The ABM approach has been successfully applied in different financial studies, from macroeconomic models to payment card markets [2, 15, 17, 126, 129]. A good introduction to ABMs can be found in [214]. For an overview of the most influential works in the field of ABMs, we refer interested readers to [62, 137, 143, 193].

ABMs that emulate the behaviour of real markets need to be modelled in such a way so as to exhibit the same stylized facts as real ones [143]. In an ABM, the observation of the same stylized facts as the real market serves as a useful benchmark and as evidence that the ABM is indeed closely modelling the real market with a high degree of confidence. ABMs that exhibit the same stylized facts as real markets can be used to identify and interpret their origins through comprehensive experimentation; this can provide useful insights into the workings of the real market, the forces that drive behaviour and their impact on the market dynamics which would not otherwise be possible [138]. A number of ABMs have been able to exhibit some of the markets’ stylized facts [5–7, 21, 42, 46, 48, 49, 56, 64, 83, 95, 114, 128, 138, 145, 146, 149, 150, 153, 158, 159, 170, 172, 215, 232, 238], whereas only some of these ABMs have clearly defined and interpreted the origins of the market stylized facts, such as the work in [5–7, 64, 172].

Although ABMs offer a number of advantages in modelling markets, the use of ABMs has been criticized from a number of viewpoints and in particular with regard to the complexity of these ABMs, the problem of calibration, the numerous parameters needed for developing the ABM, etc. [96, 137, 141, 143, 230]. Despite the existence of previous or contemporary studies on modelling financial markets using ABMs, a number of issues have not been well-studied or properly addressed as yet:

- Although there are many different works which have studied the trading activity in the FX market, there has been no systematic study of its properties using a high-frequency dataset and an ABM. Previous studies of the FX markets have acquired either large samples of low frequency datasets [77], or small samples of high-frequency datasets [34], neither of which are at the account level. In finance, high-frequency data represent an extremely large amount of data which is the full historical record of transactions in the market, and the characteristics associated with transactions at frequencies higher than on a daily basis [74]. A systematic exploration of properties of the trading activity in the FX market requires the use of a high-frequency dataset of individual traders’ historical transactions over a substantially long period of time.

- ABMs have generally aimed at reproducing some of the stylized facts of financial markets such as [5–7, 21, 42, 46, 48, 49, 56, 64, 83, 95, 114, 128, 138, 145, 146, 149, 150, 153, 158, 159, 170, 172, 215, 232, 238]. However, many of these studies such as [21, 48, 146, 150, 232] pay little attention to identifying and understanding the origins of the market stylized facts. For instance, the authors of the Santa Fe Artificial Stock Market (SF ASM) do not provide a quantitative description of the reproduced stylized facts, neither do they explain the dynamics of the self-organization of the markets [21, 146]. LeBaron suggested that, “It is important in agent based models not just to reproduce features of real markets, but also to show which aspects of the model may have led to them” ([138], p. 226). Examples of ABMs that attempt to explain the origin of stylized facts of the price returns are [5–7, 64, 172]. Alfi et al. in [5–7] present an ABM containing the simplest possible elements to define and understand the origin of the stylized facts of price returns. In contrast, Martinez-Jaramillo and Tsang in [171, 172] model a simple market mechanism of a stock market which operated with
sophisticated genetic programming based agents. Their work identifies the minimal set of essential conditions under which the stylized facts of endogenously generated prices resemble those of real market prices. The work done by Daniel in [64] focuses on the intraday stylized facts of order flow and price returns in the stock market. Daniel studies the origin of the stylized facts using a double auction market mechanism operated with zero-intelligence models of agents.

- To the best of our knowledge, none of the previous studies have identified the essential elements under which the stylized facts of the trading activity in the high-frequency FX market-makers markets emerge in an ABM. The FX market is the largest financial market in the world with a high volume of transactions and a high level of liquidity [63]. To acquire an understanding of the dynamics of trading behaviour in the high-frequency FX market, it is essential to define and understand the origin of the trading activity in the market, and the forces that drive the flow of the market trading activity which may be far from traditional assumptions of economics.

- Although ABMs are a powerful tool for modelling markets and understanding their behaviour, they have often been criticised for the level of complexity involved in their set up [110]. Developers are faced with a daunting set of design choices [137]. Simplicity is essential in designing ABMs [110, 143, 193] as a complex design may impede the study, understanding and interpretation of the origins of the stylized facts [110]. Although it is often tempting to develop ABMs with intricate set ups and numerous composite parameters, such often unwarranted complexity makes it difficult to identify which elements of the market are accountable for the emergence of the stylized facts and whether all of the elements are equally important for reproducing them [143].

- One of the issues in ABMs is that of validation [96, 137, 141, 143, 230]. Constructed ABMs need to be able to reproduce to a satisfactory extent the same behaviour as the corresponding real markets. Therefore establishing the stylized facts of the real market is essential for providing a benchmark for ABMs [137, 141, 143, 146]. Otherwise, the validity of any theoretical results drawn from ABMs would be of concern. However, in order to establish stylized facts for a market, one needs to have access to real market data, in particular high-frequency data, and the problem is the lack of such market data.

- Defining the parameter space in an ABM is a daunting task as the parameter space can be very big. LeBaron explained that "... understanding exactly where the parameter boundaries are between simple and complex behaviors is crucial to understanding the mechanisms that drive agent based markets" ([137], p. 258).

- Timing is an important design issue in terms of building ABMs. In some ABMs, trading is synchronized and there are no representations of physical time [18, 21, 150, 170, 172, 238]. In addition, some ABMs employ low-frequency timing where each trading round corresponds to one simulated day which doesn’t reflect real markets [172].

1.2 Aim and Objectives

This thesis aims to identify and study the essential elements under which the stylized facts of the trading activity in the high-frequency FX market emerge in the context of an ABM. This aim is comprised of the
following major objectives:

- To identify a number of stylized facts that characterise the trading activity in the high-frequency FX markets which can serve as a benchmark for validating ABMs. This foundational step includes the acquiring of a high-frequency dataset of individual traders’ historical transactions in the FX market. Such a dataset permits us to conduct an analysis of the FX market traders’ collective behaviour in order to establish a set of stylized facts.

- To define and construct an agent-based FX market (ABFXM) that simulates the trading activity at the level of an FX market-maker market. The ABFXM should be able to reproduce the stylized facts of the trading activity as exhibited in the real FX market to a satisfactory extent.

- To model individual heterogeneous trading agents. The design and structure of the agents should be as simple as possible, and with the minimal number of elements which, at the same time, are still able to reproduce the stylized facts of the FX market trading activity. Simplicity allows for a detailed and clear interpretation of the origin of the market stylized facts in isolation from complex trading behaviour. Heterogeneity is inherent in real markets where participants have different preferences, demands, aspirations, trading strategies and trading hours.

- To evaluate the ABFXM. The ABFXM that is to be developed must be thoroughly evaluated in order to ascertain the ability of the ABFXM to approximate the stylized facts of the trading activity of the FX market.

- To examine in a systematic manner the impact of changes in different elements of the ABFXM on the emergence of the trading activity stylized facts in the FX market. Such an examination results in a comprehensive search for a set of essential elements under which the stylized facts of the high-frequency FX market trading activity emerge in an ABM.

- To study and explore impact of different trading strategies in the market and on the emergence of the trading activity stylized facts in the FX market.

1.3 Thesis Overview

To model the trading activity in the FX markets, we use two different approaches: the analysis of actual traders’ behaviour and ABM. We start from the analysis of actual traders’ behaviour moving towards the agent-based models. Such a combination allows us to achieve a good understanding in terms of both theory and practice of the behaviour of the trading activity in the FX markets.

Figure 1.1 depicts the core flow of the study described in this thesis. The initial part of this study is to establish a number of stylized facts that characterise the trading activity in FX markets, using a unique high-frequency dataset of traders’ historical transactions. The dataset is provided by the OANDA Corporation. To the best of our knowledge, this dataset is considered to be the largest available high-frequency dataset of FX market traders’ historical transactions. Prior to the analysis of the dataset, we conduct a filtering procedure to remove any possible misleading and spurious transactions in terms of the traders’ actual activity. We build an ABFXM which overcomes the limitations and issues discussed above (section 1.1), aiming at reproducing the stylized facts of the real FX market’s trading activity. Using the identified stylized facts as a benchmark,
we evaluate the trading activity reproduced from the ABFXM. A systematic exploration of the implications of varying the features and parameters of the ABFXM is undertaken. The aim is to identify the essential elements involved in our ABFXM which are responsible for reproducing the stylized facts of the trading activity in the FX markets.

Our work is different from the work done in [5–7, 21, 42, 46, 48, 49, 56, 64, 83, 95, 114, 128, 138, 145, 146, 149, 150, 153, 158, 159, 170, 172, 215, 232, 238], in that we used an agent-based approach to model trading behaviour in the high-frequency FX market and investigate the emergence of the stylized facts of transactions data in a systematic way. We have been able to study extensively the effect of each of the constituent elements of the ABFXM on the stylized facts through anchoring the simulation results by using a historical high-frequency prices dataset. The use of this dataset enables us to run multiple simulation runs and draw comparisons and conclusions for each market setting against the real data but also by comparing different market settings against each other. As far as we know, this has not been done before.

To the best of our knowledge, the work presented in this thesis is the first study which has attempted to identify and understand the design effect of the agents’ trading strategy in the emergence of the FX market stylized facts. Our work is different from the studies done in [54, 99, 189, 225] in four major aspects. Firstly, we examine three alternative approaches to the design of the agents’ strategies, two of which are commonly used for modelling agents in ABMs. Secondly, we examine the impact of the design of the agent’s trading strategy in the emergence of the trading activity stylized facts in the high-frequency FX market, rather that examining the impact on the market mechanism as done in [54, 99, 225] or on the stylized facts of the order flow as done in [189]. Thirdly, our study focuses on the FX market, while the studies in [54, 99, 189] use a double auction market and the study in [225] uses a web-based prediction market platform. Finally, to our knowledge, this is the first study that uses a unique high-frequency dataset of individual traders’ historical transactions to validate the results of the ABFXM.

1.4 Thesis Structure

The thesis structure is depicted in Figure 1.2 and is as follows. Chapter 2 provides an introduction in terms of a background to the study and an outline literature review of the financial markets and, in particular, the FX markets. In this chapter, we present references to some of the important studies into the behaviour of the FX markets’ traders. Nevertheless, it is not our intention to provide a comprehensive review of the literature regarding the FX markets. Furthermore, chapter 2 reviews the literature with regard to ABMs. In this chapter, we review some of the important and most promising studies that have been undertaken in ABMs and which we consider relevant to the study presented in this thesis. In addition, this chapter illustrates artificial intelligence techniques in general, and evolutionary computation in particular, that are used in financial forecasting. We conclude this chapter by describing the high-frequency data of financial markets; show their potential usefulness, and consider the challenges associated with dealing with them.

Financial markets witness high levels of activity at certain times, but remain calm at others. This makes the flow of physical time discontinuous. Therefore, using physical time scales for studying financial time series runs the risk of missing important periods of activity in the markets. An alternative approach is the use of an event-based time that captures periodic activities in the market. Chapter 3 describes a special type of event, called a directional-change event which can be used for studying financial time series. In this chapter, we show the potential usefulness of this approach in terms of capturing periodic market activities.
Figure 1.1: The core flow of the study described in this thesis.
We measure the length of the price curve coastline, which represents the profit potential, as defined by directional-change events, as well as physical time scales. Furthermore, in chapter 3, we construct a new trading strategy based on the directional-change event approach. A series of controlled experiments were conducted aiming to study the impact of such a trading strategy on a trader’s performance.

In chapter 4, we process a unique high-frequency dataset representing the full transaction history of more than 40,000 anonymised accounts on the OANDA FX trading platform over 2.25 years. Prior to exploring and analysing the data to discover and define the stylized facts of the trading activity in the FX market, we perform a filtering procedure to remove misleading and spurious data from the dataset that would affect the validity of any forthcoming results. We conclude chapter 4 by validating the adopted filtering procedure and showing the behaviour and effects of the filtered dataset.

Chapter 5 describes a benchmark for validating FX market agent-based models. In this chapter we conduct an analysis of the trading activity in the OANDA FX trading platform using the high-frequency dataset of individual traders’ historical transactions. This allows us to establish a set of stylized facts which characterize the trading activity of the FX market and apply on transactions data. These established stylized facts can be grouped under three main headings: scaling laws, seasonality and correlation behaviour. These independent stylized facts describe the trading activity in the FX market from different angles.

Chapter 6 describes the development of the ABFXM. It begins with describing the ABFXM mechanism,
and the available traded assets in the market. Then it describes the design and structure of the trading agents, the trading cycle and the market clearance. Later on in this chapter, the computational platform of the ABFXM is briefly described together with a description of the flexibility and extensibility of the ABFXM. Furthermore, chapter 6 reports the experimental and validation design to validate the precision of the ABFXM in reproducing the stylized facts of trading activity as exhibited in the real high-frequency FX market. The results of the experiments that have been performed are presented to confirm the validity of the ABFXM.

Chapter 7 offers a detailed examination and exploration of the implications of changing some of the elements of the ABFXM presented in chapter 6. A systematic approach is used due to the different possible combinations of the elements involved in the ABFXM. Accordingly, in this chapter, we draw conclusions on what seem to be the important elements of the ABFXM that lead to the emergence of the stylized facts in the high-frequency FX market.

One of the most critical design issues that developers face in electronic markets is that of the agents’ trading strategies. In chapter 8, we examine the impact of trading strategies on the high-frequency FX market. In particular, our goal is to explore the emergence of the stylized facts in the trading activity under different settings where the market is populated with agents with three different strategies: a variation of the zero-intelligence with a constraint (ZI-CV) strategy; the zero-intelligence directional-change event (ZI-DCT0) strategy; and the genetic programming-based (GP) strategy.

The thesis concludes with chapter 9 which provides a summary of the thesis, lists its main contributions, and proposes possible avenues for future work.

1.5 Publications

The work presented in this thesis has led to the following publications:

• Aloud, M., and E. Tsang (2011), Modelling the trading behaviour in high-frequency markets, in 3rd Computer Science and Electronic Engineering Conference (CEEC), IEEE Xplore, Colchester, United Kingdom.

• Masry, S., M. Aloud, A. Dupuis, R. Olsen, and E. Tsang (2010), A novel approach for studying the high-frequency FOREX market, in 2nd Computer Science and Electronic Engineering Conference (CEEC), University of Essex, IEEE Xplore, Colchester, United Kingdom.
Chapter 2

Background and Literature Survey

2.1 Introduction

Financial markets are institutions whose objective is to facilitate the exchange of assets. Financial markets allow trading in financial securities, commodities and other exchangeable assets, depending on the market type and can be categorised into different groups, based on the type of traded asset. Some examples of financial markets are: capital markets, commodity markets, stock markets, foreign exchange markets and derivatives markets. For a good introductory reference to financial markets, we refer the interested reader to [200]. In this thesis, we focus on studying the Foreign Exchange (FX) market. One of the important research activities associated with financial markets is to define and explain the origin and nature of trading activities in these markets.

In this chapter, it is not our intention to provide a broad overview neither of the financial markets nor of the FX market. This chapter aims to explain the Efficient Market Hypothesis (EMH) (section 2.2); present the common stylized facts of financial assets (section 2.3); provide an overview of the FX market structure (section 2.4); present an outline of the empirical studies of FX market behaviour (section 2.5). In this chapter, we review the state of the art in agent-based markets (ABMs) (section 2.6). We start by providing an overview of some ABMs which are relevant to our work. In section 2.7, we describe and survey the design routes with regard to building an ABM. In section 2.8, we discuss artificial intelligence techniques in general, and evolutionary computation in particular, that are used in financial forecasting. We conclude this chapter by describing the high-frequency data and show their potential usefulness and challenges (section 2.9).

2.2 The Efficient Market Hypothesis

Many empirical financial economic studies in previous decades have engaged in an intense debate about the concept of market efficiency [33, 102, 148, 155, 156, 216, 220]. The Efficient Market Hypothesis (EMH) states that financial markets are "informationally efficient" if the price reflects all the available information [80]. In terms of the EMH, the information set is considered to be anything that may possibly affect the movement of an asset’s price. Based on the information set available, there are three common forms of the EMH [68]: the Weak Form Efficiency hypothesis asserts that all relevant available information is fully reflected in current and historical asset prices. The Semi-Strong Form Efficiency hypothesis asserts that all publicly available information is fully reflected in current and historical asset prices. The Strong Form
Efficiency hypothesis asserts that all information, including public and private information, is fully reflected in current and historical asset prices.

In the past, the concept of market efficiency has indicated that price changes follow a random walk [163], whereas the facts derived from the statistical analysis of the financial market data evidently now show the opposite [155]. The random walk hypothesis states that asset returns are serially independent, which means that they do not follow any trend or pattern. As a result, the next period return is not a result of the previous ones [220]. In other words, historical data cannot be used to predict the future movements of the asset price in such a way as to outperform the market. Many empirical studies have been conducted in order to examine the concept of the EMH by explaining the behaviour of assets’ prices, such as [148, 156]. In addition, many researchers such as [33, 102, 155, 216] have rejected the concept of EMH. Beyond the debates with regard to EMH and the concept of a random walk, our work sheds some light into explaining patterns in price time series and, most importantly, provides an explanation for the origins of some of the trading activity in the FX market.

2.3 Stylized Facts of Asset Returns

Stylized facts of asset returns are the observed statistical properties of the time series of asset price returns. Such stylized facts are considered to be common across a wide range of financial markets and time periods [57]. They have become an important feature for researchers, which has led to a greater understanding of financial market behaviour [63]. In building a model of the financial market, stylized facts are considered to be the first verification criterion [142]. In addition, numerous financial market models have been built in an attempt to reproduce and explain some of the stylized facts. Reproducing such stylized facts is not an easy task, as noted by Cont "… these stylized facts are so constraining that it is not easy to exhibit even an (ad hoc) stochastic process which possesses the same set of properties and one has to go to great lengths to reproduce them with a model" ([57], p. 224). One of the most basic requirements when analyzing market data is that the stylized facts remain stable over different periods, and there is a need to clearly identify them. More specifically, it is necessary to ensure that a statistical property does not depend on a certain time period, but it is observed at different times.

In most studies, the statistical analysis of the financial asset price time series is performed using the continuously compounded return or log return [172]. The log return is defined as follows:

\[R_t \equiv \log \left(\frac{P_t}{P_{t-1}} \right) = \log(P_t) - \log(P_{t-1}) \] (2.1)

where \(R_t \) denotes the return at time \(t \), \(P_t \) denotes the price of an asset, a market stock, index or an exchange rate, at time \(t \).

The common stylized facts relevant to a broad set of financial assets, as described in detail in [57] are:

1. Absence of linear auto-correlation: (linear) autocorrelation of asset returns is usually insignificant, but some correlations may be present for small intra-day time scales (minutes or less). This statistical property corresponds to the state of an efficient market in which it is not possible to make a profit without risk [5]. In addition, due to the lack of autocorrelation in returns, each return is considered to be independent from the previous returns, giving support to the notion that prices perform a random walk. One can verify if the generated asset price return from a certain market model shows evidence of the absence of autocorrelation, by reporting the correlations of the log returns, the square log returns...
and the absolute log returns for different time intervals. The log returns’ correlations should be around zero for different time intervals if there is a lack of linear auto correlation [172]. Empirical studies of various market data have been performed to test the absence of autocorrelation properties in asset price return. Hsieh in [113] performed a study of the daily changes of five foreign exchange rates and found evidence of no linear correlation. Brooks in [43] examined 10 daily Sterling exchange rates and found that there was no linear autocorrelation in many of the time series. Ammermann and Patterson [12] indicated that nonlinear serial dependencies are very important in the returns for a wide range of financial time series.

2. Heavy tails: the (unconditional) distribution of returns displays a heavy tail with positive excess kurtosis. In most assets, exchange rates and indexes, the tail index is finite, higher than two and less than five. The heavy tail definition as noted by Martinez-Jaramillo and Tsang "The term “fat tails” refers to higher density on the tails of a distribution in comparison to the tails’ density under the normal distribution" ([172], p. 34). In order to quantify the deviation from the normal distribution, one can report the log return’s kurtosis [57]. Kurtosis is commonly defined as the fourth central moment of a distribution, and it measures the degree of flatness relative to a normal distribution and is a useful indicator of fat tails [172]. The kurtosis of a normal distribution is three. In many empirical studies of financial market data, it has been found that the sample kurtosis is larger than three, which is known as excess kurtosis and is a signature of fat tails [172].

3. Conditional heavy tail: the residual time series exhibits heavy tails even after correcting returns for volatility clustering, but the tails are less heavy than in the unconditional distribution of return. This statistical property can be tested by reporting the sum of the ARCH and GARCH coefficients in which, the closer the sum is to one, the more persistence of volatility, the more volatile the stocks are [172].

4. Volatility clustering: a different measure of volatility shows a positive correlation over a number of days which quantifies that high-volatility events tend to cluster in time. According to Mandelbort in [164]: "…large changes tend to be followed by large changes, of either sign, and small changes tend to be followed by small changes". Volatility is considered to be the greatest puzzle in finance and the difficulties associated with it was first demonstrated by Shiller in [201]. An update of this report can be found in [142, 202]. The persistence of volatility in financial time series has lead to an entire industry of models, ARCH by Engle in [73], GARCH by Bollerslev in [41], which aim to describe several related effects to the phenomenon of financial volatility such as excess kurtosis [142]. Volatility clustering can be measured through the use of the autocorrelation of the absolute and squared log returns [164]. If such positive autocorrelations happen, then it is an obvious signature of volatility clustering.

5. Volume/volatility correlation: studies show that the trading volume, the number of assets traded during a specific period, is correlated with all measures of volatility.

6. Intermittency: financial asset returns shows a high degree of variability using any time scale.

7. Aggregational gaussianity: asset returns appear to be normally distributed over a long time period. As a result, increasing the time scale results in their returns distribution looking increasingly like a normal distribution. Moreover, the distribution varies between different time scales. One can indicate
whether the sampled market data is drawn from a normal distribution or not by performing the Jarque-Bera test, which measures the departure from normality using the skewness and the kurtosis of the sample data [172].

2.4 Overview of the FX Market

The Foreign Exchange market, also referred to as the Forex or FX market, is considered the largest and most liquid financial market in the world [63]. The FX market is where the buying and selling of foreign currencies takes place in order to facilitate the trade of a range of currencies around the world. Participants in the FX market consist of governments, central banks, large banks, institutional investors, individual investors, etc.

The FX market is not a single market, but is composed of a global network of FX markets that connect investors from all around the world. The fact that the FX market is a decentralized market means that there is no central marketplace, and that transactions are conducted over the counter. Most FX trading firms are market-makers. The rapid advances in communications technology, particularly in web-related technology, in the last two decades have led to huge changes in the FX market in that a number of independent brokers have developed internet-based trading platforms - the so-called market-maker FX market. The role of the electronic market-maker has increased rapidly in the last decade and electronic market-makers play an important role in the growth of the financial market. With the advent of retail market-maker FX market online platforms, individual retail traders represent an important part of the FX market.

A market-maker is an institution which provides liquidity for a number of currency pairs, and quotes both a buy and a sell price on its platform in an attempt to make a profit through the bid/ask spread. In an FX trading environment, the market-maker is equipped to buy from and sell to its investors and other market-makers at those quoted bid and ask prices. In other words, the market-maker takes the opposite side of a trade. The market-maker’s role is essential in maintaining the liquidity with regard to a given security that is held in his inventory. A market-maker adjusts the price based on the demand and supply in the market, on their inventory holdings, on news and prices from other market-makers, as well as other factors.

In contrast to stock markets, the FX market operates 24 hours a day, 7 days a week. Despite the fact that the FX market operates continuously, 24 hours a day, the trading activity is not homogenous in time, which leads to difficulties in analyzing the data [63]. The peak liquidity occurs when the business trading hours of multiple time zones overlap [63]. It is essential to understand the correlation between market activity and daytime over different periods of the day.

The characteristics of the FX market are, to some extent, different from other financial markets such as the stock market. For instance, the FX market implies an investment of one currency for another currency, in contrast to other financial markets that imply an exchange of a valuable asset for a sum of money. In the FX market, each transaction entails a pair of currencies, e.g. EUR/USD. A currency pair in the FX market is represented as a base and a quote (base/quote) where both of these two currencies are traded. For illustration, the base of EUR/USD is EUR while the quote is USD. A trader can sell a number of units of the base currency at the bid price and buy an equivalent number of units of the quoted currency to buy the base currency. This entails a trader opening a short position. Similarly, a trader can buy a number of units of the base currency at the ask price and sell an equivalent number of units of the quoted currency to pay for the base currency, which entails a trader opening a long position.
2.5 Empirical Studies of the FX Market Behaviour

Classical economics is built on strong and oversimplifying assumptions such as perfect rationality, homogeneity and market efficiency, which fail to explain behaviour in financial markets [218]. This has led to the development of a number of approaches to studying the behaviour of financial markets, aimed at providing a good understanding of financial market behaviour and the forces driving such behaviour. A number of works in the literature have contributed to a better understanding of the behaviour of financial assets and traders. Dacorogna et al. [63] provide a good overview of the main stylized facts with regard to foreign exchange rates. These stylized facts are grouped under four main headings for HFD: autocorrelation of return, distributional issues, scaling laws, and seasonality. In their work, they found remarkable similarity between the stylized facts of the different types of asset in financial markets. Cont [57] presents a review of the asset’s price return stylized facts at low and high frequencies in various types of financial markets. These stylized facts of asset returns are: distributional properties, tail properties, linear and nonlinear dependence of returns in time [57].

A considerable number of works have determined the scaling laws for a wide range of market data and time intervals [27, 60, 63, 67, 91, 98, 104, 167, 174]. There is one scaling law that is widely reported in the literature [27, 60, 63, 67, 91, 98, 104, 167, 174]: the size of the mean absolute change of the price is scaled to the size of the time interval of its occurrence. This scaling law has been applied to studying volatility and measuring risk [66, 90, 93, 208]. The scaling law discovered by Guillaume et al. relates the number of so-called directional changes to the directional-changes sizes [104].

Glattfelder et al. discovered 12 independent new scaling laws in foreign exchange price data series holding across 13 currency exchange prices [98]. Their statistical analysis depends on the so-called directional-change event approach. The discovered scaling laws give an estimation of the length of the price-curve coastline which turns to be long. The first scaling law discovered in [98] relates the average number of ticks observed during a price move of size Δx to the size of that threshold Δx. According to Glattfelder et al. a tick is defined as a price move larger than 0.02%. The second scaling law counts the average yearly number of price moves of size Δx. The third scaling law relates the average difference between the high and low price levels during a time interval Δt to the size of that time interval Δt. Law four relates the average time interval for a price change of size Δx to occur to the size of the threshold and similarly law five considers directional changes instead of a price move of size Δx. A set of six scaling laws emerge from the so-called total-move of the price which decompose into directional change and overshoot events. The last scaling law considers cumulative price moves for a price move of size Δx to this threshold Δx. These scaling laws have the potential to provide us with better insights into how the FX market works and what affects its dynamics. The directional change event approach used in [98] is explained in chapter 3. In chapter 5, we have extended Glattfelder et al.’s work by discovering four new scaling laws on the transaction data.

Reviewing the FX market literature reveals three major approaches which have been adopted with regard to studying the behaviour of the FX market: behavioural finance, analytical models and agent-based modelling. The behavioural finance approach is a psychology-based approach which studies how traders’ psychology influences their trading reactions to asset returns and to new information affecting the market. For a good review of studies using the behavioural finance approach, we refer interested readers to [29, 203, 211]. Adam Smith was the first significant contributor to a study of the relationship between economics and psychology in an attempt to explain some of the psychological principles of market traders’ behaviour in his book ‘The Theory of Moral Sentiments’ [207]. A considerable number of studies have established and
confirmed the existence of several psychological biases on the part of FX market traders’ behaviour. These consist of studies of traders’ herding behaviour [125], feedback trading [1, 38, 136], traders’ heterogeneous expectations and beliefs [87, 88, 116, 162, 173, 178], traders’ overconfidence [28, 97, 179], and loss aversion bias [180]. Although the behavioural finance approach has been successful in explaining a number of properties and observations with regard to financial markets, it leaves many properties and observations unexplained such as the properties of price time series.

The second approach uses analytical models to study and analyse the FX market microstructure. Using analytical models, a number of researchers in this area have analysed the effect of order flow [34, 75, 77], institutional interventions [176, 184], fundamentals trading on asset returns [75, 78], feedback trading impact on order flow [72, 75, 89] and market news arrival [10, 14, 47, 76, 78]. The main limitation of analytical models is the lack of direct insight into the microscopic nature of the market statistical properties [131]. Moreover, analytical models currently face several challenges in analysing market behaviour due to the large number and complexity of financial market data in contrast to earlier times [172].

The limitations of the behavioural finance and analytical model approaches have led to the emerging field of agent-based modelling [214]. Using an agent-based modelling approach, one can build an ABM which exhibits the stylized facts of real financial markets. Studying the behaviour of financial markets using simulations allows us to reveal and explain many properties of market behaviour, possible market crises, and traders’ behaviour. In addition, simulations enable the study of the consequence of changes in market mechanisms, market conditions and traders’ behaviour in the market as a whole, and particularly with regard to traders’ performance. Furthermore, using simulations one can potentially design, test and study algorithmic trading strategies. For a good review of the significant studies in the area of ABMs, we refer interested readers to [62, 137, 143, 193].

2.6 Agent-Based Financial Markets

ABMs have emerged as indispensable tools in exploring and understanding the trading behaviour in financial markets [85]. These are in essence computer programs that simulate the financial markets behaviour which comprises different features such as a market mechanism, traded assets and trading agents that could be modelled to emulate the behaviour of human traders. In modelling a specific market, it is important that this is able to reproduce the same stylized facts as those exhibited by the corresponding real one [62, 137]. For a good review of the work conducted in the area of ABMs, we refer interested readers to [62, 137, 143, 193].

Recently, the ABM area has witnessed a continuous increase in the number of works produced. Samanidou et al. in [193] provided an overview of some influential ABM used by economists and physicists, and the contributions previously made by a number of researchers in this field. LeBaron in [143] provided a survey on some of the important works done in ABMs. He focused on how computational tools, in particular ABMs, are necessary for the exploration and understanding of the financial markets due to the limitations of the analytical models. Several design routes have been used in ABMs, and in many cases it is difficult to differentiate one model from the others.

In the following sections we review some of the important works in this field that relate to the work in this thesis.
2.6.1 SF ASM

One of the earliest ABM platforms was the Santa Fe Artificial Stock Market (SF ASM) which was developed in the late 1980s [140]. This is the leading influential work in the area of ABMs [137]. The SF ASM is a simple model which consists of a combination of traditional economic structures and evolutionary trading agent dynamics. The aim of the SF ASM is to investigate the dynamics of prices in a market operated with heterogeneous agents that adopt forecasting strategies. Detailed descriptions of the SF ASM can be found in [21, 140].

The SF ASM is composed of two tradable assets, a risk-free bond and a risky stock asset. In this market, the number of the risky stock assets is equal to the number of agents. The share price in the SF ASM reflects either excess demand or excess supply [140]. Therefore, the market trading mechanism implies that if there is an excess demand, then there will be an increase in price, whereas if there is an excess supply, there will be decrease in price. The price formation of the early SF ASM can be defined as

\[p_{t+1} = p_t + \vartheta (d_t - s_t) \]

where \(p_t, d_t, s_t \) are the price, demand and supply, respectively at time \(t \). \(\vartheta \) is a measure of market depth which represents the sensitivity of the market to the imbalance of aggregated orders. This type of price formation has advantages of being fast, implying a market continuously in disequilibrium, and which facilitates the analysis of the market [137]. However, there are some drawbacks with regard to this type of price formation. It has been found that prices in the SF ASM are very sensitive to the \(\vartheta \) parameter [137]. For instance, setting \(\vartheta \) too low makes the price change too slowly in response to excess demand. A second drawback relates to buying and selling orders which were not filled [140].

In the SF ASM, agents are modelled as operating with learning and adapting strategies using artificial intelligence techniques. In particular, agents would find a matching rule for the current market conditions and come to the market with a decision to buy or to sell a particular stock. During the market run, the number of active agents is constant. This is because all agents in the SF ASM are endowed with trading rules that match all the potential states of the market [62]. The most important element of the SF ASM is the ability of the agents to learn and forecast future price movements using a classifier forecasting system which maps the current states of information in the market and turns it into a conditional forecast of future prices [140]. The novelty of the SF ASM is the existence of heterogeneity in the agents’ expectations [62].

The SF ASM reproduces a number of the stylized facts of the price returns observed in stock markets. Unfortunately, the developers of the SF ASM do not offer a quantitative description of the reproduced stylized facts [62]. Moreover, the complexity of the agent’s design makes understanding the origins of the stylized facts a difficult task [135]. Modifications and expansions by many researchers have been continuously introduced to the SF ASM. For instance, some of these ABMs differ from the SF ASM in terms of the type of trading agents used on the market such as in [23, 48, 99, 170, 172, 212, 232]; the market mechanism such as in [149, 150, 158]; and the number of traded assets such as in [212].

2.6.2 CHASM Framework

Another important piece of research is the CHASM framework (Co-evolutionary Heterogeneous Artificial Stock Market) developed by Martinez-Jaramillo and Tsang [171, 172]. CHASM uses an ABM to study the behaviour of stock markets. The aim is to identify the conditions under which the stylized facts with regard
to the generated prices from an ABM resemble the behaviour of real stock market prices.

In CHASM, there are two different types of assets: a risk-free asset represented by cash and a risky asset represented by stock shares. Before the launch of the market, all the agents are endowed with a specified amount of cash and a specific number of shares. Hence, CHASM lacks heterogeneity in the distribution of the agents’ wealth before the launch of the market. The market mechanism used in CHASM is similar to that used in the SF ASM. Therefore, price formation is determined by either excess demand or excess supply. CHASM adopts discrete-time trading in which the market allows agents to place an order or to hold. Therefore, the total number of active agents is not constant at every time period of the market. Unfortunately, CHASM does not present a practical level of asynchronicity, because at every time period of the market, each agent has to perform some trading computation.

CHASM supports the modelling of the fundamental characteristics of real markets by incorporating different types of agents (including fundamental, technical, and noise or hybrid agents). A noise agent places an order based on a constant probability defined before the launch of the market. A fundamental agent places an order when the asset price departs from a value that the agent considers to be the fundamental value of the price. The behaviour of the fundamental agents in CHASM is taken from [82]. A technical agent is a genetic programming based agent who forecasts price changes using EDDIE (Evolutionary Dynamic Data Investment Evaluator) [152, 221, 222]. The novelty of CHASM is the existence of heterogeneity in modelling the agents’ trading strategies and their desired expectations. However, the complexity of the trading strategy of technical agents makes studying the origin of the stylized facts a difficult task.

CHASM reproduced some of the stylized facts of price time series in the stock market. By using CHASM, they observed and studied the stylized facts of end-of-day price time series (low frequency data) in the stock market. Therefore, the authors identified the conditions under which the stylized facts of the price time series are exhibited in an ABM. The key conditions are heterogeneity and behavioural constraints in modelling the agents, the generation of limit orders and agents possessing learning and adapting strategies.

2.6.3 Minimal Agent-Based Model

Alfi et al. in [5–7] developed an ABM reproducing the stylized facts of price time series. The aim is to search for the essential elements that an ABM must include in terms of reproducing the stylized facts. According to the authors, this is a minimal ABM for reproducing the stylized facts. Due to its simplicity, it facilitates the investigation of the problem of the self-organization of financial markets and the understanding of the dynamics of markets operating with a different number of agents.

This minimal ABM takes and revises four central features from the Lux-Marchesi (LM) model [62]. These four features are the modelling of fundamentalists and chartist agents, the role of herding behaviour and the mechanism of price formation. The fundamentalists’ trading behaviour has a stabilizing effect on the dynamics of prices in the market. On the other hand, the chartists’ trading behaviour has a destabilizing effect on the price dynamics. The fundamental agents sell when the asset price is above its fundamental value; otherwise they buy. As in the LM model, all the fundamental agents have the same belief regarding the fundamental value of the traded asset price [62]. Thus, the fundamental agents’ model lacks heterogeneity in terms of the agents’ expectations of price changes. The chartists take decisions to invest in the market using price historical data. In particular, chartists use the price moving average as an indicator of investment opportunity. Accordingly, chartists follow the price trend upwards and downwards to detect investment opportunities.
There are two types of traded assets in the market, a risk-free and a risky asset. The price formation depends on the demands of the two types of agents, fundamentalists and chartists. The fundamentalists’ demand \(d_f \) is given by

\[
d_f = \frac{N_f}{N} \xi (p_{f,t} - p_t)
\]

(2.3)

where \(N_f, N \) are the number of fundamentalists and the total number of agents respectively. \(\xi \) is a parameter which represents the impact on the price due to the behaviour of the fundamentalists. \(p_{f,t} \) is the fundamental price at time \(t \) whereas \(p_t \) is the current asset price at time \(t \). The chartists’ demand \(d_c \) is given by

\[
d_c = \frac{N_c}{N} \phi q - 1 (p_t - p_{Mov,t})
\]

(2.4)

where \(N_c, N \) are the number of chartists and the total number of agents respectively. \(q \) denotes the time window. The \(\phi \) parameter is the strength of the chartists’ signal potential and the expression \(q - 1 \) makes the chartists’ signal potential independent of the time window \(q \) [5]. \(p_t \) is the current asset price at time \(t \), whereas \(p_{Mov,t} \) is the price moving average at time \(t \). The price at time \(t + 1 \) is defined by

\[
p_{t+1} = p_t + d_c + d_f + \varepsilon
\]

(2.5)

where \(\varepsilon \) is white noise. The drawback of this price formation is that it completely depends on the agents’ trading strategies. Thus, it is considered to be a customized price formation, and cannot be generalized for agent-based financial markets.

Alfi et al.’s study provides a detailed analysis of the self-organization phenomenon, in which the stylized facts emerge in an ABM. The results of this study lead to a detailed understanding of fat tails and volatility clustering. In their study, they drew attention to the minimal essential elements that are responsible for reproducing real financial market stylized facts. The study focused on four essential elements in the form of fundamentals and chartist agents, the analysis of price movement for both of the two strategies, the possibility of changing trading strategies and the total number of agents who participate in the market. By using this ABM, the authors show that the dynamics of the price in the time series depends on the number of agents one considers. Most importantly, they show the significance of introducing a threshold in terms of the agent’s action, in which the agent can enter or leave the market depending on the behaviour of the price.

2.6.4 Other Agent-Based Financial Markets

The Kim and Markowitz model is considered to be the first modern multi-agent model in economics [124]. The building of this model was motivated by the US stock market crash in 1987 when it fell by more than twenty per cent. The need for this new model was because the market crash could not be explained by the emergence of significant new information [193]. However, the origins of this crash are still ambiguous, and an acceptable clarification of such a crash has still not been provided [197]. The authors aim to show the effect of margin and investment practice in the market. The market model contains two types of participants both of whom hold only two assets in the form of stock and cash. The first type of participant is the rebalance trader whose strategy is to ensure a balance between their wealth in stocks and cash. Such a strategy has a stabilizing effect on the market [124]. The second type of participant is the portfolio insurers’ trader whose strategy aim is to achieve a specified expatriation date to ensure a specified amount of wealth. This model
does not aim to understand the origin of the market stylized facts. However, a later study [193] examined whether or not the Kim-Markowitz model reproduces the stylized facts, and the result was negative.

The Genoa artificial stock market (Genoa ASM) was developed by Marchesi et al. [168]. This ABM is populated by heterogeneous agents that decide randomly whether they are a buyer or a seller. Following this, the agent places a limit sell or buy order determined by their budget constraints, their cash availability and their asset portfolio. In the Genoa artificial market, the prices are generated as random variables and there is one traded asset. The market clearing mechanism is very simple and it performs by first collecting all the limit orders, assigned by the agents participating in the market. Following this, the market is cleared by crossing the supply and demand curves based on the current limit orders. The intersection point determines the new asset price. Only orders whose limit prices are compatible with the new price are satisfied. The results from the Genoa artificial market show that the price time series exhibits random walk behaviour and it generates fat tails distribution of returns, uncorrelated returns and persistent price volatility. The drawback of the design of the Genoa ASM is that prices are generated as random variables. Such randomness induces vagueness in understanding the reasons behind the price behaviour.

Many models have been implemented to date to reproduce the stylized facts of real market data using an order-book trading mechanism. For example, Rieck in [191] used a simple order-book trading mechanism to observe the evolution of trading strategies. He concluded from his results that fundamental strategies cannot lead the price movement to the fundamental value. Another important example was the work of Iori and Chiarella who introduced an agent-based double-auction market with heterogeneous agents (including fundamental, technical and noise traders) in which these traders place orders in an electronic order book system [115]. Their investigation showed the impact of the different trading strategies on market behaviour. Also, their model showed how the interaction between different trading strategies produces realistic price series. They concluded that their market model was able to reproduce many of the complex phenomena observed in real stock markets. Similarly, Preis et al. in [187] introduced a simple market model based on a single order book. Their model was capable of producing the empirical stylized facts of real financial behaviour.

Several models of the foreign exchange market have taken the step of explaining the behaviour of such markets. Considerable research has led to the development of a model of the foreign exchange market. Among them are those of Hooper and Morton in [111] and Kirman in [127]. Similarly, Kirman and Teyssière’s model, with interacting agents, captures the empirical long-memory properties of real financial market data [128]. Another highly relevant contribution is that of Lyons in [161] who examined how information of the order flows impact on prices in real markets. Another example is that of Lux who examined the dynamic results from the learning process through the use of genetic algorithms for explaining the main stylized facts of the exchange rate [160]. Further work by Kirman et al. [130] used a foreign exchange market model to allow traders to forecast prices based on chartists and fundamentals and indicated that traders can switch between these two types based on their expectations.

2.7 Design Choices in ABMs

In designing and developing an ABM, several design choices need to be made regarding the trading strategies, market mechanism, traded assets, timing, etc. Different choices can be made depending on the underlying purpose for developing the ABM as has been described in the previous sections. However, all the
developed ABMs are based on the same concept in that the macro behaviour is a result of the micro interactions of the market participants [137]. A good review of the design choices for building an ABM can be found in [62, 103, 137].

2.7.1 Agent Trading Strategy

The trading strategies of the agents that will be used in an ABM constitute, without doubt, the most important design question and decision when building a model of financial markets [137]. In the literature, the design of the agent’s trading strategies in an ABM ranges from simple budget constrained zero intelligence agents as in [26, 32, 45, 64, 69, 84, 99, 100, 118, 119, 212, 226] to intelligent agents as in [15, 16, 21, 48, 50, 51, 53, 70, 130, 140, 154, 160, 167, 170, 172, 198, 232, 236, 239].

Real-world strategies

There are several design choices that one can take when representing the trading agents that will participate in the market [137]. One way to model agents is to endow them with strategies that emulate those used by real traders [137]. One of the drawbacks is that the dynamics of the asset price is the result of these mapped trading strategies. Thus, what if a number of essential trading strategies which exist in the real market were left out, or what if the agents’ believed it was necessary to change their current trading strategy [137]. Also, it is not easy to find out exactly how real traders operate. Another drawback is that this type of agent might lack a well-defined objective (utility) function. There are a number of useful aspects associated with having a well-defined utility function for evaluation purposes [137]. An example is that agents can measure and evaluate their performance in the market using a utility function. A further drawback is that this type of agent does not change their trading strategy, whereas traders in the real market are likely to change their trading strategy over time [172].

Zero intelligence

Another type of trading strategy is the zero intelligence (ZI) in which the agent’s behaviour is random ruled by a simple budget constraint. Although their trading behaviour gives the impression of being a form of learning, these type of agents do not learn. Becker in [32] showed that budget constraint strategies can ensure the appropriate slope of the supply and demand curves. Gode and Sunder in [99] were the first to introduce the concept of the ZI agent. The authors used this type of agent to model market transactions in double auctions. ZI agents were used in [26, 45, 64, 69, 84, 118, 119, 212, 226]. The drawback of the use of ZI agents is the lack of a clearly defined trading strategy. Therefore, randomness in the agents’ trading behaviour creates an element of vagueness in understanding the reasons behind the agents’ decisions and overall effect on the market.

Learning and adapting strategies

In a financial market environment, learning is important where agents may improve their behaviour/utility by being able to recognise patterns, learn trends and adapt to the new conditions in the market. An example of ABMs use such a type of agent is the SF ASM [140]. Similar to these are the ones done by [15, 16, 21, 48, 50, 51, 53, 70, 130, 144, 145, 154, 160, 167, 170, 172, 198, 232, 236, 239]. This type of agent uses a variety of artificial intelligence techniques to model changes in agent strategies. This approach has a number
of drawbacks [137]. Among them is the complexity of the computational tools that are used in modeling the trading agents. In addition, the complexities of the evolved agents’ strategies represent a limitation in the analytical tractability of agents’ behaviour. Also, there are limitations on the search space of trading rules caused by the design of the agents’ trading strategies. As some of these learning strategies attempt to find the best decision rule by searching a space of trading/decision rules, if this space is very big, they may not be able to find the best rule within an acceptable amount of time.

Forecasts of future prices

There are agents who are modelled to forecast future price changes. This type of agent uses a number of evolutionary techniques to model the forecasting mechanism. Section 2.8 provides a brief description of some of the most popular evolutionary techniques that have been used to perform financial forecasting. These evolutionary techniques are: artificial neural networks, genetic algorithms, learning classifier systems and genetic programming. Agents adopting a forecasting strategy were used in [11, 16, 21, 48, 70, 130, 138, 170, 172, 232, 236, 238]. The forecasting of future prices can be fed into (a) the agent decision making framework as in the SF ASM [140] or (b) progress the agent decisions directly such as in [15].

Objective function

A different way to design the agents is to make use of an objective function. Agents could be modelled with an objective function either implicitly or explicitly with regard to the agent’s decision making process. An implicit objective function implies that the agent’s objective is incorporated indirectly into the decision making process. An example of an implicit objective function is maximizing the agent’s outcomes [11, 82, 150]. On the other hand, most of the agents in ABMs have an explicit objective function where the agent’s performance in the market can be measured through the use of a utility function. Examples of such models are the ones developed by [21, 48, 170, 172, 183, 232, 236, 239].

Social learning

There are agents whose strategy is based on observing other individuals’ trades in the market and adjusting their strategies based on the observed actions of these other traders. This phenomenon is often called social learning or herding behaviour [143]. An example of ABMs using such an agent are the models introduced in [3, 4, 26, 58, 112, 126, 157, 158]. These ABMs aim to model the trading agents by incorporating herding behaviour. Hott showed in [112] that price bubbles can be explained by herding behaviour.

We have summarized above the most important design issues regarding the modelling of the trading agents strategies. In addition, we have illustrated some examples of ABMs which use different trading strategies.

2.7.2 Market Mechanism

The market mechanism is the second most important design question which faces researchers when building an ABM [137]. There is a variety of trading mechanisms that one can use in an ABM. The majority of ABMs follow four methods of solving this design problem. The simplest way is to assume that price movements respond to the excesses of demand and supply. Thus, if there is an excess of demand, the price will rise.
Conversely, if there is an excess of supply, the price falls. An earlier version of the SF ASM used this trading method [137]. There are some ABMs that use the same method for the trading mechanism including [48, 58, 82, 170, 172]. In [83], the author used a similar trading mechanism but the excess demand or supply for assets is filled by a market maker. In [194], during the simulation, the price was amended by a market maker in the direction of the excess demand. This type of market mechanism has a number of advantages: (a) it is fast, (b) it pressures a market continuously in disequilibrium and (c) it facilitates the analytical tractability of market behaviour [137]. Nevertheless, it has some drawbacks among which is the sensitivity of the parameters used, and the fact that some orders never get satisfied [137].

Alternatively there is a model of the market where a local equilibrium price can easily be found. Such types of market mechanisms have the advantage of generating a well-defined demand function for the agents. However, this method requires us to define a market with more economic structure, so that a certain temporal equilibrium price can be found [172]. Examples of ABMs using this type of trading mechanism are [21, 150].

The third trading mechanism is to model the actual trading mechanism found in markets. This method implies the implementation of a realistic trading mechanism as used in a real market. According to LeBaron in [137], this method is the most appealing in terms of the modelling of a high-frequency market. Such a method gives the developer of the ABM a lot of market structure to work with [137].

An alternative to the three aforementioned market mechanisms is to implement a continuous double auction mechanism with limit orders, and some other realistic features present in real markets. Some examples of such models are [50, 52, 54, 55, 64, 96, 99–101, 115, 118, 119, 126, 188, 189, 232].

2.7.3 Assets

The traded assets are an important characteristic of every ABM. There are mainly three different issues regarding the modelling of the traded assets: number of assets, types of assets and finally the assets’ properties.

Regarding the number of traded assets, the majority of ABMs have two different assets: a risk free asset and a risky asset [137]. A small number of ABMs operate with many more than two assets in the market such as [49, 128, 229, 239]. The main reason for restricting the market to operating just with two assets is because this facilitates the analysis of the individual traders’ and overall market behaviour; having more than two assets in the market can make the analysis very complicated.

Regarding the types of assets, in most of the ABMs, the agents have the choice of opting for a risky asset or a risk-free one [5, 21, 124, 140, 144, 145, 150, 168, 170, 172, 232]. Each asset has different properties. For instance, the risk-free asset could be cash or bonds, while the risky one could be a stock, a currency or even a security associated to a fundamental value.

2.7.4 Time

Timing is another important design issue in building ABMs. In an ABM, timing refers to many things including the time span of the previous information considered by the agents. This is an important issue in terms of an ABM as almost all the learning mechanisms are fed by previous information. LeBaron in [139] performed an experiment to explore the impact of different memory lengths of the agents with regard to market prices. Timing refers also to the order in which events occur. In other words, trading in most ABMs is synchronized by the designer [137]. These models are based on the assumption that all trades take place
between two discrete points in time, whereas in reality there are no fixed periods. Some examples of ABMs with trading synchronization are [5, 21, 48, 82, 170, 172]. Timing refers also to the frequency with which agents update their strategies. As can be observed from reality, traders update their behavioural rules over time, and this has a significant impact on their performance and on market prices. For example, agents in [138, 170, 172] updated their strategies in the market periodically while in [170, 172, 230] the periodicity of the strategies is updated through a trading behavioural constraint.

In the literature, there are some empirical studies such as [40, 64] show that the dynamic behaviour of the ABM differ, according to whether the state of the ABM is updated in continuous-time or in discrete-time. Continues-time implies that at time t of the simulation run, all agents send their orders and update their beliefs. Afterwards, the time of the simulation run changed to $t+1$. The Grand Canonical Minority Game [120] and CHASM [172] imply discrete-time in which the market allows agents to place an order or to hold. As a result, the number of agents takes part in the total demand and supply is not constant at every single time of the simulation run. These two ABMs do not present a realistic level of synchronisation, as at every time of the simulation run, each agent has to carry out some trading computation. The Genoa Artificial Stock Market [188] introduced a new approach where the determination of the agents who will be active in the next period of the simulation run is drawn randomly. This randomisation alone is not adequate as it would be ambiguous for the arrival time of the order. In [40, 64], their studies conclude that the asynchronous nature of trading in the financial markets fundamentally has to be considered in ABMs.

2.7.5 Benchmark and Validation

Nearly all ABMs throw up many important questions during the validation of the various ABM structures [137]. ABMs that emulate the behaviour of real financial markets have to exhibit the same stylized facts as real ones [143]. In an ABM, the observation of the same stylized facts as the real market serves as benchmark and evidence that the ABM is indeed closely reproduce the behaviour of the real market. An ABM can be validated in a number of ways. One approach is to make useful benchmark cases in which the behaviour of the market is well defined [137]. Another approach is to use parameters in the ABM resulting from either real markets or ABMs [48, 141, 158, 230, 238, 239].

Due to the large number of parameters that one could potentially set in an ABM, one has numerous degrees of freedom [137]. However, the potential to have a very large number of parameters raises some difficulties and complexities when designing an ABM [137]. Often unnecessary complexity makes it hard to identify which elements of the ABM are responsible for the emergence of the stylized facts and whether all of the elements are equally essential for reproducing them [143]. The appropriate selection of the market parameters is a crucial element of the design but, at the same time, it is a tricky one. Researchers should do experiments with different values for each parameter and then track the changes in market behaviour. This allows them to define exactly the parameters that will lead the model to reproduce some real market features [137].

2.8 Artificial Intelligence in Financial Forecasting

The availability of historical financial data provides extensive rich resources for predicting future price changes in financial time series. The possible reward of a useful tool for forecasting changes in the price of financial assets is without doubt a major motivator. Financial forecasting has attracted the attention of
researchers from a variety of computer science areas. Techniques from Artificial Intelligence and in particular Evolutionary Computation have been used extensively in the design of financial forecasting techniques for predicting future price changes in financial time series. The most commonly used techniques are Artificial Neural Networks (ANNs) [231], Genetic Algorithms (GAs) [108], Genetic Programming (GP) [132] and Learning Classifier Systems (LCS) [195, 196]. Austin et al. [23] provide an overview of the research conducted by the Centre for Financial Research (CFR) at Cambridge University’s Judge Institute of Management, which has been researching trading techniques in FX markets for forecasting intraday or daily exchange rates.

In this section, our intention is to provide a brief illustrative description of the artificial intelligence techniques used in financial forecasting and provide a brief description of some of the most relevant works in the field.

2.8.1 Artificial Neural Networks

In financial forecasting, Artificial Neural Networks (ANNs) are probably the most heavily exploited artificial intelligence technique. There are many studies in the literature on the subject of ANNs. Amongst them are [24, 190, 217, 237]. The ANNs technique has been applied in diverse areas of finance. Wong and Selvi in [231] provide a good survey of the literature on ANNs between 1990 and 1996. An additional recent survey can be found in [199]. Yao and Tan in [233] provide empirical evidence of the appropriateness of ANNs with regard to the prediction of foreign exchange rates.

In financial forecasting, the input data is a fundamental issue in terms of the success or failure of ANNs, as is the case with other forecasting techniques. Nevertheless, this issue is particularly important in the case of ANNs owing to the lack of flexibility of ANNs techniques. A number of works in which ANNs are combined with genetic algorithm techniques is demonstrated by [107]. Further relevant examples are the studies done by [30, 65, 105, 190, 217, 234, 237, 239].

2.8.2 Genetic Algorithms

Genetic Algorithms (GAs) were invented by John H. Holland in 1975 [108]. GAs belong to the evolutionary algorithms field which offers very popular techniques in optimization and machine learning problems. GAs use a generation of individuals where each individual is a candidate for a possible solution to the problem. A new population is produced by means of selecting the fittest individuals from the current population through the application of genetic operators such as crossover and mutation.

In the finance area, GAs are not limited to forecasting. GAs are not just used for forecasting but they are also important in modelling learning in an ABM. Examples of relevant works which have involved financial forecasting using the GAs technique are [9, 31, 147, 160, 166]. There are a number of limitations of GAs such as the fixed size structure of the individuals and their representation. Nevertheless, GAs can be used as a meta-heuristic or in combination with other forecasting techniques, to advance the predictions’ performance as can be seen in the works done in [107, 227].

2.8.3 Learning Classifier Systems

A Learning Classifier System (LCS) is a machine learning mechanism wherein a population of rules is evolved and modified by genetic algorithms. Since GAs are used to select and modify the population of
rules, this means that the representation of the rules has to be done with binary strings. Holland and Miller [109] proposed the use of an LCS to model economic agents. The SF ASM used an LCS to forecast price changes in time series [21]. In addition, an LCS was used to perform financial forecasting in the work done in [195, 196].

LCS has the same limitations as GAs in terms of the representation and the fixed size structure of the individuals of the population. An alternative technique to the GAs and LCS is the genetic programming technique.

2.8.4 Genetic Programming

Genetic Programming (GP) developed by Koza [132], is an evolutionary technique which overcomes the fixed size limitation and the representation problems of GAs and LCS. GP is similar to the GAs in terms of the existence of a population of individuals that are going to be selected for reproduction. It has recently grown to be one of the most widely used financial forecasting techniques. In GP, individuals are computer programs hierarchically structured and capable of evolving dynamic structures in both size and shape, to represent the solution. The most frequently used representation of GP systems are decision trees. Examples of some of the most relevant works in financial forecasting that use GP can be found in [21, 48, 92, 117, 123, 140, 152, 154, 169, 172, 198, 221–224, 227, 236]. We used GP to model genetic programming-based agents, which forecast investment opportunities by using technical analysis as their central tool. These efforts are presented in chapter 8.

2.9 High-Frequency Data

Financial transactions data are now recorded at gradually increasing levels of detail due to advances in computer technology and data storage, which have brought a dramatic fall in the cost of recording data. Studying the financial market using a large number of data, referred to as high-frequency data (HFD), without doubt significantly improves our understanding of financial market behaviour [63]. HFD in finance refers to an extremely large amount of data which is the complete record of transactions and their associated characteristics at frequencies higher than on a daily basis [74]. According to Dacarogna et al. “The number of observations in one single day of a liquid market is equivalent to the number of daily data within 30 years” ([63], p. 6). The HFD by nature are inherently irregularly spaced in time [63]. The structure of a HFD is based on the policy and procedures of the institution that generate and gather the data [44].

2.9.1 Significance of High-Frequency Data

HFDs have been widely used to study a range of financial market microstructures and issues, by both the academic community and by industrial analysts [63]. These data have advantages in terms of unique features that are lacking in data recorded at lower frequencies, such as daily data [63]. As Dacarogna et al. remark real traders take their decisions observing high frequency data [63]. HFD allows us to study the financial market at varying time intervals, from seconds to years. The analysis of HFD is valuable with regard to many issues in finance, including trends and patterns detection, observing and establishing stylized facts of market and participants’ behaviours, defining scaling properties, understanding competition among related markets, studying the strategic behaviour of market participants and building models of financial markets [36, 63]. The study of HFD reveals many properties of market behaviour which consequently requires us to
revise some of the primary theories proposed by classical economists [63]. Details of empirical studies on the usefulness and effectiveness of HFDs are provided by [13, 36, 63, 74, 94].

2.9.2 Challenges Associated with High-Frequency Data

The majority of studies and works reported in the financial literature deal with low-frequency datasets of financial market data, such as daily data [63]. There are two major reasons: (i) to a certain extent it is still expensive and time consuming to gather, store and manipulate HFD, (ii) most of the analytical approaches developed to date have been designed for homogenous time series, whereas there has been little work done for data that arrive at random time intervals [63]. Nevertheless, at the present time, with the advance in computer technology, the technical hitches and complications associated with HFD availability is a very narrow issue. Though the availability of such HFD is becoming less of a problem, new challenges have emerged with regard to the processing and analysis of these HFDs [13, 36, 63].

Regarding the processing, HFDs may possibly contain data that are not reliable and compatible in terms of actual market activity. Specifically, HFDs may contain a variety of erroneous data, misleading data and data gaps. Erroneous and misleading data may possibly result from the institution’s internal system procedures which may involve using dummy ticks. Data gaps may result from computer system errors during the storage process. Recording failures can lead to data gaps, and database viruses can lead to missing ordered time series observations [36, 44, 63]. Consequently, these data errors need to be filtered and corrected prior to analysis. A filtered dataset is an essential pre-condition for moving on to the next step, which involves analysing and understanding the HFD. Failure to recognize that such data errors may exist in the HFD will possibly cause ambiguous results in the statistical analysis. In the literature, there are a number of works that address the filtering issue of HFD in finance, including [39, 44, 63, 182]. In chapter 4, we explain how we filtered a HFD of individual traders’ historical transactions on the OANDA FX trading platform. The aim is to eliminate data which appear incompatible with the prevailing individual trader’s trading activity.

In terms of the challenges posed by the analysis of the HFD, many critical issues arise as to which approach should be adopted in dealing with such vast amounts of data that are characterised by irregular time spacing and which exhibit enormous periodic patterns in market activity. One major issue is that most of the analytical approaches adopted in the literature are specified for fixed interval, homogenous time series. This poses extensive difficulties for analysing a HFD. A HFD is inhomogeneous in time, which consequently means that some of the times included in a HFD may possibly not contain any transactions [63]. Therefore, a very important decision has to be made concerning the time intervals over which to analyse the dataset. If fixed time intervals are preferred, then the analyst dealing with high-frequency data must aggregate the time series data to fixed time intervals, given that the data are inherently irregularly spaced over time [192]. However, such a method runs the risk of losing information as a result of the aggregation of data in the time series. Otherwise if irregular time intervals are preferred, then the irregular spacing of the dataset in time must be taken into consideration when analysing the dataset.

2.10 Conclusion

Studying the financial market using HFD over a long sample period will, without doubt, help to achieve a good insight into market behaviour. In the study described in this thesis, high-frequency data is the primary
source for analysing and understanding the behaviour of trading activity in the FX markets.

Part of this chapter surveys the FX market literature in order to present the major approaches adopted with regard to studying the FX market behaviour, and illustrates some of the key works associated with each of these approaches. The limitations of both the behavioural finance and analytical model approaches, and the potential significance of the agent-based modelling approach, have motivated us to explore the work in the area of ABMs. ABMs are capable of gradually improving our understanding of the behaviour of financial markets in a simplified way. They are capable of addressing a variety of current issues in the financial markets, and may lead to new findings about financial behaviour in various situations. The importance of ABMs has motivated the continuous development of new and efficient ABMs.

One of the crucial limitations of ABMs is the challenge of convincing someone who subscribes to the traditional analytical financial methods of the significant potential of the ABM in improving our understanding of the dynamic behaviour of financial markets. Furthermore, some of the important assumptions in finance, such as homogenous expectations and full rationality, are rejected in ABMs, and this always creates debate [80, 81, 183, 202, 203].

The ABMs literature reveals some of the objective and design limitations of such models. On the objective limitations side, one of the major limitations is that the majority of ABMs focus on reproducing some of the stylized facts of financial markets, while they pay much less attention to identifying the essential elements that are accountable for the emergence of the market stylized facts [21, 48, 146, 150, 232]. Identifying such essential elements should be the primary objective of any ABM since such identification leads us to an understanding of the origin of the market stylized facts [138]. To the best of our knowledge, there is no systematic study which identifies the essential elements required for modelling trading activity in the high-frequency FX market. Undertaking such an advanced study presents a challenge that we aim to address in this thesis.

With regard to the design limitations, there are two major criticisms rendered against ABMs: (a) their underlying complexity and (b) the synchronicity issue of trading events. The complexity of some of the ABMs prevents us from identifying the essential elements which are accountable for the emergence of financial market stylized facts [110, 143, 193]. It is essential for any ABM to be as simple and as clear as possible, to facilitate the exploration of the market, and to allow an understanding of the market dynamics in addition to certain phenomena present in the market. In this thesis, we aim to develop a simple agent-based FX market toward identifying the essential elements of such a market.

The timing issue represents a crucial limitation in ABMs [137]. In the majority of such markets, trading is synchronized and, most importantly, there are no representations of physical time in terms of the market [18, 21, 150, 170, 172, 238]. Also, most of these ABMs use low-frequency timing such as daily timing [172], in order to represent time, which doesn’t reflect the real market. There is a need to address this very important issue and within this work this has been considered in detail.

One of the main ABM constraints is the validation [96, 137, 141, 143, 230]. The lack of market data, especially HFD, as a means of validating the accuracy of ABMs, appears to be an obvious critical issue in many ABMs. In addition, a great deal of work is needed to choose the essential parameters for an ABM. Most importantly, justifying the values taken by such parameters is a critical task requiring a great deal of caution. Fortunately, the ABM presented in this thesis benefits from acquiring a HFD of individual FX market traders’ historical transactions. The dataset is described in chapter 4. In chapter 5, we used this dataset to establish a number of stylized facts that can serve as a benchmark for validating the trading
activity reproduced in an ABM. Prior to establishing the stylized facts, in the next chapter we define and show the usefulness of a suitable effective approach for analyzing and studying the financial market time series.
Chapter 3

The Directional-Change Event Approach

3.1 Introduction

Although we measure physical time through a time based system and time scales are equally spaced based on the chosen time unit (seconds, minutes, hours), trading activity in financial markets is not homogeneous in nature and this may be due to a number of reasons. For instance, on the announcement of political or economic news, there tends to be a sharp rise in market trading activity in response to the news, even during weekends when trading activity has a tendency to decline. Consequently, financial time series are unevenly spaced, which makes the flow of physical time discontinuous. Hence, it is essential to redefine financial time series beyond the notion of physical time changes.

To model the non-seasonal fluctuations in terms of volatility, new time scales were introduced by Mandelbrot and Taylor (1967) [165], Allais (1974) [8], Stock (1988) [210] and Müller et al. (1995) [175]. These new time scales are called “intrinsic time” as the time is determined by the time series itself and replaces the notion of physical time scale. Mandelbrot and Taylor in [165] introduced a “transaction clock” that ticks at every worldwide transaction. Allais in [8] proposed a psychological time scale in which the distinction to physical time corresponds to a transformation of the time scale. Stock in [210] introduced a time scale defined by the speed of the aggregated market activity or information flows. Müller et al. in [175] proposed intrinsic time defined as the cumulated sum of a market activity variable which is a statistical measure of volatility. Müller et al. successfully applied intrinsic time scale to a FX forecasting model [175].

Guillaume et al. [104] introduced the directional-change event approach where intrinsic time is defined by directional-change events, and events are characterised by a fixed threshold of different sizes. The directional-change event approach defines time in price time series, eliminating any irrelevant details of price evolution. Guillaume et al. describe the price evolution by the frequency of directional-change events over a sampling period which provides an alternative measure of the risk [104]. Later in 2011, using statistical analysis based on the directional-change event approach, Glattfelder et al. in [98] discovered 12 new empirical scaling laws related to foreign exchange data series across 13 currency exchange rates. These 12 scaling laws enhance our understanding of the behaviour of prices in financial markets, giving us new insights. Bisig et al. [37] define the so-called Scale of Market Quakes (SMQ), designed based on the directional-change event approach. The purpose of SMQ is to quantify the FX market activity on a continuous basis at major economic and political events announcements. Kablan and Ng [121] developed a new method of capturing volatility using the directional-change event approach.

In this chapter, we describe the directional-change event approach and demonstrate its application and
usefulness for studying and analysing financial time series. This is done using a four year data sample of high-frequency tick-by-tick market data for EUR/USD and EUR/CHF, spanning January 1, 2006 to December 31, 2009. Our study shows that the length of the price-curve coastline defined by a directional-change event approach is longer than the length of the price-curve coastline defined by fixed time intervals (physical time).

The remainder of the chapter is organised as follows. Section 3.2 describes the concept of intrinsic time in combination with showing empirically the limitations of a physical time scale for studying price time series. Section 3.3 provides a definition of the directional-change event approach. Data and empirical results, with regard to the directional-change event approach, are presented in section 3.4. Section 3.5 offers a measurement of the length of the EUR/USD price curve coastline. Section 3.6 describes a trading strategy based on the directional-change event approach. In addition, in section 3.6, a series of experiments were conducted to study the impact of such a trading strategy on a trader’s performance. This chapter concludes with section 3.7.

3.2 Intrinsic Time

The majority of traditional approaches to observe price movements in financial time series are based on physical time changes [104]. These are the changes that occur in a time series, ranging from seconds through hourly to daily changes, in which the flow of periodic fixed patterns is discontinuous. As a result of the availability of high-frequency data, in which data, by its nature is non-homogeneous in time, it has become increasingly difficult and challenging to observe price movements through the use of physical time [63]. Figures 3.1 and 3.2 show price activities for the EUR/USD currency rates on January 7, 2009. From both graphs, it is clear that significant patterns of the trading activity are ignored when considering the time series of prices based on daily and hourly changes (physical time). By way of illustration, in Figure 3.1 and Figure 3.2, the price movement from midnight, hour 0, to hour 13 and 57 minutes represents an investment opportunity to sell, with the price rising by 1.8%. This was overlooked in both the end of that day’s return and the hourly return.

Physical time fails to clearly capture the important activity of price movements in a significant manner, since the variety of trading activity obviously depends on the time of day. Using physical time to detect periodic patterns in time series, maps a variety of patterns with different magnitudes, which makes the flow of physical time discontinuous. Computational effort is required to analyse and study price time series, which results in obvious costs associated with the study process. To deal with this vital issue, alternative solutions have been proposed. Among them is the study of financial time series using intrinsic time [104], which provides a reliable solution.

Intrinsic time adopts an event-based system in contrast to physical time which adopts a point-based system. Physical time is homogenous which means time scales equally spaced on any chosen time scale. In contrast, intrinsic time is inhomogeneous in time and independent of the notion of physical time. In intrinsic time, time is defined by events. An event is characterized by a fixed threshold Δx and is defined as the absolute price change between two local extremal values exceeding a given threshold Δx [98]. Figure 3.3 shows EUR/USD price activities on the 7, January 2009 sample onto a reduced set of four sequential events defined by a threshold $\Delta x = 1\%$.

Figure 3.1: Price activities for EUR/USD on January 7, 2009. The straight line shows the gradient of the price changes for that day. The graph shows a major part of the activity is overlooked. So, chopping off the time series of prices will eliminate many significant price activities.

3.3 The Directional-Change Event

According to Tsang [219] a directional-change (DC) event can take one of the two forms - a downturn event or an upturn event. A downward run is a period between a downturn event and the next upturn event, while an upward run is a period between an upturn event and the next downturn event. A downturn event terminates an upward run, and starts a downward run, whereas an upturn event terminates a downward run and starts an upward run.

During a downward run, the last low price \(p_l \) is continuously updated to the minimum of (a) the current market price \(p_t \) at time \(t \) and (b) the last low price \(p_l \). Similarly, during an upward run, the last high price \(p_h \) is continuously updated to the maximum of (a) the current market price \(p_t \) at time \(t \) and (b) the last high price \(p_h \) [219]. At the beginning of the sequence, the last high price \(p_h \) and last low price \(p_l \) are set to the initial market price \(p_0 \) at the beginning of the sequence.

In an upward run, a downturn event is an event when the absolute price change between the current market price \(p_t \) and the last high price \(p_h \) is lower than a given threshold \(\Delta x_{DC} \):

\[
p_t \leq p_h \times (1 - \Delta x_{DC})
\]

(3.1)

The starting point of a downturn DC event is a downturn point which is the point at which the price last peaked \((p_h) \). The end of a downturn DC event is a downturn DC point which is the point at which the price has dropped from the last downturn point by the threshold \(\Delta x_{DC} \).

In a downward run, an upturn event is an event when the absolute price change between the current market price \(p_t \) and the last low price \(p_l \) is higher than a given threshold \(\Delta x_{DC} \):
Figure 3.2: Price activities for EUR/USD on January 7, 2009. The dashed lines show hourly prices for that day. Even with hourly prices, some activity is still overlooked.

\[p_t \geq p_l \times (1 + \Delta x_{DC}) \]

(3.2)

The starting point of an upturn DC event is an upturn point which is the point at which the price last troughed \((p_l)\). The end of an upturn DC event is an upturn DC point which is the point at which the price has risen from the last upturn point by the threshold \(\Delta x_{DC}\).

A DC event - a downturn event or an upturn event - is usually followed by a price overshoot (OS) event rather than an opposite DC event direction [98]. The OS event represents the time interval of price movement beyond the DC event. An OS event can take one of two forms - a downturn OS event or an upturn OS event. An upturn OS event is a period between the previous upturn DC event and the starting point of the next downturn DC event. Similarly, a downturn OS event is a period between the previous downturn DC event and the starting point of the next upturn DC event. Figure 3.4 illustrates how the price curve is composed of DC and OS events. Algorithm 3.1 illustrates how to define DC and OS events during a time period \(T\).

A total price movement \(\Delta x_{TM}\) between two local extremal price values (minimum and maximum price) is decomposed into a DC event and an OS event [98]. A total price movement \(\Delta x_{TM}\) is defined by:

\[\Delta x_{TM} = \Delta x_{DC} + \Delta x_{OS} \]

(3.3)

where \(\Delta x_{DC}\) is the size of a DC event while \(\Delta x_{OS}\) is the size of an OS event.

In a downward run, a downturn DC event is usually followed by a downturn OS event, which is ended by the next upturn DC event. In an upward run, an upturn DC event is usually followed by an upturn OS event, which is ended by the next downturn DC event [219]. So the directional-change event approach defines a
CHAPTER 3. THE DIRECTIONAL-CHANGE EVENT APPROACH

Figure 3.3: The graph shows a 24-hour EUR/USD mid-price sample and sequential events (solid lines) defined by a threshold $\Delta x = 1\%$. Intrinsic time triggers only at periodic events whereas physical time ticks equally across different patterns of different magnitudes in the price curve.

price time series as a sequence of

$$\cdots \rightarrow \text{downturn DC event} \rightarrow \text{downturn OS event} \rightarrow \text{upturn DC event} \rightarrow \text{upturn OS event} \rightarrow \text{downturn DC event} \rightarrow \cdots$$

3.4 Spectral Analysis of Tick Data

We use a high-frequency dataset composed of two currency pairs (EUR/USD and EUR/CHF) spanning a four year period, from January 1, 2006 to December 31, 2009. The dataset includes a bid and an ask price of a currency pair at a timestamp. Throughout the thesis, the following definition of mid-price is used

$$p_{m,t} = \frac{(b_t + a_t)}{2} \tag{3.4}$$

where $p_{m,t}$ is the mid-price of a currency pair, b_t is the bid price and a_t is the ask price at time t. We aim to use this high-frequency dataset to show the usefulness and suitability of the directional-change event approach in capturing periodic market activities.

Directional-change events are significant events as they capture periodic major change in a price time series in which the magnitude of an event is defined by the observer. Under physical time, we divide time into periods of equal length which has the drawback of missing significant events in a price time series. However, different time periods in a price time series may contain a different number of DC events of different magnitude, which demonstrate that price evolution is separate from physical time changes.

Figures 3.5 and 3.6 report the number of DC events of 0.03% and 0.10% magnitude in different time periods of the 5th, 7th and 9th January 2009 in EUR/USD and EUR/CHF mid-price time series. For EUR/USD,
CHAPTER 3. THE DIRECTIONAL-CHANGE EVENT APPROACH

Figure 3.4: Price movements within 24 hours are shaped by directional-change points (diamond) with a threshold $\Delta x_{DC} = 0.4\%$. A total price movement between two local values (minimum and maximum price) is decomposed into directional change (solid lines) and an overshoot (dashed lines) events.

we can observe from the results in Figure 3.5, that the period between 9:00 – 11:59 on the 5th (Monday) January contained 971 events with a threshold of 0.03%, while for the same period on the 7th (Wednesday) January there were 683 events. On the 7th (Wednesday) January there were 34 events for three periods of time with a 0.10% threshold, while this was not the case on the 5th (Monday) January. The reported results in Figures 3.5 and 3.6 highlight two important observations: (a) for different currency pairs the same periods of time with the same threshold size on different days may contain a different number of events, and (b) with the same threshold size, some periods on the same day have more events than others. These two observations indicate that events of different magnitude are independent of physical-time changes.

3.5 The Price-Curve Coastline

Glattfelder et al. discovered scaling laws that give an estimation of the length of the price curve coastline [98]. They found that the length of the coastline defined by intrinsic time is long. In this section, we have developed a new method for estimating the length of the price curve coastline based on the price distance between fixed points. The measurement is defined by two different concepts: intrinsic time (directional-change events) and physical time changes (fixed time intervals), with the aim of assessing their performance in summarizing price movements. Assuming perfect foresight, the length of the price-curve coastline over a defined time period T, represents the profit potential.

The measurement of the length of the price-curve coastline over a time period T, as defined by intrinsic time, is the average upwards and downwards price moves, considering the number of DC events. Both the upwards and downwards price movements are defined by a fixed threshold size Δx_{DC}. The downward
Algorithm 3.1 Defining directional-change (DC) and overshoot (OS) events

Require: initialise variables (DC event is upturn event, $\triangle x_{DC}$ (Fixed) ≥ 0, $t_{DC,0} = t_{DC,1} = t_{OS,0} = t_{OS,1} = t$, $p_h = p_l = p_t$, at time t)

if DC event is upturn event then
 if $p_t \leq p_h \times (1 - \triangle x_{DC})$ then
 DC event \leftarrow downturn event
 $p_l \leftarrow p_t$
 $t_{DC,1} \leftarrow t$ // End time for a downturn DC event
 $t_{OS,0} \leftarrow t +1$ // Start time for a downward OS event
 else
 if ($p_h < p_t$) then
 $p_h \leftarrow p_t$
 $t_{DC,0} \leftarrow t$ // Start time for a downturn DC event
 $t_{OS,1} \leftarrow t -1$ // End time for an upward OS event
 endif
 endif
else //DC event is downturn event
 if $p_t \geq p_l \times (1 + \triangle x_{DC})$ then
 DC event \leftarrow upturn event
 $p_h \leftarrow p_t$
 $t_{DC,1} \leftarrow t$ // End time for an upturn DC event
 $t_{OS,0} \leftarrow t +1$ // Start time for an upward OS event
 else
 if ($p_l > p_t$) then
 $p_l \leftarrow p_t$
 $t_{DC,0} \leftarrow t$ // Start time for an upturn DC event
 $t_{OS,1} \leftarrow t -1$ // End time for a downward OS event
 endif
 endif
endif

price movement is the total price move from a downturn point to the next upturn point. In other words, the downward price movement is the absolute difference between p_i and p_{i+1}, where p_i is the price of the i-th downturn turning point and p_{i+1} is the price of the next upturn point. Similarly, the upward price movement is the total price move from an upturn point to the next downturn point. Under intrinsic time, the length of the price-curve coastline $u_{\triangle x_{DC}}$ is measured by

$$u_{\triangle x_{DC}} = \frac{1}{N(\triangle x_{DC})} \sum_{i=1}^{N(\triangle x_{DC})} |p_i - p_{i+1}|$$ \hspace{1cm} (3.5)$$

where $\triangle x_{DC}$ is a fixed threshold, $N(\triangle x_{DC})$ is the total number of DC events on which the length of the price-curve coastline is measured. Hence, the number of DC events is determined by the threshold size, $\triangle x_{DC}$, that we use. p_i is the price of the i-th turning point, whether upturn or downturn point.

In contrast, the measurement of the length of the price-curve coastline defined by physical time changes at fixed time intervals is the average price movement between fixed points over a time period T, in which the time interval between these fixed points is equivalent. Under physical time, the length of the price-curve coastline u_t is measured by
CHAPTER 3. THE DIRECTIONAL-CHANGE EVENT APPROACH

Figure 3.5: Number of DC events of 0.03% and 0.10% magnitude in different periods of the 5th (Monday), 7th (Wednesday) and 9th (Friday) January 2009 in EUR/USD mid-price time series.

where p_i is the price at point i and n is the total number of fixed points which is equal to the number of DC events used in equation 3.5. For a fair comparison, we use the same number of points in physical time and intrinsic time.

Figure 3.7 shows EUR/USD mid-price activities over November 5th, 2009. The graph contrasts the price changes defined by physical time and by intrinsic time using the same number of points. The lines in the graph summarize the price movements using intrinsic time and physical time (at fixed time intervals). The price changes under intrinsic time are represented in the graph by dashed lines lining up the upturn/downturn points in terms of DC events. From Figure 3.7, it is obvious that significant events of trading activity are ignored when we consider changes over time based on fixed time intervals (physical time changes). By way of illustration, the price peak at 1.4917 was overlooked on the price curve based on physical time changes. Therefore, the length of the coastline defined by physical time (0.01%) is shorter than the coastline defined by intrinsic time (0.10%) which highlights the significance of intrinsic time.

It is important to be acquainted with how well intrinsic time and physical time lines fit prices in a time series. This allows the evaluation of their performance in terms of which is finest at describing the price changes in a time series. We measure the total error, e_T, of the length of the price curve coastlines under both physical time and intrinsic time (Figure 3.7). The total error, e_T, is a measure of the overall error of intrinsic time and physical time in summarizing price movement over a time period T, and is defined by

$$u_T = \frac{1}{n} \sum_{i=1}^{n} | p_i - p_{i+1} |$$

(3.6)
CHAPTER 3. THE DIRECTIONAL-CHANGE EVENT APPROACH

Figure 3.6: Number of events of 0.03% and 0.10% magnitude in different periods of the 5th (Monday), 7th (Wednesday) and 9th (Friday) January 2009 in EUR/CHF mid-price time series.

Table 3.1: The measurement of the length of EUR/USD price-curve coastline over four years from 2006 to 2009, as defined by intrinsic time (directional-change events) \(u_{\triangle DC} \) and physical time changes (fixed intervals) \(u_t \). The average number of fixed points is denoted by \(N \).

<table>
<thead>
<tr>
<th>Threshold</th>
<th>(N)</th>
<th>(u_{\triangle DC})</th>
<th>(u_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01%</td>
<td>5.46E+05</td>
<td>0.04 %</td>
<td>0.01 %</td>
</tr>
<tr>
<td>0.10%</td>
<td>19E+04</td>
<td>0.47 %</td>
<td>0.08 %</td>
</tr>
<tr>
<td>1%</td>
<td>7.78E+02</td>
<td>3.15 %</td>
<td>0.37 %</td>
</tr>
<tr>
<td>3%</td>
<td>1.89E+02</td>
<td>7 %</td>
<td>1.16 %</td>
</tr>
</tbody>
</table>

\[
e_T = \sum_{i=0}^{n} (\Delta p)^2
\]
(3.7)

where \(n \) is the total number of time scales over a time period \(T \), \((\Delta p)^2 \) is the square difference between two prices in (i) the price curve and (ii) in whether in the physical time or intrinsic time line. We found that the measurement of the total error in terms of intrinsic time (0.03) is shorter than that for physical time (0.04) (Figure 3.7). This result indicates that summarizing price movements using intrinsic time gives a better description of price changes than does using physical time with fixed intervals.

The reported results in Table 3.1 and 3.2 compare the average lengths of the annualized EUR/USD and EUR/CHF coastline measured by (a) physical time scales (evenly spaced in time - fixed time interval), and (b) intrinsic time (unevenly spaced in time). The sampling period covers the four years from 2006 to 2009. We annualize the results by dividing them by 4, the number of years in our data sample.

The results in Table 3.1 and 3.2 draw attention to the fact that the length of the coastline depends
Figure 3.7: EUR/USD mid-prices time series defined by physical time and intrinsic time. The sampling period is over November 5th, 2009. For intrinsic time, the number of events is 30 determined by a threshold size of 0.1%.

...completely on the frequency of changes in the price. Also, these reported results highlight the importance of considering events in studying the price-curve, rather than physical time changes due to the long coastline of price changes based on intrinsic time. In all the thresholds that we have tested, the length of the price-curve coastline defined by physical time is shorter than the coastline defined by intrinsic time. Intrinsic time enables the analyst to capture the short term market dynamics involved by presenting significant information and a clear picture of price behaviour, based on the observer’s expectations of the market. In addition, it reduces the complexity of real-world price time series given the small number of price points for evaluation. The computational costs (which include the cost of evaluating data) must not be ignored. Thus, it should be part of the criteria when it comes to deciding on an approach for studying price time series.

<table>
<thead>
<tr>
<th>Threshold</th>
<th>\bar{N}</th>
<th>$u_{\triangle DC}$</th>
<th>u_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01%</td>
<td>6.99E+05</td>
<td>0.04%</td>
<td>0.01%</td>
</tr>
<tr>
<td>0.10%</td>
<td>7.20E+03</td>
<td>0.56%</td>
<td>0.07%</td>
</tr>
<tr>
<td>1%</td>
<td>4.10E+02</td>
<td>3.11%</td>
<td>0.29%</td>
</tr>
<tr>
<td>3%</td>
<td>3.00E+01</td>
<td>5.87%</td>
<td>1.12%</td>
</tr>
</tbody>
</table>

Table 3.2: The measurement of the length of EUR/CHF price-curve coastline over four years from 2006 to 2009, as defined by intrinsic time (directional-change events) $u_{\triangle DC}$ and physical time changes (fixed intervals) u_t. The average number of fixed points is denoted by \bar{N}.

3.6 ZI-DCT0

We would like to investigate whether the concept of directional-change event can be incorporated into a trading strategy. We define a simple directional-change event trading strategy as one in which a trader will commit itself to a fixed threshold. Whenever a trader detects an upturn DC event (according to the used threshold), it will conclude that the market is on an upward run. This could mean an opportunity to buy. Similarly, a downturn DC event indicates an opportunity to sell. We shall call this strategy a zero-intelligence directional-change event trading strategy, or ZI-DCT0 for short. A trader that uses ZI-DCT0 will be referred to as a ZI-DCT0 trader.

Incorporating the directional-change event approach to the traders’ trading strategy will reduce the complexity of the time series of prices. Accordingly traders can capture the short term market dynamics involved based on their expectations of the market towards an obvious representation of the market dynamic, and, based on that, it will allow them to detect fewer major periodic stable patterns in a financial time series based on their expectations of the market. Cautiousness in choosing a suitable threshold is essential to reflect the real dynamic of the market involved, given that, when a threshold which is either too large or too small is used, traders will often fail to spot many important patterns on the time series of prices.

3.6.1 Experiment

Experiments were conducted with the aim of studying the impact of ZI-DCT0 on a trader’s performance. The experiment used daily closing historical prices for six stock indexes: FTSE100 stock index (16/04/2004 to 20/03/2008), SnP500 (26/03/2004 to 20/03/2008), DAX (19/04/2004 to 20/03/2008), Nasdaq (12/04/2004 to 20/03/2008), HangSeng (19/03/2004 to 20/03/2008) and Nikkei (20/02/2004 to 20/03/2008). In addition, one of the experiments was conducted on randomly generated prices. The data records contain the daily closing trade price data and each record is time stamped.

We proceed on the assumption that the ZI-DCT0 trader will trade on each stock index based on the change in the daily closing historical prices over the whole period. Before the experiment begins, the ZI-DCT0 trader is endowed with 1,000,000 amounts of cash and without any shares. The ZI-DCT0 trader invests 100% of it cash when buying, and 100% of it shares when selling. The trader’s position on each of the assets changes over time, as a result of the trader’s decision to buy or sell a specific quantity of the asset. We used a variety of thresholds to demonstrate the role that the threshold has on the trader’s wealth distribution.

3.6.2 Results

Table 3.3 presents the potential profits of ZI-DCT0 using different thresholds. These potential profits are the returns of the trades made by a ZI-DCT0 trader evaluated throughout the complete test period as explained in section 3.6.1. Several test runs are reported, giving estimates of the effectiveness and significance of the ZI-DCT0 strategy.

From the results reported in Table 3.3, we see that the threshold plays a critical role in the trader’s performance and we can see the big impact of each threshold value on the trading return. Speaking broadly, for the majority of trading returns, the trader made more profits than losses based on the different thresholds they used. This indicates that the returns are significant but also reminds us of the importance of fitting an appropriate threshold to an appropriate asset.
Table 3.3: Experiment’s results of the effectiveness and significance of the ZI-DCT0.

<table>
<thead>
<tr>
<th>stock index \ threshold</th>
<th>8%</th>
<th>6%</th>
<th>3%</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTSE100</td>
<td>4.9%</td>
<td>19.7%</td>
<td>3.1%</td>
</tr>
<tr>
<td>SnP500</td>
<td>25.6%</td>
<td>4.4%</td>
<td>-7%</td>
</tr>
<tr>
<td>Dax</td>
<td>47.2%</td>
<td>72.6%</td>
<td>63.3%</td>
</tr>
<tr>
<td>Nasdaq</td>
<td>9.1%</td>
<td>20%</td>
<td>-11.3%</td>
</tr>
<tr>
<td>HangSeng</td>
<td>82.6%</td>
<td>68.4%</td>
<td>40.2%</td>
</tr>
<tr>
<td>Nikkei</td>
<td>-6.6%</td>
<td>0.04%</td>
<td>18%</td>
</tr>
<tr>
<td>Random prices</td>
<td>-129%</td>
<td>-150%</td>
<td>-164%</td>
</tr>
</tbody>
</table>

Despite the initial achievement under the six stock indexes daily closing prices historical data, the case, where random prices are applied, is much less successful, this can be seen from the final row in Table 3.3. We can observe from the final row results reported in Table 3.3 that the ZI-DCT0 trader made huge losses at random prices. Obviously, this shows that real market prices exhibit “overshoots” and accordingly a ZI-DCT0 trader only makes a profit when there are overshoots. Overall, the results show that overshoots took place in real financial markets which can be exploited by a naïve trading strategy based of the directional-change events approach.

3.7 Conclusion

This chapter offers a plain and adequate demonstration of the definition of the directional-change event approach, in conjunction with the motivation behind introducing this approach, its advantages and significance, and the working mechanisms. The directional-change event approach has the potential to become a robust foundation tool for studying financial time series, which could lead to new findings regarding financial market behaviour in different situations. In this chapter, we have made the following contributions:

- We offer a measurement of the length of the price-curve coastline under physical time and intrinsic
time which represents the profit potential. The measurement shows a long coastline of price changes defined by intrinsic time, confirming similar results in Glattfelder et al.’s [98] study. The aim of the measurement of the length of the price-curve coastline reported in this chapter is to compare its length measured under both intrinsic and physical time, which has not been explored by the Glattfelder et al. [98] study. In addition to this, in this chapter we also measured the total error of the length of the price curve coastline under both intrinsic and physical time, which shows that studying the price movements using intrinsic time gives an improved description of price changes than does using physical time with fixed intervals. Once again, this was not presented or mentioned in the Glattfelder et al. [98] study.

- We constructed a new trading strategy based on the directional-change event approach. This trading strategy is called zero-intelligence directional-change event trading strategy or ZI-DCT0 for short. ZI-DCT0 would allow traders to capture the short term market dynamics involved in the detection of major periodic fixed patterns in price time series. Experiments were conducted using daily closing historical prices for six stock indexes. These show the impact of ZI-DCT0 on a trader’s trading performance.

In chapter 5, using the directional-change event approach, we study the EUR/USD and EUR/CHF price time series, and discover four new scaling laws and six established quantitative relationships amongst them, which hold across EUR/USD and EUR/CHF transactions. In chapter 6, we use the ZI-DCT0 strategy to model two groups of agents in the market: trend-following and contrarian agents.
Chapter 4

Filtering of a High-Frequency FX Transactions Dataset

4.1 Introduction

High-frequency data (HFD) in finance represent a very large amount of data which is the full record of transactions and their linked characteristics at frequencies higher than on a daily basis [63, 74]. The fact that the FX market is the largest and most liquid financial market in the world makes it an important source of HFD [63]. HFD play an important role in understanding financial market behaviour as they encapsulate a plethora of information [63].

Although the rapid advances in computing and database technologies have made HFD available, numerous challenges arise with regard to HFD processing and analysis. HFD have no standard structure, since their structure is based on the policy and procedures of the institution that generates the data [44]. Unfortunately, HFD may incorporate some spurious data, erroneous data or may include some data gaps. Such data may possibly result from computer system errors or the institution’s internal system procedures [36, 44, 63]. Failure to identify erroneous data in the HFD could possibly have a significant effect on the validity of the HFD analysis. Therefore, prior to studying and analysing HFD, a filtering process for the HFD is an essential first step.

In the literature, there are some notable works dealing with the subject of HFD filtering [39, 44, 63, 182]. Each of these works adopts a different approach because of the different structure and types of erroneous data of HFD being filtered. Consequently, the HFD filtering process is not standardized. Before undertaking the filtering of the data, one needs to have an understanding of their nature and structure as well as the purpose of their use. This will enable to explore and determine the types of erroneous data, and define the detailed process of filtering, and finally to validate the consistency of the filtered dataset.

In this chapter ¹, we present the filtering process associated with the HFD of individual traders’ historical transactions on the OANDA FX trading platform. The aim of the filtering process is to remove any possible erroneous data in terms of the traders’ actual transactions. The initial phase of the filtering process that we conducted relies on two major steps: exploring and understanding the nature and structure of the data, and

¹The work presented in this chapter has been taken in parallel by myself and Shaimaa Masry, a PhD student at the Centre for Computational Finance and Economic Agents at the University of Essex. Although we worked in parallel, we adopted different methodologies and accordingly developed different code. Fortunately, our results for the filtered dataset are very similar, which indicates that both of us successfully eliminated the correct outliers from the dataset. Furthermore, such similarity of results confirms the validity of the filtered dataset.
CHAPTER 4. FILTERING OF A HIGH-FREQUENCY FX TRANSACTIONS DATASET

studying OANDA’s internal system procedures since this might possibly affect the consistency of the data. As a result of the filtering process, the number of transactions in the dataset was reduced to a total of ~ 59 million transactions from ~147 million transactions. By validating the filtered dataset, we confirmed the consistency and reliability of the dataset.

The organization of this chapter is as follows. Section 4.2 provides an overview of the underlying dataset and its potential usefulness. Section 4.3 presents a general overview of the outliers. Section 4.4 describes the filtering process in conjunction with the results of the process. Section 4.5 provides the validation of the filtered dataset. Section 4.6 states the behaviour and effects of the filtered dataset.

4.2 Overview of the Dataset

The HFD used in this study were provided by OANDA Corporation - short for Olsen And Associates. The OANDA Corporation is a financial services provider for currency information and is an internet-based FX market-maker for the trading of foreign currencies. The OANDA Corporation provides access to one of the largest existing historical high-frequency datasets of currency exchange rates and transactions. OANDA serves a diversity of traders, from individual traders to large corporations and financial institutions. In OANDA, traders trade under the same terms and conditions, particularly under the same prices, with competitive spreads. It is worth highlighting that in terms of FX trading platforms, only OANDA stores the details of the traders’ historical transactions and their position history over a long time horizon, representing the worldwide exposure of traders in the FX markets.

The high-frequency dataset used in this study represents OANDA’s individual traders’ historical transactions at an account level made available on an anonymous basis and spanning 2.25 years, from 1st January 2007 to 5th March 2009. The dataset contains ~147 million historical transactions carried out by 45,845 different accounts trading in 48 different currency pairs under the same terms and conditions. The high-frequency dataset of individual traders’ historical transactions is unique. Thus, the analysis of such a dataset is extremely valuable, and significant in improving our understanding of FX market behaviour, and also for building agent-based models of FX market traders. The dataset contains different accounts representing individual traders, banks, central banks, hedge funds and others. Due to the detailed level of information and the long time horizon of the dataset, the dataset is rich in terms of observations and interesting patterns.

Each historical transaction contains the following information: the account Id, the transaction Id, the transaction timestamp, the traded currency pair, the execution price, the number of units traded, the amount of units traded, and the transaction type. Figure 4.1 provides a snapshot of the high-frequency dataset of individual traders’ historical transactions. A transaction is defined as an individual executed trade performed on behalf of a trader’s account. The transaction Id is a unique identity for the executed transaction. Each account in the OANDA FX trading platform has a unique account Id. It is important to highlight that every account Id in the dataset has been changed by OANDA Corporation to protect the traders’ identity and privacy. In addition, it is important to note that one individual trader may have more than one account. The transaction timestamp is the execution time of the transaction. The transaction timestamp is stored in a Unix time format. The traded currency pair of a transaction is represented as a base and a quote (base/quote) e.g. EUR/USD. The amount of a single transaction is equal to the execution price times the number of units traded, converted to the account’s home currency.

A transaction can be one of the following six types: BuyMarket, SellMarket, CloseTradeB, Close-
CHAPTER 4. FILTERING OF A HIGH-FREQUENCY FX TRANSACTIONS DATASET 44

4.3 Outliers

Some of the transactions in the dataset may possibly be erroneous transaction data. To test such a hypothesis, we select five accounts from the dataset at random and aggregate the number of transactions of the accounts over minute bases (depicted in Figure 4.2). From Figure 4.2, we can see that some possible outliers occur at different time points in terms of the account’s transaction activities. An outlier is defined as transaction data that were not placed by an account, and therefore is an incorrectly reported transaction which is identified as a data error. Such outliers raise an important critical question: do these outliers possibly indicate transactions data that are incorrectly reported, or are these outliers the result of the sudden change in the account’s trading behaviour? A failure to identify these outliers as erroneous transactions data will significantly affect the validity of the analysis. For that reason, it is necessary to filter the dataset to identify any possible erroneous transactions which do not correspond to the traders’ trading activity.
CHAPTER 4. FILTERING OF A HIGH-FREQUENCY FX TRANSACTIONS DATASET

4.4 Filtering Process

The object of the data filtering is a time series of transactions. We carry out a filtering process to remove misleading, erroneous and spurious transactions data. The initial step of the filtering process is to understand OANDA’s internal system procedure which, without doubt, has an effect on the consistency of the dataset. Subsequently, we explore and study the aggregate flow of transactions in the dataset over the complete period (2.25 years). The final step is the validation of the filtering process. To validate the filtering process, we undertake a tracking procedure for each account’s transactions, to verify the consistency and reliability of the account’s transactions with regard to the transactions’ type and size, and the consequent activities of opening and closing positions. In addition, we define the intraday seasonality of the trade numbers by comparing them with the reported intraday seasonality of FX market activity in the literature [63, 117]. The aim is to confirm the validity of the filtered dataset, and show the behaviour and effects of the filtered dataset.

4.4.1 OANDA’s Internal System Procedure

4.4.1.1 Storage of Transactions

To understand the storage procedure of transactions on the OANDA FX trading platform, we study the structure and nature of the traders’ historical transactions dataset. Following this, we examine the storage procedure of transactions on OANDA’s simulated platform - the so called FxGame - by placing a variety of transactions using an experimental account. OANDA’s FX trading platform system stores all the account’s transactions, and permits easy access to all of the account’s historical transactions. This allows us to explore the account’s historical transactions over different time horizons.

Exploring the experimental account’s historical transactions in conjunction with an understanding of the structure of the underlying dataset, we find that under certain conditions one transaction is stored in the dataset as more than one transaction record. One potential situation is when a trader places a transaction
CHAPTER 4. FILTERING OF A HIGH-FREQUENCY FX TRANSACTIONS DATASET

of type BuyMarket, SellMarket, ClosePositionB or ClosePositionS that closes previously open sell or buy orders. Another potential situation is a transaction which takes place as a result of a profit taking limit order or a stop loss limit order. A profit taking limit order is an order to close an open position once the price movement has reached a profit threshold. In contrast, a stop loss limit order is an order to close an open position once the price movement hits a loss threshold. A further potential situation is if a transaction takes place as a result of a margin call. A margin call is a procedure on the part of the market-maker executing the transaction to close out an account’s open positions once the account’s balance has cascaded under the minimum margin required to cover the size of the account’s currently open positions.

Hence, if we were to study and analyse the traders’ historical transactions in the current state of the dataset, we would probably get ambiguous information regarding the traders’ moves and trading activity because the dataset contains erroneous data. Thus, we conduct a merging procedure on groups of associated transactions. These groups of associated transactions can be categorized as follows:

1. The first group includes a sequence of associated transactions which have identical data with regard to the following: same account Id, same currency pair, same timestamp, same execution price and same type of transaction. Figure 4.3 shows a sample from the dataset of individual traders’ historical transactions which represents an example of the first group of associated transactions. This group of associated transactions is merged into one transaction in which the traded units and amounts are aggregated.

2. The second group is limited to transactions of types ClosePositionB and ClosePositionS. The features of the second group are similar to the first group. However, some of the associated transactions in the second group have different timestamps with a few seconds difference. To identify whether a set of associated transactions having different timestamps is the result of one trade, we check whether or not the trader has placed a new transaction of type BuyMarket or SellMarket for the same currency pair as those for the set of associated transactions in the time period between the set of associated transactions. If no such transaction is recorded in the dataset, the set of associated transactions is merged. In detail, the traded units and the amounts in this set of transactions are aggregated, and the average of the transactions’ timestamps is recorded for the merged transaction. Figure 4.4 shows a sample from the dataset of individual traders’ historical transactions which represents an example of the second group of associated transactions.

3. The third group includes a sequence of associated transactions which have identical data with regard to the following: same account Id, same currency pair, same timestamp and same type of transaction. However, some of these associated transactions have different execution prices. The transactions in the third group are either of type BuyMarket or SellMarket. Figure 4.5 shows a sample from the dataset of individual traders’ historical transactions which represents an example of the third group of associated transactions. Although these associated transactions may possibly be the results of one trade, we came to a decision not to merge them. The problem of merging them would be defining an average price for the trade, but this modification in the execution price could result in information loss in terms of actual execution prices, and consequently the transaction’s profitability.
CHAPTER 4. FILTERING OF A HIGH-FREQUENCY FX TRANSACTIONS DATASET

Figure 4.3: A sample from the dataset of individual traders’ historical transactions representing an example of the first group of associated transactions.

<table>
<thead>
<tr>
<th>accountId</th>
<th>transactionId</th>
<th>Timestamp</th>
<th>currencyPair</th>
<th>price</th>
<th>units</th>
<th>amount</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>74902</td>
<td>173355731</td>
<td>1167709387</td>
<td>EUR/USD</td>
<td>1.32355</td>
<td>8</td>
<td>12.863</td>
<td>BuyMarket</td>
</tr>
<tr>
<td>74902</td>
<td>173355735</td>
<td>1167709387</td>
<td>EUR/USD</td>
<td>1.32355</td>
<td>2</td>
<td>3.2157</td>
<td>BuyMarket</td>
</tr>
<tr>
<td>74902</td>
<td>173355737</td>
<td>1167709387</td>
<td>EUR/USD</td>
<td>1.32355</td>
<td>10</td>
<td>28.9417</td>
<td>BuyMarket</td>
</tr>
<tr>
<td>74902</td>
<td>173355745</td>
<td>1167709387</td>
<td>EUR/USD</td>
<td>1.32355</td>
<td>11</td>
<td>17.6936</td>
<td>BuyMarket</td>
</tr>
</tbody>
</table>

Figure 4.4: A sample from the dataset of individual traders’ historical transactions representing an example of the second group of associated transactions.

<table>
<thead>
<tr>
<th>accountId</th>
<th>transactionId</th>
<th>Timestamp</th>
<th>currencyPair</th>
<th>price</th>
<th>units</th>
<th>amount</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1442</td>
<td>174683212</td>
<td>1167542532</td>
<td>EUR/USD</td>
<td>1.30826</td>
<td>10</td>
<td>13.0811</td>
<td>ClosePositionS</td>
</tr>
<tr>
<td>1442</td>
<td>174683213</td>
<td>1167542532</td>
<td>EUR/USD</td>
<td>1.30826</td>
<td>10</td>
<td>13.0811</td>
<td>ClosePositionS</td>
</tr>
<tr>
<td>1442</td>
<td>174683214</td>
<td>1167542533</td>
<td>EUR/USD</td>
<td>1.30826</td>
<td>10</td>
<td>13.0811</td>
<td>ClosePositionS</td>
</tr>
<tr>
<td>1442</td>
<td>174683215</td>
<td>1167542533</td>
<td>EUR/USD</td>
<td>1.30826</td>
<td>10</td>
<td>13.0811</td>
<td>ClosePositionS</td>
</tr>
<tr>
<td>1442</td>
<td>174683216</td>
<td>1167542533</td>
<td>EUR/USD</td>
<td>1.30826</td>
<td>10</td>
<td>13.0811</td>
<td>ClosePositionS</td>
</tr>
</tbody>
</table>

Figure 4.5: A sample from the dataset of individual traders’ historical transactions representing an example of the third group of associated transactions.

<table>
<thead>
<tr>
<th>accountId</th>
<th>transactionId</th>
<th>Timestamp</th>
<th>currencyPair</th>
<th>price</th>
<th>units</th>
<th>amount</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>214</td>
<td>179658280</td>
<td>1169105758</td>
<td>EUR/GBP</td>
<td>0.65655</td>
<td>100000</td>
<td>1256568.6225</td>
<td>CloseTradeB</td>
</tr>
<tr>
<td>214</td>
<td>179658282</td>
<td>1169105758</td>
<td>EUR/GBP</td>
<td>0.65655</td>
<td>300000</td>
<td>3890308.8075</td>
<td>CloseTradeB</td>
</tr>
<tr>
<td>214</td>
<td>179658322</td>
<td>1169105758</td>
<td>EUR/GBP</td>
<td>0.65654</td>
<td>300000</td>
<td>3890711.6472</td>
<td>CloseTradeB</td>
</tr>
<tr>
<td>214</td>
<td>179658322</td>
<td>1169105758</td>
<td>EUR/GBP</td>
<td>0.65654</td>
<td>300000</td>
<td>3890711.6472</td>
<td>CloseTradeB</td>
</tr>
</tbody>
</table>
CHAPTER 4. FILTERING OF A HIGH-FREQUENCY FX TRANSACTIONS DATASET

Table: Filtering Process

<table>
<thead>
<tr>
<th>account_id</th>
<th>transactionId</th>
<th>Timestamp</th>
<th>currencyPair</th>
<th>price</th>
<th>units</th>
<th>amount</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>644</td>
<td>183107609</td>
<td>1169781922</td>
<td>EUR/USD</td>
<td>1.29776</td>
<td>5</td>
<td>0</td>
<td>Sell/Market</td>
</tr>
<tr>
<td>644</td>
<td>183107600</td>
<td>1169781922</td>
<td>EUR/USD</td>
<td>1.29774</td>
<td>11</td>
<td>0</td>
<td>Sell/Market</td>
</tr>
<tr>
<td>644</td>
<td>183107601</td>
<td>1169781922</td>
<td>EUR/USD</td>
<td>1.29531</td>
<td>2</td>
<td>0</td>
<td>Sell/Market</td>
</tr>
</tbody>
</table>

Figure 4.6: Spurious transactions encompass a traded amount value of zero indicating that interest payments have been incurred.

Figure 4.7: The total number of transactions for each month in the dataset (a) before and (b) after the filtering process respectively against the (c) total number of accounts.

4.4.1.2 Interest Payment Procedure

The system in the OANDA FX trading platform implies a continuous series of second-by-second interest payments on each account’s open position. This is in contrast to some of the FX market-maker’s trading platforms in which interest payment is computed just once a day on each account’s open position. The dataset of individual traders’ historical transactions does not include detailed information regarding the computed interest payments. Nevertheless, OANDA’s interest payments’ procedure records spurious transactions which encompass a traded amount value of zero indicating that interest payments have been incurred (as shown in Figure 4.6). Such spurious transactions are removed from the dataset of individual traders’ historical transactions. The existence of these spurious transactions in the dataset would otherwise affect the validity of the analysis.

4.4.2 Flow of Transactions

Figure 4.7 shows the total number of transactions for each month in the dataset, before and after the filtering process respectively, against the total number of accounts in the dataset. Despite the fact that the filtered dataset does not contain spurious transactions, or even unmerged transactions corresponding to one real transaction, we can note the high number of transactions during 2007 compared to 2008, and sudden drops in the numbers of transactions following August 2007. An important observation which has to be explained is the increase in the total number of transactions in August 2007, followed by a sudden drop in September 2007, combined with an increase in the total number of accounts in October 2007 and throughout 2008. The drop in the total number of transactions and accounts over March 2009 are a data artefact, and accordingly must be ignored, given that there were just five days in March 2009.

It is essential to explore and understand the flow of the total number of transactions for each month in
CHAPTER 4. FILTERING OF A HIGH-FREQUENCY FX TRANSACTIONS DATASET

Figure 4.8: The number of high-frequency accounts in each month in the dataset.

Figure 4.9: Correlation between the total numbers of daily transactions placed by high-frequency (HF) accounts, and the total numbers of transactions in each month.

the dataset respectively, against the flow of the total number of accounts for each month. This will allow us to understand whether the sudden increase in the total number of transactions in August 2007 is due to traders increasing their trading frequency, or whether it is due to spurious transactions. Hence, we examine the trading frequency for all the accounts in the dataset over the whole period. The trading frequency is defined as the maximum number of transactions placed by each account in one day for each month.

We find that the daily maximum number of transactions for an account vary from one transaction to thousands of transactions. We define an account as a high-frequency account when the account has more than 1,000 transactions for at least one day in a month. The trading frequency of a high-frequency account can vary over the days. We find 114 high-frequency accounts in the dataset. Figure 4.8 shows the number of high-frequency active accounts in each month in the dataset. From Figure 4.8, we can observe a high number of high-frequency accounts in 2007 compared to the remaining dataset time period. By relating the total numbers of daily transactions placed by high-frequency accounts to the total numbers of transactions in each month, we find a strong positive correlation between them (Figure 4.9). The strength of this strong positive correlation is reflected in a correlation coefficient of +0.90. Such a strong positive correlation indicates that the increase in the number of transactions in 2007 is a result of the large number of transactions placed by the high-frequency accounts.

We find that 48.33% of the transactions in the dataset are placed by the high-frequency accounts. How-
CHAPTER 4. FILTERING OF A HIGH-FREQUENCY FX TRANSACTIONS DATASET

4.4.3 Results

The output of the filtering process results in a reduction of 70.73% of the transactions from the dataset of the individual traders’ historical transactions. The total number of transactions in the dataset before the filtering process was ~147 million transactions while after the filtering process the total number of transactions was reduced to ~59 million transactions.

4.5 Validation

Subsequent to filtering a high-frequency dataset, a validation procedure has to be conducted to validate the reliability and consistency of the filtered dataset. In our study, the validation procedure implies tracking for each of the account’s traded currency pairs, each transaction’s traded units bought and sold in sequence in terms of the transactions’ execution time. The validation procedure traces different types of transactions of each account with reference to a given currency pair, from the opening to the closing of a position. Figure 4.10 offers a straightforward example of the results produced by tracking a sample of sequence EUR/USD transactions for a sample account. The exposure refers to an account’s total holdings of a traded currency pair. The exposure is defined as the net sum of the traded units of an opened position transactions. A traded units are signed in terms of the transaction type. The traded units are represented by a positive sign when the transaction type is BuyMarket, and negative when the transaction type is SellMarket. The exposure is signed in terms of the position type. A positive exposure refers to a long position, whereas a negative exposure refers to a short position.

The results of the validation procedure confirm the reliability and consistency of the filtered dataset of individual traders’ historical transactions in the OANDA FX trading platform. Whatever the causes behind the existence of possible misleading and spurious data in the underlying dataset, the filtering process has successfully eliminated those misleading and spurious data, resulting in a consistent dataset.
CHAPTER 4. FILTERING OF A HIGH-FREQUENCY FX TRANSACTIONS DATASET

4.6 Behaviour and Effects of the Filtered Dataset

Filtering the high-frequency dataset of the individual traders’ historical transactions has an obvious effect on the analytical results of the intraday seasonality of the FX market trading activity. Defining the intraday seasonality of trade numbers and comparing it with the benchmarked intraday seasonality of the FX market trading activity reported in the literature [63, 117], can be considered as a further validation procedure with regard to the filtered dataset. The FX market data exhibit periodic patterns in terms of market trading activity [63]. The intraday seasonality statistics demonstrate the worldwide FX markets’ trading activity as a function of daytime [63]. The intraday seasonality of trade numbers is defined as the aggregated trades in each hour (hour 0 to hour 23) of the day, divided by the total number of trades over the whole dataset period.

In the literature, there are some studies which present evidence that the intraday seasonality of the trading activity in the FX markets exhibits a double U-shape or camel-shaped pattern [63, 117]. The intraday seasonality of FX market trading activity has two peaks wherein the second peak is higher than the first. The two peaks of the FX market trading activity happen as a consequence of the overlapping trading business hours between the different FX markets centres around the world. The intensity of trading activity increases during the opening business hours of the main FX market centres in the morning, declines throughout the lunch break, and increases in the afternoon again whereas during the closing business hours, the intensity of the trading activity declines. Further information regarding the seasonality statistics is presented in chapter 5.

Figure 4.11 shows the intraday seasonality of the trade numbers from (a) the original unfiltered dataset and (b) the filtered dataset and we can clearly see noticeable differences. As illustrated in Figure 4.11, the intraday seasonality of the original unfiltered dataset shows a number of noisy patterns, while the intraday seasonality of the filtered dataset exhibits a double U-shape pattern in line with the intraday seasonality of the FX market activity reported in the literature [63, 117]. These results indicate the importance and the impact of the filtering process on the dataset.
4.7 Conclusion

In this chapter, we have filtered a unique high-frequency dataset of individual traders’ historical transactions consisting of over 40,000 anonymous accounts on the OANDA FX trading platform. The underlying feature of the filtering process is to identify and eliminate any potential misleading or spurious data which may possibly affect the validity of the analysis and the subsequent results. This chapter makes the following contributions to the literature:

- We have conducted a customized filtering procedure to remove potentially misleading and spurious transactions from the individual traders’ historical transactions dataset. We have found misleading transactions in the dataset resulting from OANDA’s internal system storage procedure (as explained in section 4.4.1.1). In addition, we have found spurious transactions in the dataset results with regard to (a) OANDA’s interest payment procedure (as explained in section 4.4.1.2) and (b) the existence of spurious accounts (as explained in section 4.4.2).

- We have validated the reliability and consistency of the filtered dataset.

- We have demonstrated the behaviour and effects of the filtered dataset in the exhibition of the intraday seasonality of the FX market trading activity (demonstrated in section 4.6). Such a demonstration confirms the importance and the impact of the filtering process on the validity of the analysis of high-frequency datasets.

In the next chapter, we analyse and study the filtered high-frequency dataset of individual traders’ historical transactions in the OANDA FX trading platform. The aim is to establish a set of stylized facts which characterize the traders’ collective behaviour in the FX market in order to provide a benchmark for validating agent-based models of the FX market.
Chapter 5

Stylized Facts of Trading Activity in the FX Market

5.1 Introduction

Financial markets are active and dynamic environments generating increasingly large volumes of data at frequencies higher than on a daily basis. Such data have been the focus of study by both the academic community and industry analysts from a number of perspectives. One key area in the study of financial markets data is the establishment of their statistical properties [104]. These statistical properties are known as stylized facts, and are established from the statistical analysis of data [57]. Stylized facts can provide useful insights into the workings of the real market, the behaviour of individual traders, the forces that drive behaviour, and their impact on the market dynamics. Establishing stylized facts with regard to the behaviour of traders and their trading activities is an important step in modelling financial markets [63]. In building models of financial markets, stylized facts can be used as verification criteria [137] to confirm that an ABM is indeed a model of the real market if it is able to reproduce the stylized facts to a satisfactory extent. A number of studies have established the stylized facts associated with price returns [57, 63, 104], order books [75, 77] and trading activity [63, 117] in the market.

To establish the stylized facts of FX market traders’ behaviour, we need to explore the high-frequency data (HFD) of their historical trading activities in the market. HFD allows us to explore some of the properties of trading behaviour that cannot be observed at lower frequencies (e.g. daily data) [63]. Despite the availability of studies establishing the stylized facts of price returns and order flow in the financial markets, the establishment of the stylized facts relating to trading activity in the high-frequency FX market is still in its infancy [63]. Dacorogna et al. [63] established some basic stylized facts with regard to the seasonality of trading activity in the FX markets by quantifying the trade frequency and volume using price tick data. They show that the intraday dynamics of trading activity in the FX market exhibits a double U-shape or camel-shape pattern. Ito and Hashimoto [117] established basic stylized facts associated with seasonality and correlation behaviour for the USD/YEN and the EUR/USD. Their work confirmed the existence of the U-shape pattern of intraday activities for Tokyo and London participants. They have also found that the price changes and the trade volumes have a positive correlation.

In this chapter, we present a set of stylized facts that have been identified through the study of a HF transactions dataset. Our study involves a unique HFD representing the physical transactions of anonymous accounts from January 1, 2007 to March 5, 2009. The large size of the dataset and, most importantly, the
level of detail of the dataset, allows for a microscopic analysis of the traders’ trading behaviour. In addition, our study makes use of EUR/USD and EUR/CHF prices from January 1, 2007 to March 5, 2009. Our aim is to establish stylized facts of the trading activity in the high-frequency FX market in order to gain insights into the workings of the market, but also to establish a benchmark for validating FX market agent-based models. We aim to confirm and extend the seasonality and correlation statistics work described in [63, 117]. Also, we aim to confirm and extend the scaling laws discovered in [98].

The organization of this chapter is as follows. The scaling laws are described in section 5.2, whereas section 5.3 describes the intraday and intraweek seasonality. Section 5.4 describes the correlation behaviour of the different FX market trading activity.

5.2 Scaling Laws

Scaling laws establish quantitative relationships between the size of price movements and the market activity as a function of the time interval at which they are measured. Following Glattfelder et al.’s work in [98], we have extended the set of stylized facts of the FX market by observing four new scaling laws, next to establishing six quantitative relationships amongst them, holding across EUR/USD and EUR/CHF transactions. Since prices in the market change at uneven time intervals, the measurement of market trading activity needs to be adaptive beyond the notion of physical time scale changes. In this regard, our statistical analysis depends on an event-driven approach – the so-called directional-change event approach. For details regarding the directional-change event approach we refer the interested reader to chapter 3.

In this section, we consider 2.25 years of tick-by-tick data for EUR/USD and EUR/CHF prices over January 1, 2007 to March 5, 2009. The data includes a bid and an ask price of a currency pair at a timestamp. Throughout the chapter, the following definition of mid-price is used:

\[p_{m,t} = \frac{(b_t + a_t)}{2} \]

(5.1)

where \(p_{m,t} \) is the mid-price of a currency pair at time \(t \), and \(b_t \) and \(a_t \) are the bid and ask price respectively at time \(t \).

5.2.1 Empirical Evidence on Existing Stylized Facts

In this section, we have empirically confirmed from the existing literature four scaling laws and three quantitative relationships amongst them. These four scaling laws hold across EUR/USD and EUR/CHF prices. Law (0a) is observed in a physical time scale whereas the other laws are observed in an intrinsic time scale (directional-change event). The computation of laws (0b), (0c) and (0d) relies on the detection of DC and OS events instead of focusing on the stochastic nature of the data-series.

The scaling law (0a) was discovered by Müller et al. in [174] and relates the size of the average absolute mid-price change (return), sampled at time intervals \(\Delta t \), to the size of the time interval

\[\langle |\Delta x_t| \rangle = \left(\frac{\Delta t}{C_x} \right)^{E_x} \]

(5.2)

where \(C_x \) and \(E_x \) are the scaling law parameters and a price move \(\Delta x_t \) at time \(t \) is defined as
\[\Delta x_t = \left(\frac{p_{m,t} - p_{m,t-1}}{p_{m,t-1}} \right) p_{m,t-1} \] (5.3)

The scaling laws parameters are the results of the line fit, where \(E_x \) is the slope and \(C_x \) is the intercept. The slope measures the proportional change of the average absolute mid-price change due to an increment in the time interval.

Using the directional-change event approach as explained in chapter 3, we define DC and OS events in EUR/USD and EUR/CHF mid-price time series for a set of thresholds of different size, ranging from 0.10% to 0.80%. We have confirmed the scaling law (0b) which was discovered by Guillaume et al. [104]. Law (0b) relates the number \(N(\Delta x_{DC}) \) of DC events to the size of the DC event \(\Delta x_{DC} \)

\[N(\Delta x_{DC}) = \left(\frac{\Delta x_{DC}}{C_{N,DC}} \right)^{E_{N,DC}} \] (5.4)

where \(C_{N,DC} \) and \(E_{N,DC} \) are the scaling law parameters.

The average results of the different event thresholds that we considered confirm the two scaling laws discovered by Glattfelder et al. in [98]:

1. Law (0c) relates the time during which events occur to the size of these events. Given a fixed percentage threshold, the average time interval \(\langle \Delta t_x \rangle \) for a price move of size \(\Delta x \) to occur is scale-invariant to the size of the threshold

\[\langle \Delta t_x \rangle = \left(\frac{\Delta x}{C_{t,x}} \right)^{E_{t,x}} \] (5.5)

where \(C_{t,x} \) and \(E_{t,x} \) are the scaling law parameters.

2. Law (0d) counts the average number of ticks observed during every event. Given a fixed percentage threshold, the average number of ticks \(\langle N(\Delta x_{tick}) \rangle \) observed during a price move of size \(\Delta x \) is scale-invariant to the size of this threshold

\[\langle N(\Delta x_{tick}) \rangle = \left(\frac{\Delta x}{C_{N,tick}} \right)^{E_{N,tick}} \] (5.6)

where a tick is defined as an individual quote of bid and ask price by a market-maker, \(C_{N,tick} \) and \(E_{N,tick} \) are the scaling law parameters.

The scaling law parameters are estimated using a standard linear regression. Laws (0b), (0c) and (0d) are plotted in Figure 5.1. Table 5.1 reports the adjusted \(R^2 \) values and the standard error of the fit.

The average obtained results (given in Figure 5.1) of the different event thresholds that we considered confirm the three quantitative relationships among laws (0c) and (0d) which were discovered by Glattfelder et al. in [98]:

1. A DC event of size \(\Delta x_{DC} \) is followed by one OS event of the same size

\[\langle \Delta x_{DC} \rangle \approx \langle \Delta x_{OS} \rangle \] (5.7)

2. An OS event takes twice as long as a DC event to unfold

\[\langle |\Delta t_{OS}| \rangle \approx 2 \langle |\Delta t_{DC}| \rangle \] (5.8)
CHAPTER 5. STYLIZED FACTS OF TRADING ACTIVITY IN THE FX MARKET

Figure 5.1: Scaling laws (a) 0b, (b) 0c and (c) 0d are plotted where the x-axis shows the price moves thresholds of the EUR/USD and EUR/CHF observations and the y-axis the (a) average number of events, the (b) average time (in seconds) and the (c) average tick numbers.

where $\langle |\Delta_{OS}| \rangle$ is the average time it takes an OS event to unfold while $\langle |\Delta_{DC}| \rangle$ is the average time it takes a DC event to unfold.

3. An OS event contains twice as many ticks as a DC event

$$\langle N(\Delta x_{OS,tick}) \rangle \approx 2 \langle N(\Delta x_{DC,tick}) \rangle$$

(5.9)

where $\langle N(\Delta x_{OS,tick}) \rangle$ and $\langle N(\Delta x_{DC,tick}) \rangle$ are the average tick numbers in an OS and a DC event, respectively.

<table>
<thead>
<tr>
<th></th>
<th>EUR/USD</th>
<th>OS</th>
<th>EUR/CHF</th>
<th>DC</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adj. R²</td>
<td>0.99</td>
<td>0.35</td>
<td>0.99</td>
<td>0.44</td>
<td>-</td>
</tr>
<tr>
<td>SE</td>
<td>0.34</td>
<td>0.22</td>
<td>0.04</td>
<td>0.43</td>
<td>0.05</td>
</tr>
<tr>
<td>AAdj. R²</td>
<td>0.99</td>
<td>0.35</td>
<td>0.99</td>
<td>0.43</td>
<td>0.45</td>
</tr>
<tr>
<td>SE</td>
<td>0.36</td>
<td>0.35</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5.1: Estimated regression parameters: the adjusted R^2 values of the fits, plus their standard errors (SE), for the scaling laws measured under DC and OS events. The sampling period covers 2.25 years from 1st January 2007 to 5th March 2009.
5.2.2 The New Scaling Laws

We have already mentioned in section 5.2.1 that the results of the empirical evidence indicate a scaling behaviour observed in price data. Extending Glattfelder et al.’s work [98], we identified four new scaling laws and cross-checked our results by establishing six quantitative relationships amongst them, holding across EUR/USD and EUR/CHF transactions. It is important to highlight the fact that the first set of scaling laws reported in section 5.2.1 applies to price data, while the second set of scaling laws reported in this section applies to transactions data. A transaction represents an executable order in the market.

Scaling Law (1): Trade Numbers

Given a fixed percentage threshold, the average number of trades \(\langle N (\Delta x_{\text{trade}}) \rangle \) observed during an event is scale-invariant to the size of this threshold

\[
\langle N (\Delta x_{\text{trade}}) \rangle = \left(\frac{\Delta x}{C_{N,\text{trade}}} \right)^{E_{N,\text{trade}}}
\]

(5.10)

where a trade is defined as an individual transaction, \(C_{N,\text{trade}} \) and \(E_{N,\text{trade}} \) are the scaling law parameters. In essence, this law counts the average number of trades observed during every event. Law (1) is plotted in Figure 5.2 and Table 5.2 reports the adjusted R\(^2\) values and the standard error of the fit. The results of Law (1) show that on average, an OS event contains roughly twice as many trades as a DC event

\[
\langle N (\Delta x_{\text{OS,trade}}) \rangle \approx 2 \langle N (\Delta x_{\text{DC,trade}}) \rangle
\]

(5.11)

where \(\langle N (\Delta x_{\text{OS,trade}}) \rangle \) and \(\langle N (\Delta x_{\text{DC,trade}}) \rangle \) are the average trade numbers in an OS and a DC event, respectively.

Scaling Law (2): Trade Volumes

Given a fixed percentage threshold, the average volume of trades \(\langle V (\Delta x_{\text{trade}}) \rangle \) observed during an event is scale-invariant to the size of this threshold

\[
\langle V (\Delta x_{\text{trade}}) \rangle = \left(\frac{\Delta x}{C_{V,\text{trade}}} \right)^{E_{V,\text{trade}}}
\]

(5.12)

where a trade volume for a single transaction \(i \), denoted by \(V_i \), is defined as the execution price times the number of units of the transaction. \(C_{V,\text{trade}} \) and \(E_{V,\text{trade}} \) are the scaling law parameters. In detail, this law counts the average volume of trades observed during every event. Law (2) is plotted in Figure 5.3. Table 5.2 reports the adjusted R\(^2\) values and the standard error of the fit. The results of the different event thresholds that we considered show that on average, an OS event contains roughly twice as many volumes as a DC event

\[
\langle V (\Delta x_{\text{OS,trade}}) \rangle \approx 2 \langle V (\Delta x_{\text{DC,trade}}) \rangle
\]

(5.13)
Figure 5.2: Average EUR/USD and EUR/CHF trade numbers during DC and OS events for selected threshold values. The x-axis shows the price moves thresholds of the EUR/USD and EUR/CHF observations and the y-axis the average trade numbers.

where \(\langle V(\Delta x_{OS,trade}) \rangle \) and \(\langle V(\Delta x_{DC,trade}) \rangle \) are the average trading volumes in an OS and a DC event, respectively.

Scaling Law (3): Number of Opening Positions

This law counts the average number of opening positions observed during every event of size \(\Delta x \). Given a fixed percentage threshold, the average number of opening positions \(\langle N(\Delta x_{OP}) \rangle \) observed during an event is scale-invariant to the size of this threshold

\[
\langle N(\Delta x_{OP}) \rangle = \left(\frac{\Delta x}{C_{N,OP}} \right)^{E_{N,OP}}
\]

(5.14)

where \(C_{N,OP} \) and \(E_{N,OP} \) are the scaling law parameters. Law (3) is plotted in Figure 5.4 and Table 5.2 reports the adjusted R\(^2\) values and the standard error of the fit.

Scaling Law (4): Number of Closing Positions

This law counts the average number of closing positions observed during every event. Given a fixed percentage threshold, the average number of closing positions \(\langle N(\Delta x_{CP}) \rangle \) observed during an event is scale-invariant to the size of this threshold

\[
\langle N(\Delta x_{CP}) \rangle = \left(\frac{\Delta x}{C_{N,CP}} \right)^{E_{N,CP}}
\]

(5.15)

where \(C_{N,CP} \) and \(E_{N,CP} \) are the scaling law parameters. Law (4) is plotted in Figure 5.5 and Table 5.2 reports the adjusted R\(^2\) values and the standard error of the fit. The average results of Laws (3) and (4) show two important features:
CHAPTER 5. STYLIZED FACTS OF TRADING ACTIVITY IN THE FX MARKET

59

Figure 5.3: Average EUR/USD and EUR/CHF trade volumes during DC and OS events for selected threshold values. The x-axis shows the price moves thresholds of the EUR/USD and EUR/CHF observations and the y-axis the average trade volumes.

Figure 5.4: Average number of opening EUR/USD and EUR/CHF positions observed during DC and OS events for selected threshold values. The x-axis shows the price moves thresholds of the EUR/USD and EUR/CHF observations and the y-axis the average number of opening positions.
Figure 5.5: Average number of closing EUR/USD and EUR/CHF positions observed during DC and OS events for selected threshold values. The x-axis shows the price moves thresholds of the EUR/USD and EUR/CHF observations and the y-axis the average number of closing positions.

1. An OS event contains roughly twice as many numbers of opening and closing positions as a DC event

\[
\langle N(\Delta x_{OS, OP}) \rangle \approx 2 \langle N(\Delta x_{DC, OP}) \rangle \quad (5.16)
\]

\[
\langle N(\Delta x_{OS, CP}) \rangle \approx 2 \langle N(\Delta x_{DC, CP}) \rangle \quad (5.17)
\]

where \(\langle N(\Delta x_{OS, OP}) \rangle \) and \(\langle N(\Delta x_{DC, OP}) \rangle \) are the average number of opening positions in an OS and a DC event, respectively. \(\langle N(\Delta x_{OS, CP}) \rangle \) and \(\langle N(\Delta x_{DC, CP}) \rangle \) are the average number of closing positions in an OS and a DC event, respectively.

2. An OS event contains roughly the same numbers of opening and closing positions. A similar feature holds for a DC event.

\[
\langle N(\Delta x_{OS, OP}) \rangle \approx \langle N(\Delta x_{OS, CP}) \rangle \quad (5.18)
\]

\[
\langle N(\Delta x_{DC, OP}) \rangle \approx \langle N(\Delta x_{DC, CP}) \rangle \quad (5.19)
\]

5.2.3 Discussion

Using an event-driven approach similarly to [98], we have extended the set of FX market stylized facts by discovering four new scaling laws relating to the FX market trading activity. We cross-checked them and established six quantitative relations amongst them. The new scaling laws have the potential to significantly
enhance our understanding of the dynamic behaviour of FX markets. The new laws can improve the forecasting quality as regards the behaviour of prices as well as market activities. In addition, they are valuable tools for risk management, volatility modelling and for creating trading models.

The results obtained show that the trading activity for EUR/USD and EUR/CHF currency pairs exhibit similar average behaviour. As with regard to the quantitative relationships amongst the new scaling laws, the explanation of why OS events contain more trading activity than DC events, relies on the fact that a DC event depicts a pattern set up for the move; such a pattern influences traders’ decisions, assuming that the current trend will continue in the same direction.

5.3 Seasonality

A periodic pattern exhibited in the market data is referred to as seasonal and such patterns have been confirmed in studies such as [63, 117]. Seasonality in terms of price changes has been found in FX market data using intraday and intraweek frequencies [63, 117]. The seasonality statistics reveal a great amount of information about the FX market’s active trading hours, volume of trading activity, and how the trading flow might develop. The seasonal patterns of trading activity are associated with the inherent structure of the worldwide FX main market centres (e.g., London, Tokyo and New York), and more specifically, their opening and closing times. Generally, the FX market can be divided into three major trading sessions during which trading activity peaks in a day: the East Asia, Europe and America [63]. Usually these three trading sessions are referred to as the Tokyo, London and New York trading sessions. Table 5.3 presents opening and closing hours in GMT of the major FX market trading sessions. When the trading hours of these market centres overlap, inevitably, the trading activity of the FX market increases due to more traders participating in the market.

In this section, we study the intraday and intraweek seasonality of roughly 59 million transactions carried out by more than 40,000 individual accounts on the OANDA FX trading platform over 2.25 years.

<table>
<thead>
<tr>
<th>Session</th>
<th>Major Market</th>
<th>Opening time</th>
<th>Closing time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia</td>
<td>Tokyo</td>
<td>00:00:00</td>
<td>08:00:00</td>
</tr>
<tr>
<td>Europe</td>
<td>London</td>
<td>08:00:00</td>
<td>16:00:00</td>
</tr>
<tr>
<td>America</td>
<td>New York</td>
<td>13:00:00</td>
<td>21:00:00</td>
</tr>
<tr>
<td>Australia</td>
<td>Sydney</td>
<td>22:00:00</td>
<td>06:00:00</td>
</tr>
</tbody>
</table>

Table 5.3: FX market opening and closing business time for different geographical markets. The time zone is GMT. The markets are listed in the order of their opening times in GMT.
5.3.1 Intraday Seasonality

The intraday seasonality of market activity is defined by means of the daily hourly changes in market activity over a defined period of time. For instance, the intraday seasonality of trade numbers stands for the aggregated trades occurring in each hour (hour 0 to hour 23) of the day, divided by the total trade numbers in the underlying period. Figures 5.6 and 5.7 construct uniform time grids with 24 hourly intervals. Figure 5.6 shows the intraday seasonality of the trade numbers made in terms of 48 different currency pairs. In contrast, Figure 5.7 shows the intraday seasonality for the EUR/USD (a) trade numbers, (b) trade volumes, (c) number of opening positions and (d) number of closing positions. We can spot from Figures 5.6 and 5.7 that the FX market activity exhibits a double U-shape or camel-shape pattern. This result is in line with the reported results of studies in the literature [63, 117]. The analysis of the intraday seasonality of market trading activity indicates the following:

• The trading activity starts to peak within the opening trading times of the market centres in the morning.

• The trading activity declines during the lunch break of the market centres and then peaks in the afternoon again.

• During the market centres’ closing hours, the trading activity gradually declines.

• The intraday seasonality of trading activity has two peaks with the second peak being higher than the first. The first peak takes place when the London trading session is open, while the second takes place when the London and New York trading sessions are open simultaneously.

• The lowest hourly activity of the market outside weekends occurs during the first opening hour of the Sydney market, about 10:00 pm GMT time, when it is night time for the London and New York trading sessions.

The intraday statistics results do not differ (a) for traders through different currency pairs and with regard to the same currency pair (shown in Figure 5.6 and 5.7), and (b) over long and short time horizons.

5.3.2 Intraweek Seasonality

Due to the small number of participants in the FX market during weekends, weekends witness extremely low trading activity. This in turn implies weekly periodicity patterns. Consequently, it is important to add intraweek statistics to the intraday statistics when analysing the flow of FX market trading activity [63].

The intraweek analysis of FX market trading activity uses a uniform time grid of 168 hours from Monday 0:00 - 1:00 to Sunday 23:00 – 24:00 (GMT) to display the aggregated market trading activity in each hour of the weekdays, over a specified period of time [63]. This demonstrates the active trading period of the main FX market centres during the day, the same as for the intraday seasonality of market trading activity.

Figure 5.8 shows the intraweek seasonality of the trade numbers for 48 different currency pairs. Figure 5.9 shows the intraweek seasonality for the EUR/USD (a) trade numbers, (b) trade volumes, (c) number of opening positions and (d) number of closing positions. The patterns in Figures 5.8 and 5.9 can be explained by considering the weekend effect and the intraday seasonality (section 5.3.1). An extremely low level of trading activity takes place from Friday at 21:00 to Sunday evening at 22:00 as a result of the weekend effect. In contrast, high level of trading activity takes place as would be expected during the working days.
Figure 5.6: Hourly intraday seasonality of the trade numbers showing the average trade numbers in each hour of the day. The sampling interval is one hour ($\Delta t = 1$). The sampling period covers 2.25 years from 1st January 2007 to 5th March 2009. The transactions are made in terms of 48 different currency pairs. The time scale is GMT. The total number of transactions is ~ 59 million transactions.

Figure 5.7: Hourly intraday seasonality of EUR/USD (a) trade numbers, (b) trade volumes, (c) number of opening positions and (d) number of closing positions. The sampling period covers 2.25 years from 1st January 2007 to 5th March 2009. The time scale is GMT. All the four plots show similar double U-shapes.
CHAPTER 5. STYLIZED FACTS OF TRADING ACTIVITY IN THE FX MARKET

Figure 5.8: Hourly intraweek seasonality of the trade numbers showing the average number of trades in each hour of the weekday. The sampling interval is one hour ($\Delta t = 1$). The sampling period covers 2.25 years from 1st January 2007 to 5th March 2009. The transactions are made in terms of 48 different currency pairs. The time scale is GMT. The total number of trades is \sim 59 million transactions.

Figure 5.9: Hourly intraweek seasonality of EUR/USD (a) trade numbers, (b) trade volumes, (c) number of opening positions and (d) number of closing positions. The sampling period covers 2.25 years from 1st January 2007 to 5th March 2009. The time scale is GMT.
Similarly to the intraday statistics, the intraweek statistics do not differ (a) for traders through different currency pairs and with regard to the same currency pair (shown in Figures 5.8 and 5.9), and (b) over long and short time horizons.

5.4 Correlation Behaviour

A convenient way to discover statistical properties of market trading activity is to conduct a correlation study. The linear correlation coefficient is a measurement of the level of the dependence between variables. It measures the relationship between two series of variables x and y, and is defined as follows:

$$
corr(x_i, y_i) = \frac{\sum_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^2 \sum_{i=1}^{n}(y_i - \bar{y})^2}}
$$

(5.20)

with the sample means:

$$
\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}
$$

(5.21)

$$
\bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}
$$

(5.22)

For the stock market, it has been confirmed by a number of studies in the literature that intraday price volatilities are correlated with the market activities in terms of the transaction data [106]. In contrast, for the FX market there are relatively few studies on the intraday behaviour of market transactions due to the difficulty of obtaining high-frequency data of market transactions. However, Dacorogna et al. in [63] found across different currency pairs that the intraday volatilities are correlated with the activities measured in terms of the tick numbers. Ito et al. in [117] found that the price changes and the trade volumes have a positive correlation for the USD/YEN and the EUR/USD currency pairs they considered. In this section, we present an analysis of the correlation function of EUR/USD trading activity and mid-price volatility. This is done using hourly correlation calculation intervals over January, 1 2007 to January, 31 2009.

Figure 5.10 shows the correlation of EUR/USD hourly (a) trade numbers and volumes, (b) numbers of buy and sell executed orders, and (c) numbers of opening and closing positions. We can see that the plots in Figures 5.10 form an almost straight line sloping upwards to the right. These indicate a high positive linear relationship between (a) trade numbers and volumes, (b) numbers of buy and sell executed orders, and (c) numbers of opening and closing positions. The strength of the positive correlations is reflected in their correlation coefficients, with the results reported in Table 5.4.

In Table 5.5, we can see some of the statistical properties of the hourly aggregated (a) trade numbers, (b) trade volumes, (c) number of buy executed orders, (d) number of sell executed orders, (e) number of opening positions and (f) number of closing positions. The basic descriptive statistic properties reported in Table 5.5 are the mean, median, minimum, maximum and the standard deviation. From Table 5.5 we can see that there are extremely close similarities between the statistical properties for the number of buy and sell executed orders as well as for the number of opening and closing positions.

The volatility $vol_{L,t}$ is a measure of the variation of market price p_t at time t over a period of length L. Given a price time series $\{p_t, t \geq 0\}$ and given a period of length L, the volatility is defined as:
Figure 5.10: Correlation of EUR/USD (a) trade numbers and volumes, (b) numbers of buy and sell executed orders, and (c) numbers of opening and closing positions: a sampling interval of $\Delta t = 1$ hour is chosen. The sampling period from January, 1st 2007 to January 31st 2009.

<table>
<thead>
<tr>
<th>Correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade numbers and volumes</td>
</tr>
<tr>
<td>Buy and sell executed orders</td>
</tr>
<tr>
<td>Opening and closing positions</td>
</tr>
</tbody>
</table>

Table 5.4: Correlation coefficients computed for the different EUR/USD trading activity. Sampling period from January, 1st 2007 to January 31st 2009.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Mean</th>
<th>Median</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Std. Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade numbers</td>
<td>1.45E+03</td>
<td>8.19E+02</td>
<td>0.00E+00</td>
<td>1.64E+04</td>
<td>1.81E+03</td>
</tr>
<tr>
<td>Trade volumes</td>
<td>4.25E+07</td>
<td>1.41E+07</td>
<td>0.00E+00</td>
<td>9.01E+08</td>
<td>7.11E+07</td>
</tr>
<tr>
<td>Buy executed orders</td>
<td>7.22E+02</td>
<td>3.97E+02</td>
<td>0.00E+00</td>
<td>8.86E+03</td>
<td>9.20E+02</td>
</tr>
<tr>
<td>Sell executed orders</td>
<td>7.24E+02</td>
<td>4.04E+02</td>
<td>0.00E+00</td>
<td>9.07E+03</td>
<td>9.16E+02</td>
</tr>
<tr>
<td>Opening positions</td>
<td>8.20E+02</td>
<td>5.70E+02</td>
<td>0.00E+00</td>
<td>7.31E+03</td>
<td>8.58E+02</td>
</tr>
<tr>
<td>Closing positions</td>
<td>8.20E+02</td>
<td>5.61E+02</td>
<td>0.00E+00</td>
<td>7.34E+03</td>
<td>8.66E+02</td>
</tr>
</tbody>
</table>

Table 5.5: Descriptive statistics for the hourly aggregated (a) trade numbers, (b) trade volumes, (c) number of buy executed orders, (d) number of sell executed orders, (e) number of opening positions and (f) number of closing positions. Sampling period from January, 1st 2007 to January 31st 2009.
\[\text{vol}_{L,t} = \sigma \left(\frac{p_t \cdots p_{t-L+1}}{t} \sum_{i=1}^{L} p_{t-i} \right) \] (5.23)

where \(\sigma \) is the standard deviation.

In this study, we found that the EUR/USD mid-price volatility of the last 24 hours is correlated with the activities measured in terms of the trade numbers and volumes. The correlation coefficients computed for the EUR/USD mid-price volatility of the last 24 hours and the trade numbers is +0.43 while for the volumes it is +0.28. We can hypothesise that an increase in the trade numbers would lead to a rise in the price volatility, and vice versa. It is important to point out that this positive correlation does not mean that changes in the price volatility cause changes in the trade numbers, and vice versa. To determine what causes changes in terms of the direction of the trade numbers, an assessment of the overall market conditions must be carried out.

5.5 Conclusion

In this chapter, we presented the study and analysis of the high frequency FX dataset provided by OANDA Corporation with the aim being to establish the stylized facts of the trading activity in the FX market. We undertook an analysis of the FX market traders’ collective behaviour which focused on: scaling laws, seasonality statistics and correlation behaviour. Our contribution is two-fold. Firstly, using a HFD we have been able to confirm a number of stylized facts apply on FX market transactions data that have been described in the literature. Secondly, our work goes beyond those and we have discovered four new scaling laws and six quantitative relations among them apply on transactions data. These contributions are as follows:

- We have studied seasonality in the HF transactions dataset and have confirmed the existence of daily and weekly periodic patterns in the FX market trading activity. This adds to the studies of [63, 117] in the literature where they confirmed the existence of the double U-shape pattern of intraday trading activities in FX markets [63, 117]. The intraday seasonality of trading activity can be explained by considering the behaviour of worldwide FX market centres whose business trading hours partially overlap. The intraday seasonality can be explained by considering the daily patterns and the weekend effect. The intraday and intraweek seasonality show that a high level of trading activity takes place when two or more FX market centre business hours overlap. Trading activity peaks during the opening business hours, declines during the lunch break, peaks again in the afternoon, then declines gradually during the closing business hours of an FX market centre.

- We have investigated the correlation behaviour of high-frequency transactions data. This adds to other studies reported in the literature [63, 117]. Our study is different in that we have explored the correlation behaviour in different types of transaction in HF FX market data. It has been found that a highly positive correlation exists between (a) trade numbers and volumes, (b) numbers of buy and sell executed order, and (c) numbers of opening and closing positions. In addition, the price volatility of the last 24 hours is correlated with the activities measured in terms of the trade numbers and volumes.

- The second main contribution of our study is the discovery of four new scaling laws and six quantitative relationships among them apply on transactions data (section 5.2.2). The statistical analysis of the scaling laws is based on the directional-change event approach which is event driven and the
scaling laws apply to transaction data. Given a fixed threshold (Δx), the observed four independent
new scaling laws state that the average (a) trade numbers, (b) trade volumes, numbers of (c) opening
and (d) closing positions observed during a price move of size Δx is scale-invariant to the size of this
threshold. As far as we know this is the first such study that has studied and observed these relations.
This adds to Glattfelder et al.’s work [98] where they uncovered 12 independent new scaling laws in
foreign exchange price data.

Using the identified stylized facts presented in this chapter, in the next chapter we present the construction
of an agent-based FX market which we subsequently validate by testing its ability to reproduce and to what
extent the stylized facts of the trading activity of the real HF FX market.
Chapter 6

The Agent-Based FX Market

6.1 Introduction

The aim of our research is to identify the essential elements under which the stylized facts of the FX market trading activity are exhibited in an ABM. In order to achieve our research aim, we use an agent-based modelling approach to model the trading activity at the level of the FX market-maker high-frequency market. The initial part of the study, chapter 5, is to observe the behaviour of the FX market traders in order to establish the stylized facts of their collective trading activity in the market. This is performed using a high-frequency dataset of anonymised individual traders’ historical transactions on an account level. The second step, the subject of this chapter, is to build a simple and flexible agent-based FX market (ABFXM) which is populated by a number of heterogeneous interacting agents. Using the identified stylized facts of the FX market trading activity, we evaluate the trading activity produced from the ABFXM in resembling the activity in the real market. By relating the stylized facts of actual FX market traders’ behaviour to the agent-based models of traders, we may find a pathway to identify the essential elements necessary for modelling the trading activity in the FX market.

The organization of this chapter is as follows. Section 6.2 presents the general setting of the ABFXM. Section 6.3 describes how the market-maker works, whereas section 6.4 presents the available traded assets in the market. The design of the trading agents is given in section 6.5. Next we present the trading cycle in section 6.6, while section 6.7 provides a description of the market clearance. The design of the ABFXM platform is giving in section 6.8. Section 6.9 provides the experimental and validation design to validate the accuracy of the ABFXM in reproducing the stylized facts of the trading activity in the high-frequency FX market. The results of the experiments that have been performed are presented in section 6.9. The chapter ends with the conclusions in section 6.10.

6.2 General Setting of the ABFXM

The agent-based FX market (ABFXM) simulates the trading activity at the level of an FX market-maker high-frequency market. The constituent elements in the market are N heterogeneous agents as described in the following subsections who interact through buying and selling currencies in the market via the market-maker. Figure 6.1 shows the main components of the simulation and their interaction.

We focus our attention on the impact that changes on the agents’ structural elements (and consequently behaviour) have on the intensity and flow of market trading activity and for this purpose we use a dataset
of high-frequency historical prices for EUR/USD currency pair and feed these prices into the simulation via the market-maker. The prices are fed over a defined one month period and hence the agents react on such information. We use this dataset as the purpose of this work is to develop an ABFXM that is able to approximate the stylized facts of trading activity that are exhibited in the real FX market data and explore their origins. These stylized facts relate to transactions data (a transaction represents an executable order in the market) and hence the price data are used to anchor the simulation results so that we can establish whether the transactions data generated by the ABFXM have the same characteristics and properties as the real market data. The historical dataset of prices acts as a constant so that multiple simulation runs can be performed in which aspects of the trading behaviour of the agents can be modified and systematically studied without having to worry about price setting in the market. This enables us to study the ensuing behaviour and data generated from the market against those of the real market and also compare different settings against one another.

We consider N agents divided equally into $N_{Contrary}$ contrary agents and N_{Trend} trend following agents ($N = N_{Contrary} + N_{Trend}$), to be further explained in section 6.5.5. An agent takes a decision at time t of the simulation, based on its budget constraints and preferences, to be explained in depth in the following sections. Prior to the start of the simulation, based on a continuous uniform distribution, each individual agent will be assigned the following elements:

- **Home currency**: the agent account’s primary currency.
- **Leverage**: this is the ratio of the margin to the maximum trade size. For example, with a deposit of $1,000 and a leverage of 20:1, a trader could open a position in which the position value is $20,000. Trading on margin is explained in section 6.5.2.
- **Business trading hours**: correspond to a FX trading session as explained in section 6.5.9.2.
- **Profit objective and risk appetite thresholds**: are as explained in section 6.5.4.

In addition to the above elements, each individual agent will be endowed with a different amount of cash.
(wealth) expressed in the agent’s home currency. The wealth distribution is based on a power law distribution, as explained in section 6.5.1.

The trading activities of each individual agent as well as its portfolio, will be recorded on external text files for analytical purposes. Furthermore, all the necessary statistics of each trading round will be stored on external text files to allow further analysis.

6.3 The Market-Maker

An FX market-maker is a corporation which supplies liquidity for a number of currency pairs, and consequently quotes both a buy and a sell price for a currency pair on its platform. The market-maker buys from and sells to its investors and other market-makers and hence makes a profit on the bid-offer spread. The FX market-maker quotes the bid and ask price for a currency pair on its platform by observing the demand and supply in the market, historical information, their inventory holdings, prices from other market-makers, and information about current political and economic events, as well as other factors.

The ABFXM developed consists of an FX market-maker which quotes prices and trading agents who participate in the market by means of buying and selling currencies. The market-maker uses a historical high-frequency prices dataset to issue price quotes as explained in section 6.2. As part of future work we aim to explore the generation of artificial prices in the ABFXM using one or more FX market-makers. This will allow studying price formation through the FX market-maker component. But for the purposes of this work the prices had to be fed through the historical high-frequency prices dataset.

6.4 Assets

At any time t in the market, an agent j is capable of holding two different types of assets:

- A risk free asset in the form of cash.
- A risky asset in the form of a currency pair (EUR/USD).

The decision behind having just two different types of assets was based primarily on the complexity of the analysis of markets in which more than two assets are available for trading [137]. However, according to LeBaron [137] there are a few ABMs, in which more than two assets can be traded such as [49, 229]. The leading influential work in the area of ABMs, Santa Fe Artificial Stock Market (SF ASM), is composed of two tradable assets, a risk-free bond and a risky stock asset [140]. Examples of ABMs composed of two tradable assets are the ones developed by [5, 171].

A currency pair in the market is represented as a base and a quote (base/quote) in which these two currencies are traded. For example, the base of EUR/USD is EUR while the quote is USD. We denote b_t at time t as the bid price at which a trader can sell the base currency and buy an equivalent amount of the quoted currency to buy the base currency. This means a trader opening a short position. Similarly, the ask price a_t at time t is the offer rate at which a trader can buy the base currency and sell an equivalent amount of the quoted currency to pay for the base currency, opening a long position.
CHAPTER 6. THE AGENT-BASED FX MARKET

6.5 Agent Design

In designing trading agents, there are two equally important but competing principles/imperatives that we need to keep in mind. On the one hand, simplicity is key as a complex agent and in more general market design may impede the study, understanding and interpretation of the origins of the stylized facts [110] and in general the dynamics of the market. On the other hand, heterogeneity is inherent in real markets and they are populated by agents who have different preferences, demands, aspirations, trading strategies and trading hours. Some of the previous works in ABMs do not consider heterogeneity in the agent’s preferences and the agents are allocated the same profit objectives, time horizons, forecasting and decision making horizons [137]. In our work, we have attempted to satisfy both of these principles through a well-defined parameter space and clear strategy. In our agent-based model of traders, heterogeneity exists in (a) wealth variations among the agents; (b) different behavioural groups of ZI-DCT0 agents; (c) agents who have different profit objectives; (d) agents who have different risk appetites that form long and short term investors; and finally (e) agents who use different trading time windows. All of these aspects build heterogeneity into the trading model, leading to the characterization of different trading activities. The following sections describe the various elements of the agents’ design and their by default setting.

6.5.1 Initial Wealth Distribution

The wealth represents the amount of cash that an agent holds and it is expressed in the home currency of the agent’s account. Many ABMs imply that all agents are endowed with the same amount of cash prior to the launch of the simulation, as has been done by [64, 124, 140, 150, 172].

In our ABFXM, we use a power law distribution to endow each agent with a different amount of cash\(^1\). The motivation for choosing a power-law distribution rather than other distribution methods is that our target in building models of the market traders is to reproduce stylized facts of the financial markets. Over a century ago, Pareto found through empirical observation, that the income distribution in numerous countries follows a power-law distribution [186]. In the follow-up of Pareto’s study, a number of empirical studies support this hypothesis by providing evidence from empirical data [22, 185, 209]. We quantify the income distribution in financial markets by the income distribution of a country’s population. Hence, we use a power law distribution to endow each agent with a different amount of cash which is a more accurate reflection of what happens in reality.

The power-law distribution is employed in the simulation by converting a random number that is uniformly distributed into a number that is distributed along the power-law distribution. The power-law and the random variable are related via:

\[
\int_{l_0}^{l_1} k z^{-\alpha} = \int_0^z 1 \, dz
\]

where \(l_0 \) and \(l_1 \) are the lower and upper bounds respectively from which the power law distribution holds. \(k \) is a constant value defined by:

\[
k = \frac{-\alpha + 1}{l_1^{(-\alpha+1)} - l_0^{(-\alpha+1)}}
\]

\(^{1}\text{In the subsequent chapter (chapter 7), we examine the impact of different distribution methods for the agents’ initial wealth in the exhibition of the market trading activity’s stylized facts. Moreover, we show that the selection of a power law distribution for the agents’ initial wealth is capable of reproducing, to a certain extent, the stylized facts of FX market trading activity.}\)
\(\alpha \) is the scaling exponent for a power-law distribution and \(z \) is a random number drawn from a uniformly distributed number. Combining these two equations, the power law has the following form:

\[
l_z = \left(\frac{z(-\alpha + 1)}{k} + l_0^{(-\alpha + 1)} \right)^{(-\alpha + 1)}
\] (6.3)

Estimating the value of the scaling exponent for a power-law distribution is very important due to its role in characterising the distribution. Caution in estimating the scaling exponent is essential. The larger the scaling exponent, the steeper the curve, consequently implying more small scales than large ones.

6.5.2 Margin Trading

Trading on margins enables a trader to place an order where the order size is larger than his cash holding. Trading on margins involves borrowing a fraction of the cash required from the market-maker executing the transaction. Nevertheless, trading on margins is dependent on the leverage ratio used by the trader. A leverage ratio of \(\nu \):1 is a minimum margin requirement of \(m\% \ (\frac{1}{\nu}) \). This means that if a trader decides to open a new position, it must have at least \(m\% \) of the position’s size available as a margin. Traders trading on the margin may possibly realize a high profit, but this in turn involves a high risk. Accordingly, trading on the margin makes use of a course of action so-called a margin call. The margin-call procedure is explained in section 6.7.

6.5.3 Portfolio

Every agent \(j \) has a portfolio which records the results of the agent’s financial transactions. A portfolio is associated with the agent’s account home currency. In an agent’s portfolio, the following information is recorded:

Balance: The amount of cash in the agent’s account. It is denoted by \(c_{jt} \) at time \(t \). The balance is expressed based on the agent’s home currency. An agent’s balance changes when the agent realizes a profit or loss on a closed position. The balance does not change with the current exchange rate on the agent’s open positions.

Unrealized profits and losses: The profits or losses that would be produced if an agent \(j \)'s open position were closed at the current currency pair price, denoted by \(g_{o,j,t} \) for position \(o \) at time \(t \). For a long position, \(g_{o,j,t} \) is computed by:

\[
g_{o,j,t} = (b_t - o_p) \times (r_o \times o_s)
\] (6.4)

For a short position, \(g_{o,j,t} \) is computed by:

\[
g_{o,j,t} = (a_p - a_t) \times (r_o \times o_s)
\] (6.5)

where
- \(b_t \) is the current bid price of the position currency pair;
- \(a_t \) is the current ask price of the position currency pair;
- \(o_p \) is the price at which the position was opened;
- \(o_s \) is the position size;
is the size of the position (in units) converted from the quote currency of the currency pair in question to the agent’s home currency using the current ask price if the position is short and the current bid price if the position is long.

Once an agent closes a position and has realized a profit, this will be added to the agent’s balance, whereas if the position has realized losses, the opposite will be the case.

Net Asset Value (NAV): The NAV at time t represents the current value of an account, denoted by $\text{NAV}_{j,t}$. In other words, $\text{NAV}_{j,t}$ is the amount of cash in agent j’s account, plus all unrealized profits and minus all unrealized losses associated with all the account’s open positions. If an agent has no open position at time t, the NAV is basically equal to the amount of cash in the account balance. $\text{NAV}_{j,t}$ is computed as:

$$\text{NAV}_{j,t} = c_{j,t} + \sum_{o=1}^{n} g_{o,j,t}$$ \hspace{1cm} (6.6)

where
\begin{itemize}
 \item $c_{j,t}$ denotes the amount of cash in agent j’s account;
 \item n is the current number of positions held by agent j at time t;
 \item $g_{o,j,t}$ is the unrealized gains or losses associated with position o, computed from Equation 6.4 (long position) or Equation 6.5 (short position).
\end{itemize}

Margin used: The margin used is denoted by $m_{j,t}$ at time t. This amount is equal to the position value multiplied by the agent’s margin ratio, summed up over all the agent’s open positions. The margin ratio is the inverse of the used leverage v_j. For example, a 20:1 leverage equals a 0.05 margin ratio. If an agent has no open position at time t, the margin used is in essence equal to zero. The margin used at time t is computed as:

$$m_{j,t} = \sum_{o=1}^{n} \frac{r_o \times o_s}{v_j}$$ \hspace{1cm} (6.7)

where
\begin{itemize}
 \item n is the number of positions held by the agent at time t;
 \item o_s is the position size;
 \item v_j is agent j’s used leverage;
 \item $(r_o \times o_s)$ is the size of the position (in units) converted from the base currency of the currency pair in question to the agent’s account currency using the current ask price if the position is long and the current bid price if the position is short.
\end{itemize}

Margin available: The amount of the agent’s balance and unrealized profit and losses available as a margin for a new trade. In detail, the margin available is equal to the agent’s net asset value $\text{NAV}_{j,t}$ minus the margin used $m_{j,t}$. If the margin available is 0, then the agent cannot open new positions or increase existing positions. The margin available is denoted by $\text{MA}_{j,t}$ and is computed at time t by:

$$\text{MA}_{j,t} = \text{NAV}_{j,t} - m_{j,t}$$ \hspace{1cm} (6.8)

6.5.4 Profit Objective and Risk Appetite

The traders’ profit objectives and risk appetite affects and characterizes the volume and flow of market trading activity. Accordingly, using the high-frequency individual traders’ transactions dataset, we map the traders’ profit objectives and risk appetites into the agent-based models of traders.
The mapping was accomplished through tracking each trader’s transactions in each of their traded currency pairs. Specifically, this is done in terms of tracing the number of currency units bought and sold sequentially by the transactions’ execution time. Consequently, we trace a trader’s different types of orders with regard to a given currency pair from the opening to the closing of a position. This allows us to define the trader’s profit and loss thresholds by which the trader decides to open and close their positions. The threshold represents the size of price movements as a result of which a trader decides to place a new order. From this analysis, we conclude with the following two observations:

- In terms of the traders’ profit objectives, the majority of traders place a new order based on small changes in the price. For that reason, based on a uniform distribution, the profit objective thresholds will be generated for each individual agent by drawing random numbers from a uniform narrow interval [0.01%, 2%). The limits of such intervals are important for reproducing the real FX market trading activity.

- In contrast, the length of the traders’ holdings on losing positions tends to be extensive. This indicates that many of the trading strategies of real traders involve a high degree of risk. This fact was mapped into the agent-based models of traders in which we defined the agents’ risk appetites to be four times their profit objectives. The choice of this setting was based on a number of controlled experiments further explained in chapter 7.

Since the profit objective and risk appetite thresholds differ amongst agents, we consider each agent to be a unique trader which adds to the heterogeneity in our model.

6.5.5 Trading Strategy

The agents’ adopt the zero-intelligence directional-change event trading strategy (ZI-DCT0), described in chapter 3. The central idea behind ZI-DCT0 is that an agent will observe the changes in the price time series and commit to a fixed threshold based on intrinsic time rather than physical time. Physical time adopts a point-based system and is homogenous with time scales equally spaced based on the chosen time unit (second, minutes, etc.). In contrast, intrinsic time is irregularly-spaced in time as time triggers just at periodic events [98]. The intrinsic time basic unit is an event which is defined as the total price change exceeding a given fixed threshold defined by the agent.

For studying an asset’s price time series, given a fixed threshold of size Δx, the absolute price change between two local minimum and maximum prices is decomposed into a directional-change (DC) event of size Δx and its associated overshoot (OS) event [98]. The OS event represents the price movement beyond the fixed threshold Δx. A DC event takes one of the two forms - an upturn DC event or a downturn DC event [219]. An upward run is a period between an upturn DC event and the next downturn DC event, while a downward run is a period between a downturn DC event and the next upturn DC event. An upturn (downturn) DC event ends a downward (upward) run, and starts an upward (downward) run.

Before the study of an asset’s price time series, two variables are defined: the last high and low prices which are set to the asset’s price at the start of the price sequence [219]. During an upward run, the last high price is continuously updated to the maximum of (a) the current price and (b) the last high price. During the period of a downward run, the last low price is continuously updated to (a) the minimum of the current price and (b) the last low price. An upturn DC event occurs once the absolute price change between the current price and the last low price is higher than the threshold of size Δx, while a downturn DC event occurs once
Algorithm 6.1 The core trading mechanism for the two groups of ZI-DCT0 agents

Require: initialise variables (event is upturn event, \(x = p_t, \Delta x_{DC} \) (Fixed) \(\geq 0 \))

if event is upturn event then
 if \(p_t \leq x \times (1 - \Delta x_{DC}) \) then
 event \(\leftarrow \) downturn event
 \(x \leftarrow p_t \)
 Buy \(\rightarrow \) ZI-DCT0 contrarian agent, Sell \(\rightarrow \) ZI-DCT0 trend follower agent
 else
 \(x \leftarrow \max(x, p_t) \)
 end if
else // Event is downturn event
 if \(p_t \geq x \times (1 + \Delta x_{DC}) \) then
 event \(\leftarrow \) Upturn event
 \(x \leftarrow p_t \)
 Sell \(\rightarrow \) ZI-DCT0 contrarian agent, Buy \(\rightarrow \) ZI-DCT0 trend follower agent
 else
 \(x \leftarrow \min(x, p_t) \)
 end if
endif

the absolute price change between the current price and the last high price is lower than the threshold of size \(\Delta x \).

Before the launch of the simulation, based on a continuous uniform distribution, each ZI-DCT0 agent assigns a fixed threshold from a uniform interval \([0.01\%, 2\%]\). Two different equal groups of agents are identified based on ZI-DCT0: contrary and trend-following agents. A contrary agent opens a new position in the prediction that the price will move in the opposite direction. For instance, an agent may open a new long position when the price falls by 0.04% and afterwards closes the position as soon as the price rises by 0.06%. By way of illustration, a contrary agent opens a new short (long) position if the current bid (ask) price rises (declines) by a percentage which is equal to, or above, the threshold defined based on the agent’s expectation of the market. Trend-following agents take advantage of the price trend movement direction, assuming that the current trend will continue in the same direction. A trend follower agent opens a new long position whilst the price is rising, whereas a short position is opened when the price is falling. Hence, a trend follower opens a new short (long) position if the current bid (ask) price declines (rises) by a percentage which is equal to, or above, the threshold used by the agent. Algorithm 6.1 illustrates the core trading mechanism for these two groups of ZI-DCT0 agents.

The buying and selling orders placed by these two groups of agents are market orders. These market orders are orders for immediate execution at the current price of a currency in the market. There is assurance with regard to the execution of a market order, but ambiguity concerning the execution price. For a market order, an agent specifies the order size and type, with the order type being either a buy or a sell order.

A position is opened once an agent has bought or short-sold any quantity of currency units. A position can be of type long (bought) or short (sold). The position volume stands for the number of bought or sold currency units executed in the market. The position price is the unit price at which the position was opened. The position closure takes place as a result of either a margin call or an agent’s decisions through market or limit orders, to be explained in sections 6.5.6, 6.6 and 6.7.

A similar trading strategy to the ZI-DCT0 was introduced by [5] in which the agents enter the market and operate in it only if the price fluctuations are above a certain threshold. The threshold remains constant and
is defined for each agent before the launch of the market. Furthermore, the authors suggest that introducing a threshold in terms of the agents’ activities, which modulates the number of active agents in the market, is one of the factors responsible for the exhibition of stylized facts in an ABM. The main differences between the adopted ZI-DCT0 trading strategy in our ABFXM and the one introduced by [5], is that the former considers the direction and the overshoot of the price movement in the agent trading activities, whereas the latter does not.

6.5.6 Limit Orders

To acquire a comprehensive trading strategy for the agents, we incorporate two types of limit orders; profit-taking and stop-loss limit orders. For limit orders, a trader must declare the price at which it desires to close its current opened position. There is no guarantee that the declared price will be reached and as a result the execution of a limit order is not guaranteed. If a limit order is executed, there is a guarantee with regard to the execution price.

The profit taking limit order is an order to close a position once a certain profit threshold is reached to lock in a certain profit realization. The profit taking limit order is determined with reference to the agent’s profit objective. For instance, for closing a long position the bidding price for the profit taking limit order must be higher than the purchasing price, while for closing a short position, the asking price for the profit taking limit order must be less than the selling price.

The stop-loss limit order is an order to close a position once a loss threshold has been reached. Such a threshold is defined by the agent, subject to its risk appetite. For closing a long position, a stop-loss limit order becomes a market order after the bid price is at, or below, a specified loss threshold price (stop price) determined by the agent. On the other hand, for closing a short position, a stop-loss limit order becomes a market order after the ask price is at or above a specified stop price as defined by the agent. A stop-loss limit order seeks to limit the loss potential for a position.

The generation of profit-taking and stop-loss limit orders in the market has significant impact on reproducing the stylized facts of FX market trading activity as shown in subsequent experiments in chapter 7.

6.5.7 Random Trade

Market traders place orders based on factors other than price movements (e.g. economic and political events). In our ABFXM, this is modelled by incorporating random trading into the agents’ trading strategies. A random trade represents a trade placed beyond the notion of changes in price time series. When an agent’s trading conditions are not met, it will place a random trade based on a probability equal to 10^{-6}. Such a probability is defined before the simulation starts, and remains constant during the simulation.

6.5.8 Order Size

The order size is an important element of our simulation since it is associated with the cautiousness of the agents. In the ABM literature, there are two main approaches to determining a single order size placed by an agent in an ABM. The direct approach entails an agent’s order size being proportional to the agent’s wealth such as in [193]. This simple approach creates an extremely high trading risk, given that an agent invests its total cash in a single order. The second approach assumes that an agent’s order size is a fraction of its
The fraction value is determined by a constant trading proportion parameter. Experiments using the methods in [172, 193, 212] have been carried out in chapter 7.

In our ABFXM, we follow a different approach and the determination of the number of currency units depends on the agent’s available margin. In detail, an order’s size is determined randomly within a specified range \([\text{UA} \times 10\%, \text{UA}]\), based on the number of currency units the agent has available (UA) to trade. Unit Available (UA) is the maximum number of currency units an agent is allowed to trade, subject to the agent’s available margin. For an order, the minimum number of currency units is 10% of the UA, while the maximum is equal to UA. Equation 6.9 clarifies how to calculate agent \(j\)'s currency units available (UA) to trade.

\[
\text{UA}_{j,t} = \frac{\text{MA}_{j,t} v_j}{r} \tag{6.9}
\]

where
\(\text{MA}_{j,t}\) is the margin available for agent \(j\), calculated from equation 6.8;
\(v_j\) is the leverage used by agent \(j\);
\(r\) is the exchange rate of the base currency of the currency pair in relation to the agent’s account currency using the current ask price if the position is long and the current bid price if the position is short.

This new proposed approach for characterizing an agent order size in the market is sufficient since it generates a source of heterogeneity in the agent investment strategy which affects the fluctuations in price in the market. A stable market is unappealing for traders, while the existence of various changes in the price movements attracts traders to participate [7].

6.5.9 Asynchronous Trading Time Window

Some ABMs imply continuous-time which means that at period \(t\) of the market, all agents send their orders and then agents update their beliefs to go to the next period \(t+1\). This synchronous representation of time is not fitting for high-frequency data. The studies by Boer et al. [40] and Daniel [64] show that the dynamics of the ABM differ extensively, according to whether the state of the ABM is updated in continuous-time or in discrete-time. Their findings conclude that the asynchronous nature of trading in financial markets essentially has to be considered in agent-based models of financial markets.

The Grand Canonical Minority Game [120] and CHASM [172] adopt discrete-time trading in which the model allows agents to place an order or to hold. Accordingly, the number of agents participating in the total demand and supply is not constant at every time period of the market. Unfortunately, such a model does not present a realistic level of synchronisation, given that at every time period of the market, each agent has to carry out some trading computation. An alternative approach is introduced in the Genoa Artificial Stock Market [188] in which the determination of the agents who will be active in the next period is drawn randomly. Such randomisation alone is not sufficient as it would be ambiguous for the arrival time of the order.

In modelling an asynchronous trading time window for the agents, we addressed this critical modelling issue by considering three important factors: the agents’ activation time in the market, the notion of market business hours, and holidays.
Table 6.1: FX market opening and closing business time for different market sessions. The time zone is GMT. The markets are listed in the order of their opening times in GMT. (as reported in Table 5.3)

<table>
<thead>
<tr>
<th>Market</th>
<th>Opening time</th>
<th>Closing time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tokyo</td>
<td>00:00:00</td>
<td>08:00:00</td>
</tr>
<tr>
<td>London</td>
<td>08:00:00</td>
<td>16:00:00</td>
</tr>
<tr>
<td>New York</td>
<td>13:00:00</td>
<td>21:00:00</td>
</tr>
<tr>
<td>Sydney</td>
<td>22:00:00</td>
<td>06:00:00</td>
</tr>
</tbody>
</table>

6.5.9.1 **Initial Activation Condition**

As it is the case in real markets, not all agents are active at the launch of the simulation. We have set up the initial activation condition to control when an agent will start to be active in the market for the first time. Our condition is based on a probability equal to 10^{-2} which is defined before the simulation starts, and remains constant during the simulation.

6.5.9.2 **Business Hours and Holidays**

Contrary to the stock market, the FX market does not imply a fixed trading time window giving the traders 24 hours a day to operate. However, the differences in the worldwide FX market centres’ business hours have a tangible effect on the dynamics of FX market trading activity, mainly during the overlapping business hours when two or more market centres are open simultaneously. This is because the worldwide FX market centres located in different time zones have different business trading hours and traders’ preferences. The different business trading hours and traders’ preferences, without a doubt, characterize, and determine, the intensity of trading activity in the market. Table 6.1 presents local business trading hours of different FX market trading sessions that are identified based on [63].

In our simulation, each agent is associated with local market business trading hours corresponding to its geographical location. This in essence means that although an agent can trade at any time during the day, the probability of doing so outside its business hours is restricted based on a very small probability equal to 10^{-6} (except for executing limit orders).

6.6 **Trading Cycle**

We make the following four assumptions in modelling the agents’ trading mechanism:

- **Assumption 1** We assume that a position cannot be adjusted.
- **Assumption 2** A position is only opened by a market order or a limit order.
- **Assumption 3** We restrict the quantity of positions held by an agent j at time t to be one opened position.
- **Assumption 4** The market does not implies fees for the transactions.

Basically the main reason for these simplification assumptions is that by making these assumptions the complexity of the behaviour of the model is reduced to a level that can be studied within the scope of this work. Simplicity is fundamental to clearly understand the agents’ trading behaviour. Thus, allocating variable quantities results in a considerable complication of the analysis. The relaxation of these four assumptions does not affect the generality of the simulation results presented in our study. However, we are aware of the importance of the role of quantity as a choice variable, especially with risk aversion.
A central feature of the simulation is how the trading cycle is sequenced, and how trading-related tasks are scheduled. In this section, an agent’s trading cycle at time t is presented in terms of step structures:

Step 1. If an agent j has a limit order, the system will check its execution in terms of whether the limit order reaches the desired profit threshold or hits a loss threshold as explained in section 6.5.5. The consequence is subject to two cases: (1) if the limit order is executable, go to step 7; (2) if the limit order is not executable, go to step 8.

Step 2. Based on a probability equal to 10^{-2}: (1) agent j will remain inactive in the market; (2) agent j will be active in the market, go to step 3.

Step 3. If time t is within agent j’s trading business hours, j performs step 5.

Step 4. If time t is outside agent j’s trading business hours, based on a probability equal to 10^{-6}, j either performs step 5 or will not participate in the market at time t.

Step 5. Agent j will take a decision to buy, sell or hold, based on its budget constraints and its trading strategy. The consequence is subject to two cases: (1) agent j places an order, go to step 7; (2) agent j takes a decision to hold since the price movement has not met j’s expectations, go to step 6.

Step 6. The price movements have not met the agent’s expectations. Based on a probability equal to 10^{-6}, agent j decides whether to place a random order (go to step 7), or decides not to participate in the market at time t.

Step 7. The market-maker will execute the orders.

Step 8. Agent j’s portfolio will be updated.

6.7 Market Clearance

For simplicity, without sacrificing generality, we assume that the orders at time t are processed in sequence, where each order is either a buy or a sell, together with its volume. We make the following assumption in our analysis: all the market orders at time t placed by the individual agent will be completely fulfilled. Limit orders will be executed if the order’s constraints are fulfilled. The clearance for a limit order is simple. If the price of the buy order is higher than, or equal to, the current ask price, the limit order will be fully satisfied. For a sell order, if the price of the sell order is less than, or equal to, the current bid price, the limit order will be fully satisfied. If the limit order price is reached, the order is removed from the head of the orders sequence. If the limit order price is not reached, clearing continues with the remaining order sequence, and the limit order moves to the order sequence at time $t+1$. Having said this, an update for the portfolio will take place for each agent who has an executable order at time t, whether the order is for opening or closing a position. In turn, this involves updating an agent’s balance, net asset value (NAV), margin used and margin available as described in section 6.5.3.

The bid and ask prices at time t are then adjusted to the bid and ask prices at time $t+1$ using the dataset of the historical currency pair bid and ask prices. Consequently, the portfolio will be updated based on the new bid, and ask prices for each agent that has an open position at time $t+1$. This includes updating an agent’s portfolio in terms of the following: unrealized profit and loss for the agent’s open position, net asset value (NAV), margin used and margin available as explained in section 6.5.3.

Finally, all the open positions at time $t+1$ will be checked for a margin call. A margin call is a procedure from a market-maker executing the transactions to automatically closeout all of the open positions held by a trader. A margin closure is triggered when the amount of cash in the agent’s account falls below the
minimum margin needed to cover the size of its currently open position. Furthermore, a position closure triggered from a margin call, means selling (buying) the currency units an agent holds (short) at the current bid (ask) price. The intention of the margin call procedure is to prevent a trader from losing more than the amount of cash in its account. Equation 6.10 illustrates how to compute the margin call for an agent j’s open position.

$$\text{NAV}_{j,t} \leq \frac{m_{j,t}}{2}$$ \hspace{1cm} (6.10)

where $\text{NAV}_{j,t}$ denotes the net asset value (NAV) and $m_{j,t}$ denotes the margin used for agent j at time t.

When the condition of an agent’s used margin is exceeded, consequently the agent’s open position triggers a margin call to close up the position and the realized losses will be subtracted from the agent’s balance. The agent’s portfolio will be updated. In particular, the agent’s net asset value and margin available will be both equal to the amount of cash in the account balance. The amount of margin used by the agent will be reset to zero. If an agent’s balance goes to zero, then the agent is removed from the market.

6.8 The Platform

The platform of the ABFXM developed in Java provides a computer environment in which the modeller can build agent-based model of the FX market to explore the market traders’ behaviour by means of simulations. The ABFXM platform is capable of providing the functionalities of scenario and sensitivity analysis. In designing the ABFXM platform, we have considered four essential properties, which are as follows:

- The platform should be easy to modify in order to be able to change features specific to the market.
- The platform should be easily extensible to allow for new functionalities to be added.
- The implementation of a graphic user interface for the ABFXM is required. This facilitates the use of the ABFXM, given the difficulties of tracking changes in the market parameters and features in a systematic way. Moreover, the graphic user interface allows direct access to the different parameters involved in the ABFXM which in turn facilitates the possibility of different experimentations on the part of the user.
- The graphic user interface should allow the user to execute different scenarios to examine different important features of the market. For example, the user can examine the effect of different order sizes in the market.

The user can run the simulation for a predefined number of trading periods or for a given time, say, one simulated month. The progression of the simulation can be monitored by means of panels that offer a visualization of the price level, the total and average wealth of the agents, the volume of buy and sell executed orders, etc. Figure 6.2 presents a screen shot of the platform’s main screen. The tools presented in Figure 6.2 are for monitoring the progression of the simulation in real-time, which is helpful for the immediate debugging and modification of the parameters and features involved in the ABFXM. The simulation can be reset to its initial configuration while changing just the random seed, to allow for evaluations between different runs in order to assess the robustness of the ABFXM to the initial configuration. A systematic exploration of the ABFXM’s parameters can be conducted. Figure 6.3, 6.4 and 6.5 capture the main parameters’ windows. These parameters are available to the user to modify and explore the ABFXM under...
Figure 6.2: The platform’s main screen

different scenarios. For example, the user is allowed to modify the number of trading periods, the number of available traded currency pairs in the market, etc.

The trading activities undertaken by each agent in the ABFXM will be recorded for future analytical purposes. In addition, all the necessary statistics for each trading round will be stored on external text files to allow further analysis. In detail, the platform is going to generate an external text file with the following information for each trading round:

- trading round number,
- timestamp,
- bid price,
- ask price,
- total wealth,
- average wealth,
- number of active accounts,
- number of opening positions,
- number of margin calls,
Figure 6.3: The market and traders parameters windows.

Figure 6.4: The market-maker parameters windows.
CHAPTER 6. THE AGENT-BASED FX MARKET

Figure 6.5: The currency-pair parameters window.

- number of opening long positions,
- number of opening short positions,
- number of closing long positions,
- number of closing short positions,
- volume of opening long positions,
- volume of opening short positions,
- volume of closing long positions,
- volume of closing short positions,
- number of buy executed orders,
- number of sell executed orders,
- volume of buy executed orders,
- volume of sell executed orders,
- number of closing long positions in profit,
- number of closing short positions in profit,
- number of closing long positions at a loss,
CHAPTER 6. THE AGENT-BASED FX MARKET

- number of closing short positions at a loss,
- volume of closing long positions in profit,
- volume of closing short positions in profit,
- volume of closing long positions at a loss and
- volume of closing short positions at a loss.

The designed platform is very flexible allowing the user to easily modify the different parameters and features involved in the ABFXM in a systematic way. For instance, the user can easily change the method of the agents’ initial wealth distribution and also the distribution of the agents’ profit objectives and their trading time windows. The user could generate or forbid the generation of limit orders in the ABFXM. Moreover, the user can model different levels of the agents’ risk appetites in the market. These modifications allow the user to examine the implications of the different parameters and features involved in the ABFXM in order to understand the market behaviour, and the different economic hypotheses.

With regard to the extensibility of the ABFXM, it is a straightforward task to include new functionalities. For instance, the ABFXM can be extended to permit more than one traded asset (currency pair). Additionally, the ABFXM can be easily extended to generate artificial prices resembling the FX market time series with regard to prices. Furthermore, incorporating the role of one or more market-maker into the ABFXM is very interesting as it would allow the user to study the price competition among market-makers in the FX market. Moreover, we can include in the ABFXM, new trading strategies based on technical analysis and forecasting mechanisms in which learning is involved. This allows the assessment and examination of learning in an ABFXM.

6.9 Validation

In the previous sections, we described the design and functioning of the ABFXM. This section sets out the experimental and validation design performed in order to validate the ability of the ABFXM to reproduce the stylized facts of the trading activity in the high-frequency FX market. Furthermore, the results of the controlled experiments that have been executed are presented in this section. In addition, an assessment of the precision of these results is provided.

6.9.1 Experimental Setup

In building an ABM, the designer has several degrees of freedom due to the large number of parameters that can be defined. Nevertheless, such a high degree of freedom is one of the major criticisms of the agent-based modelling approach. The choice of practical market parameters is not a straightforward task [137]. It is imperative to examine the changes in the behaviour of the ABM activity due to changes in such parameters.

Speaking generally regarding the experimental design, the market simulation operates for a period of one simulated month, where each trading round corresponds to one simulated second. The major parameters used in the experimental simulation are divided into two groups: market parameters and agent parameters.
Market parameters

The initial configuration for the major market parameter values used in our simulation are presented in Table 6.2. The market parameters manage the general settings of the simulation. For instance, such parameters determine the time horizon of the simulation and the traded currency pairs.

Agent parameters

The initial configuration for the agents’ major parameter values is illustrated in Table 6.3. In our simulation, we populate the market with trading agents assigned based on a continuous uniform distribution, a home currency, leverage, trading sessions and profit objective thresholds as described in section 6.2. Additionally, the agents are initially endowed with different amounts of cash (wealth) using a power law distribution, as explained in section 6.5.1. The minimum and maximum boundaries with regard to which the laws hold are important parameters in characterizing the agents’ trading activities. The scaling exponent of the power law distribution characterizes the agents’ initial wealth distribution. As explained in section 6.5.9.1, by default, the agents are not initially active in the market. An agent will become active in the market based on the activation probability. An agent may place an order based on a random probability when its specified trading conditions are not met, as explained in section 6.5.7. Such random trade represents a trade placed beyond the notion of changes in price time series.

2A sensitivity analysis of the impact of some of these parameters in reproducing realistic agent-based models of FX market traders’ behaviours is conducted in chapter 7.
6.9.2 Validation Design

“One of the key unanswered questions in building agent-based markets is that of validation. How do you know you have a market that has any connection to the real world? This validation question appears constantly in the agent-based economics community.”

There are a few approaches that have been adopted in the literature to validate the precision of ABMs. Among such approaches is that of making useful benchmark comparisons in which the behaviour of the real market is well defined [137]. A different approach is to use parameters in the ABM derived from either real or experimental markets [48, 141, 158, 230, 238, 239]. The most robust approach is to demonstrate that the ABM reproduces the stylized facts of real financial markets. However, the lack of market data, particularly high-frequency data with regard to traders’ behaviour, in order to validate the accuracy of ABMs, is a notable issue.

In our study, we aim at validating whether the ABFXM reproduces the stylized facts of the trading activity in the high-frequency FX market to a satisfactory extent. We observe the behaviour of the FX market traders to establish stylized facts of their collective trading activity in the market (described in chapter 5). The identified stylized facts apply on transactions data and can be grouped under three main headings: seasonality, correlation behaviour and scaling laws. We use these stylized facts to validate and confirm that the ensuing behaviour from the modelled ABFXM in terms of transactions data is approximating that of the real market. Furthermore, using the identified stylized facts of the trading activity in both real and ABFXM, we measure the precision using a t-test, Pearson correlation and linear dependence for scaling laws.

As part of our work in chapter 7, we assess the robustness of the ABFXM by performing a sensitivity analysis. In other words, in order to identify the relevance of every parameter, we scan each of the parameter spaces over a given range of values, one at a time, while keeping the other parameters at their original values. Parameter sensitivities are capable of revealing critical features in ABMs that lead the ABMs towards, or away from, real market observed behaviour.

6.9.3 Significance Testing Design

A paired t-test is used to compare the means of two sets of seasonal data in relation to variations in the data. The first seasonality data is the FX market data, while the second data is the ABFXM. The seasonality observations from the FX market data are paired with the seasonality observations from the ABFXM. For the paired t-test to be valid, the differences between the seasonality of the FX market data and the ABFXM data need to be approximately normally distributed. Accordingly, a normality test has to be conducted. In terms of intraday seasonality, we can test the normality using a normal probability plot, since the data size is less than 30. In contrast, for the intraweek seasonality we test for normality using a normal probability plot and a Jarque–Bera test.

The t-test is employed by defining two values: the t-statistic value is denoted by t_{sv} and t-critical value (two tails) under the 95% confidence level is denoted by t_c. The two sample sets of statistical data consist of real FX market data, denoted by R where $r \in R$ and the mean of R is μ_R, while the second data set consists of the ABFXM data, denoted by S where $s \in S$ and the mean of S is μ_S. The size of the two sets is equal, denoted by n, where $n=24$ for the intraday seasonality while $n=168$ for the intraweek seasonality. The
integer z is the index of the data in both sets, where $1 \leq z \leq n$. The null hypothesis is that S is statistically the same in pairs with R, in which $\mu_R - \mu_S = 0$. Let us define a new set H which has n elements, in which each element is defined by $h_z = r_z - s_z$, $h_z \in H$. The mean of this set is μ_H and the standard deviation is σ. The t-statistic (tsv) value is defined as:

$$ tsv = \frac{\mu_H}{SE(\mu_H)} $$

where $SE(\mu_H)$ is the standard error of the mean difference and is defined as

$$ SE(\mu_H) = \frac{\sigma}{\sqrt{n}} $$

The t-critical value is defined using the table of t-distribution where the degree of freedom is $n-1$. If $|tsv| < |tc|$, the difference between the two sample sets R and S is insignificant, so the null hypothesis can be accepted.

6.9.4 Results

This section presents the simulation results that resemble, according to the paired t-test with 95% confidence level, the stylized facts of trading activity in the high-frequency FX market reported in chapter 5. It is worth mentioning that several controlled experiments were conducted using different sets of the ABFXM’s parameters before obtaining a realistic representation of trading behaviour in the high-frequency FX market. The results are averaged over 30 independent simulations, each conducted over a simulated month, and with different initial seeds of the random number generators, and different time horizons over the 2.25 years of data samples. The reason for running the 30 simulations with the same parameters configuration values, but with different seeds and time horizons, is to ensure that the results of the simulation are constant, which allows an assessment of the robustness and accuracy of the simulation results.

Seasonality

The simulation results exhibit the stylized facts of the intraday and intraweek seasonality of trading activity in the high-frequency FX markets, as reported and described in chapter 5. Figure 6.6 shows the intraday and intraweek seasonality of trading activity from (a) the real data and (b) the simulation results. The plots in the figure show that the ABFXM reproduces the seasonality of the trading activity in the FX market. The pattern’s dynamic with regard to all of the four intraday plots in (Figure 6.6 - b) captures the double U-shape or camel-shape pattern as in (Figure 6.6 - a), with two peaks, in which the second peak is higher than the first. In general, the trading activity starts to peak within the opening business hours of the main FX market centres in the morning, declines during the lunch break and afterwards peaks in the afternoon, and finally, during the closing business hours, the level of trading activity gradually declines. We can observe that the intraweek seasonality dynamic of the trading activity exhibits similar behaviour to the intraweek seasonality of the trading activity in the FX market. The number of trading activities declines sharply over the weekend due to the small number of participants.

According to the paired t-tests related to the hypothesis ($\mu_R - \mu_S = 0$), the simulation reproduces the trading behaviour observed in real FX market with a 95% confidence level. Table 6.4 shows the intraday seasonal statistics, the t-statistic values along with the Pearson correlation values, where the t-critical
Figure 6.6: Intraday and intraweek seasonality of EUR/USD trade numbers, trade volumes, number of opening positions and closing positions from (a) the real data and (b) the simulation results. The sampling period covers January 2009. The time scale is GMT.
Table 6.4: T-statistic (tsv) and Pearson correlation (corr) values - Intraday seasonality statistic from the simulation results.

<table>
<thead>
<tr>
<th></th>
<th>tsv</th>
<th>corr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade numbers</td>
<td>2.03E-10</td>
<td>+ 0.90</td>
</tr>
<tr>
<td>Trade volumes</td>
<td>1.11E-10</td>
<td>+ 0.86</td>
</tr>
<tr>
<td>Number of opening positions</td>
<td>2.02E-10</td>
<td>+ 0.91</td>
</tr>
<tr>
<td>Number of closing positions</td>
<td>-6.08E-10</td>
<td>+ 0.91</td>
</tr>
</tbody>
</table>

Table 6.5: T-statistic (tsv) and Pearson correlation (corr) values - Intraweek seasonality statistic from the simulation results.

<table>
<thead>
<tr>
<th></th>
<th>tsv</th>
<th>corr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade numbers</td>
<td>3.02E-09</td>
<td>+ 0.90</td>
</tr>
<tr>
<td>Trade volumes</td>
<td>1.02E-08</td>
<td>+ 0.82</td>
</tr>
<tr>
<td>Number of opening positions</td>
<td>-1.7E-09</td>
<td>+ 0.90</td>
</tr>
<tr>
<td>Number of closing positions</td>
<td>2E-10</td>
<td>+ 0.90</td>
</tr>
</tbody>
</table>

value two-tail = 2.07. For the intraweek seasonal statistic, Table 6.5 shows the t-statistical and the Pearson correlation values where the t-critical value two-tail = 1.97.

Correlation

The simulation results exhibit very similar correlation behaviour in terms of the FX market trading activity. The results of the correlation coefficients are reported in Table 6.6. There is a positive linear relationship between (a) trade numbers and volumes, (b) numbers of buy and sell executed orders, (c) numbers of opening and closing positions, and (d) intraday price volatilities and trader numbers and volumes.

Scaling laws

The simulation results exhibit the stylized facts of the four scaling laws as reported and described in chapter 5. The four scaling laws are plotted in Figure 6.7 for (a) the real data and (b) the simulation results. Given a fixed threshold (Δx), the four scaling laws state that the average trade numbers, trade volumes, numbers of opening and closing positions observed during an event of size Δx is scale-invariant to the size of this threshold Δx. Table 6.7 shows the adjusted R^2 values and standard errors of the fits. The standard errors of the fits are roughly equivalent to the estimated errors for scaling laws in the real data. For the adjusted R^2 values, it is noteworthy that these values are close to 1 which implies a good fit.

The simulation results exhibit the six quantitative relationships amongst the four scaling laws (Figure 6.7 - b). These quantitative relationships indicate that, on average, an OS event contains roughly twice as

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade numbers and volumes</td>
<td>+ 0.81</td>
<td>+ 0.92</td>
</tr>
<tr>
<td>Numbers of buy and sell orders</td>
<td>+ 0.95</td>
<td>+ 0.99</td>
</tr>
<tr>
<td>Numbers of opening and closing positions</td>
<td>+ 0.98</td>
<td>+ 0.98</td>
</tr>
<tr>
<td>Intraday price volatilities and trader numbers</td>
<td>+ 0.43</td>
<td>+ 0.46</td>
</tr>
<tr>
<td>Intraday price volatilities and volumes</td>
<td>+ 0.28</td>
<td>+ 0.31</td>
</tr>
</tbody>
</table>

Table 6.6: Correlation coefficients computed for the different EUR/USD trading activity from (a) the real data and (b) the simulation results.
Figure 6.7: Scaling laws are plotted for (a) the real data and (b) the simulation results where the x-axis shows the price moves thresholds of the EUR/USD observations and the y-axis show the average: trade numbers; trade volumes; number of opening positions; and number of closing positions.

Table 6.7: The adjusted R^2 values of the fits, plus their standard errors (SE), for the scaling laws measured under DC and OS events from (a) the real data and (b) the simulation results.
many trade numbers and volumes as a DC event. In addition, an OS event contains roughly twice as many numbers of opening and closing positions as a DC event. Also, an OS event contains roughly the same number of opening and closing positions, and the same features hold for a DC event.

6.10 Conclusion

In summary, the ABFXM we have introduced in this chapter was motivated by the need to understand and reproduce the stylized facts of the trading activity in the high-frequency FX market. Our study makes the following main contributions in the present chapter:

- The implementation of a simple ABFXM. It is important to emphasise that though a complex ABM may provide richer features, this complexity may prevent a broad and good understanding of the behaviour of the individual agents and the market as a whole. Maintaining simplicity in designing ABMs is a critical design issue which has been under debate in three reviews [110, 143, 193] where the authors raise the importance of simplicity in building ABMs.

- The ABFXM is able to reproduce the stylized facts of the trading activity as exhibited in the real FX market to a satisfactory extent as confirmed by the statistical analysis. To the best of our knowledge, the implemented ABFXM presents original work closely reproducing the trading activity in the high-frequency FX market.

- We have implemented heterogeneous simple zero-intelligence directional-change event trading (ZI-DCT0) agents which are able to produce trading activities resembling those in the real FX market. We show that the stylized facts of trading activity exhibited by real markets can be reproduced with a ZI-DCT0 model of agents, subject to budget constraints. This is different from other works in the literature [21, 42, 46, 49, 52, 56, 64, 83, 95, 100, 114, 128, 138, 146, 149, 150, 153, 158, 159, 170, 172, 215, 232, 238] where the ZI-DCT0 agents avoids the complexity of intelligence strategic behaviour and also the vagueness of zero-intelligent strategic behaviour in which agents trade randomly subject to budget constraint.

- Heterogeneity is an imperative source in modelling the activities of market’s traders. Our work is original in that we have modelled heterogeneity in different forms, including the agents’ initial wealth, leverage ratio used by the agents, their trading strategies, their profit objectives, their risk appetite, their trading time windows, etc. Whereas there are other works that have modelled heterogeneity such as [5–7, 21, 46, 49, 52, 64, 83, 95, 114, 138, 146, 149, 150, 153, 158, 159, 170, 172, 232, 238], these do so in a limited way/through a small number of elements. No other work in the literature has used that many and as varying elements of heterogeneity as we have.

- Our work is novel in that we have considered four important factors in modelling the asynchronous nature of trading in the ABFXM. These four factors are the agents’ activation time in the market, the notion of FX market business hours, holidays, and the introduction of a threshold to trigger the agents’ activities. This is in contrast with what has been done in the literature so far in which some ABMs imply continuous-time trading which means that at time t of the market each agent updates their beliefs and accordingly place an order or hold [120, 172]. Continuous-time trading in an ABM induces a highly computational cost seeing that at every time in the market each agent has to carry
out some trading computation. The computational cost should not be ignored in the design and the construction of an agent-based financial market. The Genoa Artificial Stock Market [188] determines randomly that an individual agent will be active in the next period of the market. However, such randomisation is not adequate, given that it could be ambiguous for the arrival time of the order.

- We have constructed a new approach for characterising an agent’s order size which depends on the agent’s available margin and determined randomly within a specified range. This approach provides a further source of heterogeneity in the agents’ trading activities and consequently the market. This is different from other works in the literature such as (i) the work reported in [193] where the agent’s order size is proportional to the agent’s total wealth while (ii) the works adopted in [172, 212] an agent’s order size is a fraction of its cash, based on a constant trading proportion parameter. These two approaches for modelling the agent’s order size lack heterogeneity in the amount of an agent’s investments during the market run. Furthermore, the first approach generates an extremely high trading risk, as an agent invests the full cash it acquires in a single order. For the second approach, having a high value in terms of the trading proportion parameter generates high trading risk for the agent as well. This sequentially triggers cascaded margin calls, which induce a price fall in the market and affect the agent’s performance.

- We have implemented a graphic user interface for the ABFXM. Such an interface facilitates access and enables the developer to track the different parameters and features involved in the ABFXM.

The implemented ABFXM is a flexible and simple platform which supports an extensive range of controlled experiments. Such experiments allow us in the subsequent chapter to explore and study the impact of changes in different market features on the dynamics of the market behaviour.
Chapter 7

A Systematic Exploration of Market Features

7.1 Introduction

In this chapter, we perform an exploration of the ABFXM’s elements in order to identify the essential elements under which the trading activity stylized facts emerge. Due to the different possible combinations of the elements involved in the ABFXM, a systematic approach is essential for identifying these elements that lead to the reproduction, to a certain extent, of the market stylized facts. For each relevant parameter of the ABFXM, we performed 10 runs, each of which lasted one simulated month, we report the average of the obtained results, and draw conclusions regarding the importance and the implications of the relevant element on the stylized facts. These systematic experiments show that, once one has complete control of the ABM’s elements, one can reproduce and explore the stylized facts of the financial markets. Without doubt, real financial markets are much more complex than the suggested ABFXM, but the exploration of these elements represents a foundation on which one can add more realistic features.

7.2 Number of Agents

The FX market involves a large number of participants and we suppose that the total number of agents \(N \) in an ABM may be critical in reproducing the trading activity in the FX markets. To examine the impact of the number of agents on the dynamics of the market behaviour, we performed several experiments in which we scaled \(N \) from \(10^2 \) to \(10^5 \).

Seasonality results: Figure 7.1 shows the intraday seasonality of trade numbers from the simulation results for different values of \(N \). As can be seen from Figure 7.1, for the different values of \(N \) in the market, the dynamics of intraday seasonality of trade numbers resemble those observed in the empirical data reported in chapter 5. Conversely, as per Figure 7.2, the dynamic of intraday seasonality of trade volumes for small values of \(N \) (\(N = 10^2 \)) is contrary to the observations from the empirical data. In the case of \(N = 10^2 \) (Figure 7.2 - a), we can see that there is a degree of continuous fluctuation in the intraday seasonality of trade volumes which is not the case in reality. In the case of \(N = 10^5 \) (Figure 7.2 - d), the dynamic of intraday seasonality of trade volumes moves within a narrow level of the resistance, whereas in reality it is wider (Figure 5.7). Table 7.1 shows for the intraday seasonality statistics for different values of \(N \), the t-statistic values along with the Pearson correlation values where the t-critical value two-tail = 2.07. According to
Figure 7.1: The intraday seasonality of trade numbers from the simulation results for different total number of agents N in the ABFXM where (a) $N = 10^2$, (b) $N = 10^3$ (c) $N = 10^4$ and (d) $N = 10^5$.

Figure 7.2: The intraday seasonality of trade volumes from the simulation results for different total number of agents N in the ABFXM where (a) $N = 10^2$, (b) $N = 10^3$ (c) $N = 10^4$ and (d) $N = 10^5$.

Paired t-tests with regard to the hypothesis ($\mu_R - \mu_S = 0$), the means of the intraday seasonality statistics of trading activity from the simulation results with different values of N, are roughly equivalent as those for the real FX market, with a 95% confidence level. Nevertheless, the trade volumes correlation between the seasonality statistics of real data and simulation data with a fewer agents ($N = 10^2$) is low.

Correlation results: Table 7.2 reports the correlation coefficients of the different market trading activities from the simulation results with different values of N. The number of agents N does not affect the correlation between (a) number of buy and sell executed orders and (b) number of opening and closing positions. However, such a parameter significantly affects the correlation in terms of the trading volumes in the market. It is clear therefore that the correlation of price volatility and market trading activity depends on a

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th></th>
<th>(b)</th>
<th></th>
<th>(c)</th>
<th></th>
<th>(d)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade numbers</td>
<td>tsv</td>
<td></td>
<td></td>
<td></td>
<td>tsv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade volumes</td>
<td>1.0E-10 + 0.62</td>
<td>-2.0E-09 + 0.98</td>
<td>2.0E-10 + 0.90</td>
<td>-3.2E-10 + 0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opening positions</td>
<td>3.0E-09 + 0.98</td>
<td>-2.0E-09 + 0.98</td>
<td>2.0E-10 + 0.91</td>
<td>5.8E-10 + 0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closing positions</td>
<td>1.0E-09 + 0.98</td>
<td>2.2E-09 + 0.98</td>
<td>-6.0E-10 + 0.91</td>
<td>5.4E-10 + 0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7.1: T-statistic (tsv) values and Pearson correlation (corr) values where the t-critical value two-tail $= 2.07$ - Intraday seasonality statistic from simulation results for different total number of agents N in the ABFXM where (a) $N = 10^2$, (b) $N = 10^3$ (c) $N = 10^4$ and (d) $N = 10^5$.
Table 7.2: Correlation coefficients computed for the different EUR/USD trading activity from the simulation results with different values of number of agents N.

<table>
<thead>
<tr>
<th></th>
<th>$N = 10^2$</th>
<th>$N = 10^3$</th>
<th>$N = 10^4$</th>
<th>$N = 10^5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade numbers and volumes</td>
<td>0.33</td>
<td>0.91</td>
<td>0.92</td>
<td>0.89</td>
</tr>
<tr>
<td>Numbers of buy and sell executed order</td>
<td>0.99</td>
<td>0.98</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>Numbers of opening and closing positions</td>
<td>0.99</td>
<td>0.97</td>
<td>0.98</td>
<td>1.00</td>
</tr>
<tr>
<td>Intraday price volatilities and trader numbers</td>
<td>-0.14</td>
<td>0.01</td>
<td>0.46</td>
<td>-0.03</td>
</tr>
<tr>
<td>Intraday price volatilities and volumes</td>
<td>-0.04</td>
<td>0.01</td>
<td>0.31</td>
<td>-0.08</td>
</tr>
</tbody>
</table>

Table 7.3: The adjusted R^2 values of the fits, plus their standard errors (SE), for the scaling laws measured under DC and OS events from the simulations’ results for different total number of agents N where (a) $N = 10^2$, (b) $N = 10^3$ (c) $N = 10^4$ and (d) $N = 10^5$.

<table>
<thead>
<tr>
<th></th>
<th>DC Adj. R^2</th>
<th>SE</th>
<th>OS Adj. R^2</th>
<th>SE</th>
<th>DC Adj. R^2</th>
<th>SE</th>
<th>OS Adj. R^2</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade numbers</td>
<td>0.74</td>
<td>0.63</td>
<td>0.67</td>
<td>0.63</td>
<td>0.72</td>
<td>0.62</td>
<td>0.74</td>
<td>0.56</td>
</tr>
<tr>
<td>Trade volumes</td>
<td>0.79</td>
<td>0.58</td>
<td>0.69</td>
<td>0.58</td>
<td>0.71</td>
<td>0.67</td>
<td>0.74</td>
<td>0.55</td>
</tr>
<tr>
<td>Opening positions</td>
<td>0.78</td>
<td>0.55</td>
<td>0.68</td>
<td>0.63</td>
<td>0.73</td>
<td>0.57</td>
<td>0.73</td>
<td>0.57</td>
</tr>
<tr>
<td>Closing positions</td>
<td>0.79</td>
<td>0.53</td>
<td>0.67</td>
<td>0.62</td>
<td>0.69</td>
<td>0.69</td>
<td>0.74</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Scaling laws results: The four scaling laws are not exhibited in the simulation results for small values of N (e.g. $N = 10^2$ and $N = 10^3$) and for a very large value of N (e.g. $N = 10^5$). The finite value of the total number of agents N, which can be understood in terms of the absence of correlations for smaller values of N (e.g. $N = 10^2$ and $N = 10^3$) and for a very large value of N (e.g. $N = 10^5$).

Overall, the results indicate the sensitivity of the total number of agents N in an ABM in reproducing the trading activity in the high-frequency FX market. One can see that the full set of stylized facts are obtained only for a finite value of $N = 10^4$. This is due to a small N in the market affecting the intensity of trading activity. One might presume that a very large number of agents in the market would lead to the reproduction of the market stylized facts, given that increasing N induces a higher intensity of trading activity in the market. The opposite is, in fact, the case: a very large number of agents affects the equilibrium of demand and supply in the market, which naturally leads to the price moving in one direction, and essentially affecting the appearance of the market stylized facts.

The impact of the total number of agents has been shown for the Kim and Markowitz and the Lux and
Figure 7.3: Scaling laws are plotted from simulation results for different total number of agents N in the ABFXM where (a) $N=10^2$, (b) $N=10^3$ (c) $N=10^4$ and (d) $N=10^5$.
Marchesi models in Egenter et al. [71]. In these two models, the stylized facts appear for a certain range of the total number of agents, and in most cases the stylized facts do not appear for a large number of agents. In the Lux and Marchesi model, the total number of agents affects the excess demand, and therefore affects the appearance of the stylized facts of the price time series. A study of Chen and Yen’s Artificial Stock Market shows that the stylized facts tend to vanish when the total number of agents increases [235].

7.3 Initial Activation Condition

In our ABFXM and at the start of the simulation, not all agents are active in the market. We have modelled this as an initial activation condition (INAC) which is, in essence, a probability equal to 10^{-2}. This is to emulate the fact that in real life, not all agents are active all the time. To examine the impact of INAC on the stylized facts, we switch it off and hence all agents are active right from the start. Our results suggest that the incorporation of the INAC is actually quite important for the emergence of stylized facts in the ABFXM.

Seasonality results: A straightforward inspection of Figure 7.4 shows that the intraday seasonality dynamics are contrary to the observations from the empirical data (Figure 5.7 (a)). The two peaks of trading activity occur during the early hours of the day in contrast to reality (the peaks occur when the London session is in operation (first peak) and the London and New York sessions coincide (second higher peak)). According to the results reported in Table 7.4 for the paired t-test, the means of the seasonality statistics of the FX market trading activity are roughly equivalent to the simulation results without the inclusion of the INAC. But the correlations between the seasonality statistics of real data and simulation data are extremely low.
Correlation results: As shown in Table 7.5, the inclusion of the INAC does not affect the correlation between (i) trade numbers and volumes, (ii) number of buy and sell orders and (iii) number of opening and closing positions. However, it does affect the correlation between the intraday price volatilities and trade numbers and volumes. Such negative correlations may be due to the high intensity of trading activity that occurs during the launch of the simulation (as all agents are active).

Scaling laws results: The four scaling laws are not exhibited in the simulation results when the INAC is switched off (as shown from Figure 7.5 and Table 7.6). Table 7.6 reports the adjusted R^2 values of the fits, plus their standard errors, for the four scaling laws measured under DC and OS events. However, from Table 7.6, it is noted that the adjusted R^2 values are not close to those observed in the empirical data reported in chapter 5.

The activation of the agents initial condition in the market appears to be key in reproducing the FX market trading activity. The absence of an initial activation condition would mean that all agents are initially active at the launch of the simulation, which would result in an extremely high level of liquidity in the market at the simulation opening time, compared with the middle and the end of the trading period. To the best of our knowledge, in the literature, none of the existing ABMs imply a constraint with regard to the agents’ initial activation time in the market. In other words, these ABMs assume that all agents are active in the market from the beginning of the simulation.

7.4 Limit Orders

The generation of the two types of limit orders in the market - profit-taking and stop-loss limit orders - has a tangible effect on reproducing the stylized facts of FX market trading activity.

Seasonality results: Figure 7.6 shows the intraday seasonality of trade numbers and volumes from the simulation results, without the two types of limit orders being generated. By a simple examination, we can observe that the dynamics of intraday seasonality are contrary to observations from the empirical data (Figure 5.7) for the following reasons:

- The intraday seasonality of trading activity in Figure 7.6 has two peaks, with the first peak being higher than the second peak. In contrast, the empirical data show that the second peak of the market
CHAPTER 7. A SYSTEMATIC EXPLORATION OF MARKET FEATURES

Figure 7.5: Scaling laws are plotted from simulation results without the INAC. The x-axis shows the price moves thresholds of the EUR/USD observations.

<table>
<thead>
<tr>
<th></th>
<th>t_{sv}</th>
<th>corr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade numbers</td>
<td>-4.06E-16</td>
<td>+ 0.86</td>
</tr>
<tr>
<td>Trade volumes</td>
<td>3.71E-10</td>
<td>+ 0.91</td>
</tr>
<tr>
<td>Opening positions</td>
<td>-4.06E-10</td>
<td>+ 0.87</td>
</tr>
<tr>
<td>Closing positions</td>
<td>2.31E-10</td>
<td>+ 0.77</td>
</tr>
</tbody>
</table>

Table 7.7: T-statistic (t_{sv}) values and Pearson correlation values where the t-critical value two-tail = 2.07 - Intraday seasonality statistic from the simulation results without the two types of limit orders being generated.

trading activity is higher than the first peak.

- There is a continuous fluctuation at the end of the intraday seasonality of trading activity, between 17:00 and 23:00 GMT, but in reality the FX market trading activities decline sharply.

With regard to the paired t-test results reported in Table 7.7, the means of the seasonality statistics of the FX market trading activity are roughly equivalent to the simulation results without the generation of limit orders in the market.

Correlation results: Table 7.8 reports the correlation coefficients of the different market trading activities from the simulation results without the generation of limit orders in the market. The inclusion of the generation of limit orders does not greatly affect the correlation between (a) trade numbers and volumes, (b) the number of buy and sell executed orders and (c) the number of opening and closing positions. However, the generation of limit orders in the market affects the correlation between the intraday price volatilities and trade numbers and volumes.

Scaling laws results: The four scaling laws are not exhibited in the simulation results without the generation of the two types of limit orders (as shown from Figure 7.7 and Table 7.9). Table 7.9 reports the adjusted R^2 values of the fits, plus their standard errors, for the four scaling laws measured under DC and
CHAPTER 7. A SYSTEMATIC EXPLORATION OF MARKET FEATURES

Figure 7.6: The intraday seasonality of trade (a) numbers and (b) volumes from the simulation results without the two types of limit orders being generated.

<table>
<thead>
<tr>
<th>Correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade numbers and volumes</td>
</tr>
<tr>
<td>Numbers of buy and sell executed order</td>
</tr>
<tr>
<td>Numbers of opening and closing positions</td>
</tr>
<tr>
<td>Intraday price volatilities and trader numbers</td>
</tr>
<tr>
<td>Intraday price volatilities and volumes</td>
</tr>
</tbody>
</table>

Table 7.8: Correlation coefficients computed for the different EUR/USD trading activity from the simulation results without the two types of limit orders being generated.

Figure 7.7: Scaling laws are plotted from simulation results without the two types of limit orders being generated. The x-axis shows the price moves thresholds of the EUR/USD observations.
Table 7.9: The adjusted R^2 values of the fits, plus their standard errors (SE), for the scaling laws measured under DC and OS events from the simulation results without the two types of limit orders being generated.

<table>
<thead>
<tr>
<th></th>
<th>DC Adj. R^2</th>
<th>SE</th>
<th>OS Adj. R^2</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade numbers</td>
<td>0.77</td>
<td>0.55</td>
<td>0.71</td>
<td>0.58</td>
</tr>
<tr>
<td>Trade volumes</td>
<td>0.75</td>
<td>0.61</td>
<td>0.70</td>
<td>0.57</td>
</tr>
<tr>
<td>Opening positions</td>
<td>0.77</td>
<td>0.55</td>
<td>0.71</td>
<td>0.58</td>
</tr>
<tr>
<td>Closing positions</td>
<td>0.95</td>
<td>0.61</td>
<td>0.67</td>
<td>0.64</td>
</tr>
</tbody>
</table>

OS events. From Table 7.9, the adjusted R^2 values are not close to 1 which highlights the importance of the generation of limit orders in the market. From Figure 7.7, the simulation results without the generation of limit orders do not exhibit quantitative relationships amongst the four scaling laws. On average, an OS event contains roughly four times as many trade numbers and volumes as in a DC event. In addition, an OS event contains about three times as many numbers of opening and closing positions as a DC event. These observations are in contrast to the observations in the empirical data reported in chapter 5.

The reported results in this section confirm that the generation of limit orders represents an important element in reproducing the trading activity in the FX market. From the results obtained, we can observe that the stylized facts are in contrast to those observed in real FX market data. These unlikely results might be caused by the lack of a comprehensive trading strategy in which the agents should lock a certain profit realization, or seek to limit the potential loss with regard to their open positions. The generation of limit orders is not only responsible for the stylized facts of the intraday dynamics of market trading activity, but limit orders also play a key role in stabilizing trading activity in the market. The importance of the generation of limit orders in an ABM is in line with the results acquired by the studies in [64, 171, 172].

7.5 Initial Wealth Distribution

Before the launch of the simulation, all agents are endowed with different amounts of wealth based on a power law distribution. The choice of a power law distribution for the agents’ initial wealth is capable of reproducing the stylized facts of FX market trading activity.

In order to test the impact of different distribution methods for the agents’ initial wealth, we performed some controlled experiments using two different settings. The first setting assumed that all agents are endowed with the same wealth before the simulation starts as has been done by [64, 124, 140, 150, 171, 172]. For the second setting, all agents are endowed with different amounts of wealth, using a continuous uniform distribution.

Seasonality results: Figure 7.8 shows the intraday seasonality of trade numbers and volumes using the two different settings for the initial wealth distribution in the simulation. We can observe by a simple inspection that the dynamics of intraday seasonality are realistic except for the intraday seasonality of trade volumes in the case of a continuous uniform distribution (Figure 7.8 - (b-2)). We can spot that the first peak is higher than the second which is not the case in reality where the second peak of the market trading activities is higher than the first one. Table 7.10 shows for the intraday seasonality statistic of the two different settings of the initial wealth distribution, the t-statistic values along with the Pearson correlation values where the t-critical value two-tail = 2.07. According to paired t-tests over the hypothesis ($\mu_D - \mu_S = 0$), the means of the intraday seasonality statistics of trading activity from the simulations results with the
Figure 7.8: The intraday seasonality of trade (a) numbers and (b) volumes from the simulation results where all agents are endowed with (1) the same wealth and (2) different amounts of wealth, using a continuous uniform distribution.

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade numbers</td>
<td>-1.06E-09</td>
<td>-8.07E-09</td>
</tr>
<tr>
<td>Trade volumes</td>
<td>3.38E-16</td>
<td>4.47E-10</td>
</tr>
<tr>
<td>Opening positions</td>
<td>3.33E-09</td>
<td>-4.06E-09</td>
</tr>
<tr>
<td>Closing positions</td>
<td>1.44E-09</td>
<td>-3.09E-09</td>
</tr>
</tbody>
</table>

Table 7.10: T-statistic (tsv) values and Pearson correlation (corr) values where the t-critical value two-tail = 2.07 - Intraday seasonality statistic from the simulation results where all agents are endowed with (a) the same wealth and (b) different amounts of wealth, using a continuous uniform distribution.

Table 7.11 reports the correlation coefficients of the different market trading activities from the simulation results with different settings for the initial wealth distribution. The type of initial wealth distribution does not affect the correlation between the different market trading activities. Nevertheless, such a parameter greatly affects the correlation between intraday price volatility and market trading activity. Consequently, it would appear that the correlation between price volatility and market trading activity depends basically on those agents at the launch of the simulation who possess different wealth by means of a power law distribution.

Correlation results: Table 7.11 reports the correlation coefficients of the different market trading activities from the simulation results with different settings for the initial wealth distribution. The type of initial wealth distribution does not affect the correlation between the different market trading activities. Nevertheless, such a parameter greatly affects the correlation between intraday price volatility and market trading activity. Consequently, it would appear that the correlation between price volatility and market trading activity depends basically on those agents at the launch of the simulation who possess different wealth by means of a power law distribution.

Scaling laws results: For the two different settings of the initial wealth distribution, the four scaling laws are

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade numbers and volumes</td>
<td>+ 0.95</td>
<td>+ 0.90</td>
</tr>
<tr>
<td>Numbers of buy and sell executed order</td>
<td>+ 0.99</td>
<td>+ 0.99</td>
</tr>
<tr>
<td>Numbers of opening and closing positions</td>
<td>+ 0.99</td>
<td>+ 0.98</td>
</tr>
<tr>
<td>Intraday price volatilities and trader numbers</td>
<td>+ 0.01</td>
<td>- 0.01</td>
</tr>
<tr>
<td>Intraday price volatilities and volumes</td>
<td>- 0.02</td>
<td>- 0.03</td>
</tr>
</tbody>
</table>

Table 7.11: Correlation coefficients computed for the EUR/USD trading activity from the simulation results where all agents are endowed with (a) the same wealth and (b) different amounts of wealth, using a continuous uniform distribution.
Figure 7.9: Scaling laws are plotted from the simulation results where all agents are endowed with (a) the same wealth and (b) different amounts of wealth, using a continuous uniform distribution. The x-axis shows the price moves thresholds of the EUR/USD observations.

laws are not exhibited in the simulation results (as shown from Figure 7.9 and Table 7.12). Table 7.12 reports, for the two different settings of initial wealth distribution, the adjusted R2 values of the fits, plus their standard errors, for the four scaling laws measured under DC and OS events. From Table 7.12, it is clear that the adjusted R2 values are not very close to 1, which implies an insignificant fit. From Figure 7.9, the simulation results in the case of the distribution of agents’ initial wealth is based on a continuous uniform distribution, do not exhibit the quantitative relationships of the trade volumes’ scaling law. On average, an OS event contains roughly three times as many trade volumes as a DC event, which is contrary to the observations in the empirical data where, on average, an OS event contains roughly twice as many trade volumes as a DC event.

Assuming that all agents start with the same wealth in the market does not affect the seasonality statistical properties of the different market trading activities. However, it affects the correlation between intraday price volatility and trade numbers and volumes. Also, such an assumption has an impact on the exhibition of scaling laws properties of market trading activities. One of the reasons behind these results is that real markets involve heterogeneity in terms of the wealth distribution of the traders. Accordingly, we would argue that the assumption that agents possess the same wealth at the beginning of the market as has been done by [64, 124, 140, 150, 171, 172], is not the way forward in this field.
Table 7.12: The adjusted R^2 values of the fits, plus their standard errors (SE), for the scaling laws measured under DC and OS events from the simulation results where all agents are endowed with (a) the same wealth and (b) different amounts of wealth, using a continuous uniform distribution.

<table>
<thead>
<tr>
<th></th>
<th>DC Adj. R^2</th>
<th>DC SE</th>
<th>OS Adj. R^2</th>
<th>OS SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade numbers</td>
<td>0.73</td>
<td>0.58</td>
<td>0.74</td>
<td>0.56</td>
</tr>
<tr>
<td>Trade volumes</td>
<td>0.73</td>
<td>0.59</td>
<td>0.73</td>
<td>0.57</td>
</tr>
<tr>
<td>Opening positions</td>
<td>0.73</td>
<td>0.56</td>
<td>0.73</td>
<td>0.57</td>
</tr>
<tr>
<td>Closing positions</td>
<td>0.72</td>
<td>0.61</td>
<td>0.74</td>
<td>0.55</td>
</tr>
</tbody>
</table>

On the other hand, assuming a continuous uniform distribution for the agents’ initial wealth in the market does, to some extent, affects the seasonality statistical properties of the trade volumes. Such an assumption also results in a negative correlation between the intraday price volatility and trade numbers and volumes. Furthermore, it affects the scaling laws behaviour associated with different market trading activities. Asset price and trade volumes evolve endogenously according to the imbalance of demand and supply in the market. This entails an unfairly distributed initial wealth for the agents based on a power-law distribution. From these results we can draw the conclusion that the initial wealth distribution does affect the stylized facts of the market trading activity. The apparent scaling laws observed in real market data find explanations in the presence of uneven distribution in the agents’ initial wealth. In the literature, a number of studies found that the income distribution in numerous countries follows a power-law distribution [22, 185, 186, 209]. Following on from these studies, we quantify the income distribution in the markets by means of the income distribution of a country’s population.

7.6 Distribution of the Profit Objective

The precise setting for the agent’s profit objective in an ABM is one of the important elements involved in reproducing the stylized facts in the high-frequency FX market. The choice of continuous uniform distribution for the agents’ profit objectives rather than other distribution methods, is capable of reproducing, to a certain extent, the stylized facts. In order to investigate the impact of different distribution methods with regard to the agents’ profit objectives on the reproduction of the stylized facts, we conducted experiments in which we used a power-law distribution and a normal distribution as alternatives to a continuous uniform distribution.

Seasonality results: Figure 7.10 shows the intraday seasonality of trade (a) numbers and (b) volumes from two different settings of the simulation run. In the first setting, the agents’ profit objectives are based on (1) a normal distribution, while in the second setting (2) on a power-law distribution. We can observe by a simple examination that the dynamics of intraday seasonality are contrary to observations from the empirical data (Figure 5.7). In the case of a normal distribution (Figure 7.10 - 1), there are continuous fluctuations in the dynamics of intraday seasonality which is contrary to what is observed in the real data. In the case of the power-law distribution (Figure 7.10 - 2), it is not possible to see the well-known double U-shape pattern of intraday seasonality of FX market trading activity within the various patterns in the graph. The intensity of the trading activity peaks during the first hours of the day (00:00 am – 08:00 am GMT) while it declines sharply throughout the rest of the day.
Figure 7.10: The intraday seasonality of trade (a) numbers and (b) volumes from two different settings of the simulation run for the distribution of the agents’ profit objectives: (1) a normal distribution; (2) a power-law distribution.

Table 7.13: T-statistic (tsv) values and Pearson correlation (corr) values, where the t-critical value two-tail = 2.07 - Intraday seasonality statistic for two different settings of the simulation for the distribution of the agents’ profit objectives: (a) a normal distribution; (b) a power-law distribution.

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade numbers</td>
<td>-2.03E-10 + 0.81</td>
<td>-6.05E-11 - 0.08</td>
</tr>
<tr>
<td>Trade volumes</td>
<td>2.63E-16 + 0.83</td>
<td>-2.02E-10 - 0.02</td>
</tr>
<tr>
<td>Opening positions</td>
<td>-1.03E-10 + 0.65</td>
<td>-5.05E-11 - 0.11</td>
</tr>
<tr>
<td>Closing positions</td>
<td>2.06E-10 + 0.82</td>
<td>6.06E-11 - 0.09</td>
</tr>
</tbody>
</table>

Table 7.14 reports the correlation coefficients of the different market trading activities from the simulation results with different settings of the agents’ profit objective distribution. The

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade numbers and volumes</td>
<td>+ 0.98</td>
<td>+ 0.98</td>
</tr>
<tr>
<td>Numbers of buy and sell executed order</td>
<td>+ 0.57</td>
<td>+ 0.60</td>
</tr>
<tr>
<td>Numbers of opening and closing positions</td>
<td>+ 0.25</td>
<td>+ 0.31</td>
</tr>
<tr>
<td>Intraday price volatilities and trader numbers</td>
<td>- 0.003</td>
<td>-0.01</td>
</tr>
<tr>
<td>Intraday price volatilities and volumes</td>
<td>-0.0004</td>
<td>+ 0.01</td>
</tr>
</tbody>
</table>

Table 7.14: Correlation coefficients computed for the different EUR/USD trading activity for two different settings of the simulation run for the distribution of the agents’ profit objectives: (a) a normal distribution; (b) a power-law distribution.
distribution method in terms of agents’ profit objectives does not affect the correlation between the trade numbers and volumes. But the distribution method affects the correlation between (a) the numbers of buy and sell executed orders, and (b) the numbers of opening and closing positions. In addition, such a distribution method affects the correlation between intraday price volatility and market trading activity considerably.

Scaling laws results: For the different settings of the agents’ profit objective distribution, the four scaling laws and the six quantitative relationships amongst them are not exhibited in the simulation results (as shown from Figure 7.11 and Table 7.15). Table 7.15 reports the adjusted R\(^2\) values of the fits, plus their standard errors, for the four scaling laws measured under DC and OS events. It is clear that the adjusted R\(^2\) values are not very close to 1, which implies an insignificant fit.

The reported results in this section emphasise that the price dynamics in the market are a result of the existence of heterogeneous expectations amongst traders. According to [19] “One of the things that microeconomics teaches you is that individuals are not alike. There is heterogeneity, and probably the most important heterogeneity here is heterogeneity of expectations. If we didn’t have heterogeneity, there would be no trade. But developing an analytic model with heterogeneous agents is difficult.” (p. 301).
Table 7.15: The adjusted R^2 values of the fits, plus their standard errors (SE), for the scaling laws measured under DC and OS events from two different settings of the simulation run for the distribution method for the agents’ profit objectives: (a) a normal distribution; (b) a power-law distribution.

<table>
<thead>
<tr>
<th></th>
<th>DC Adj. R^2</th>
<th>DC SE</th>
<th>OS Adj. R^2</th>
<th>OS SE</th>
<th>(a)</th>
<th>OS Adj. R^2</th>
<th>OS SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade numbers</td>
<td>0.80</td>
<td>0.58</td>
<td>0.71</td>
<td>0.58</td>
<td></td>
<td>0.84</td>
<td>0.50</td>
</tr>
<tr>
<td>Trade volumes</td>
<td>0.80</td>
<td>0.58</td>
<td>0.71</td>
<td>0.58</td>
<td></td>
<td>0.84</td>
<td>0.49</td>
</tr>
<tr>
<td>Opening positions</td>
<td>0.73</td>
<td>0.70</td>
<td>0.73</td>
<td>0.55</td>
<td></td>
<td>0.80</td>
<td>0.57</td>
</tr>
<tr>
<td>Closing positions</td>
<td>0.94</td>
<td>0.29</td>
<td>0.69</td>
<td>0.61</td>
<td></td>
<td>0.98</td>
<td>0.15</td>
</tr>
</tbody>
</table>

The power-law and the normal distribution characterize inadequately distributed profit objective values. Consequently, this results in a large group of agents having similar behaviour patterns and preferences whereas, in reality, traders have a variety of preferences and demands. For this reason, choosing a continuous uniform distribution is a good option, given that it provides an equal distribution with a variety of profit objective values for the trading agents.

7.7 Risk Appetites

The risk appetite parameter is used to model the cautiousness and aggressiveness of agents with regard to trading. From the microscopic analysis of the OANDA individual traders’ historical transactions, we found on average, that the traders’ risk appetites are higher than their profit objectives (as explained in section 6.5.4). Accordingly, in our ABFXM, we defined the agents’ risk appetites to be four times that of their profit objectives.

To test the impact of such an element on reproducing the stylized facts, we varied the risk appetites’ parameter in the simulation. Although we have conducted a number of experiments, we report the results of four indicative cases in which the agents’ risk appetites relate to their profit objectives as follows.

1. **High-risk**: a trading strategy involves high risk when the agent’s risk appetite is four times that of its profit objective. The high risk appetite setting is the one used in our ABFXM.

2. **Low-risk**: the agent’s risk appetite is equal to the agent’s profit objective.

3. **Zero-risk**: an agent will close its open position once the unrealized losses for the position fall below zero, which means that the position is in loss.

4. **A combination of the three levels of risk**.

Seasonality results: Figure 7.12 shows the intraday seasonality of trade numbers and volumes from the four different simulation outcomes as per the four cases above. When the agents’ trading strategy involves high risk, the patterns of intraday seasonality of trade numbers are exhibited (this is the default setting of the simulation). Meanwhile, when the agents’ trading strategy involves (b) low risk, (c) zero risk or (d) a combination of the three levels of risk, the patterns of intraday seasonality of trade numbers move within a narrow level of the resistance, whereas in reality it is wider. The level of the agents’ risk appetites does not affect the intraday seasonality of trade volumes. Table 7.16 shows for the intraday seasonality statistic of different settings of the agents’ risk appetites, the t-statistic values, along with the Pearson correlation.
Figure 7.12: The intraday seasonality of trade numbers and volumes from four different simulation results, where the agents’ risk appetites involve (a) high-risk, (b) low-risk, (c) zero-risk or (d) a combination of the three levels of risk.

Table 7.16: T-statistic (tsv) values and Pearson correlation (corr) values, where the t-critical value two-tail = 2.07 - Intraday seasonality statistic from four different simulation results, in which the agents’ risk appetites involve (a) high-risk, (b) low-risk, (c) zero-risk or (d) a combination of the three levels of risk.

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade numbers</td>
<td>$2.03E-10$</td>
<td>$-5.07E-10$</td>
<td>$-1.07E-09$</td>
<td>$-7.82E-10$</td>
</tr>
<tr>
<td>Trade volumes</td>
<td>$1.11E-10$</td>
<td>$-1.01E-15$</td>
<td>$5.15E-10$</td>
<td>$-9.99E-10$</td>
</tr>
<tr>
<td>Opening positions</td>
<td>$2.02E-10$</td>
<td>$-8.05E-10$</td>
<td>$7.21E-10$</td>
<td>$-8.08E-10$</td>
</tr>
<tr>
<td>Closing positions</td>
<td>$-6.08E-10$</td>
<td>$8.48E-10$</td>
<td>$3.28E-10$</td>
<td>$2.50E-10$</td>
</tr>
</tbody>
</table>

values. According to the paired t-tests with regard to the hypothesis ($\mu_R - \mu_S = 0$), the means of the intraday seasonality statistics of trading activity from the simulation outcomes with different risk appetite settings, are roughly equivalent to those of the real FX market, with a 95% confidence level.

Correlation results: Looking at Table 7.17, the agents’ risk appetites do not affect the correlation between (i) trade numbers and volumes, (ii) the number of buy and sell orders and (iii) the number of opening and closing positions. However, the risk appetite results in a negative correlation between the intraday price volatilities and trade numbers and volumes when the risk is low/zero or there is a mixture of risk appetites in the agent population.

Scaling laws results: The scaling laws are not exhibited when the risk is low/zero or there is a mixture of risk appetites in the agent population. This is also clear from Table 7.18 as the adjusted R^2 values for the three different settings of the agents’ risk appetites parameter (b, c, d) are not close to 1, which means an insignificant fit.
Table 7.17: Correlation coefficients computed for the different EUR/USD trading activity from four different simulation results, in which the agents’ risk appetites involve (a) high-risk, (b) low-risk, (c) zero-risk or (d) a combination of the three levels of risk.

<table>
<thead>
<tr>
<th>Trade numbers and volumes</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numbers of buy and sell executed order</td>
<td>+0.92</td>
<td>+0.87</td>
<td>+0.89</td>
<td>+0.90</td>
</tr>
<tr>
<td>Numbers of opening and closing positions</td>
<td>+0.99</td>
<td>+0.99</td>
<td>+0.99</td>
<td>+0.99</td>
</tr>
<tr>
<td>Intraday price volatilities and trader numbers</td>
<td>+0.46</td>
<td>-0.02</td>
<td>-0.04</td>
<td>-0.02</td>
</tr>
<tr>
<td>Intraday price volatilities and volumes</td>
<td>+0.31</td>
<td>-0.05</td>
<td>-0.06</td>
<td>-0.05</td>
</tr>
</tbody>
</table>

Figure 7.13: Scaling laws are plotted from four different settings of the simulation run in which the agents’ risk appetites involve (a) high-risk, (b) low-risk, (c) zero-risk or (d) a combination of the three levels of risk. The x-axis shows the price moves thresholds of the EUR/USD observations.
 CHAPTER 7. A SYSTEMATIC EXPLORATION OF MARKET FEATURES

<table>
<thead>
<tr>
<th></th>
<th>DC</th>
<th>OS</th>
<th>DC</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Trade numbers</td>
<td>0.91</td>
<td>0.37</td>
<td>0.90</td>
<td>0.31</td>
</tr>
<tr>
<td>(a) Trade volumes</td>
<td>0.94</td>
<td>0.35</td>
<td>0.94</td>
<td>0.31</td>
</tr>
<tr>
<td>(a) Opening positions</td>
<td>0.92</td>
<td>0.35</td>
<td>0.93</td>
<td>0.31</td>
</tr>
<tr>
<td>(a) Closing positions</td>
<td>0.91</td>
<td>0.39</td>
<td>0.90</td>
<td>0.35</td>
</tr>
<tr>
<td>(b) Trade numbers</td>
<td>0.74</td>
<td>0.56</td>
<td>0.73</td>
<td>0.58</td>
</tr>
<tr>
<td>(b) Trade volumes</td>
<td>0.72</td>
<td>0.66</td>
<td>0.72</td>
<td>0.55</td>
</tr>
<tr>
<td>(b) Opening positions</td>
<td>0.74</td>
<td>0.56</td>
<td>0.73</td>
<td>0.58</td>
</tr>
<tr>
<td>(b) Closing positions</td>
<td>0.73</td>
<td>0.59</td>
<td>0.73</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Table 7.18: The adjusted \(R^2 \) values of the fits, plus their standard errors (SE), for the scaling laws measured under DC and OS events from four different settings of the simulation run in which the agents’ risk appetites involve (a) high-risk, (b) low-risk, (c) zero-risk or (d) a combination of the three levels of risk.

Return on Investment (ROI): From the simulation results, we measure the agents’ performance over a period of one simulated month by means of their return on investment (ROI). The aim is to evaluate the efficiency of their investments in terms of four different settings of trading risk: (a) high-risk, (b) low-risk, (c) zero-risk or (d) a combination of the three levels of risk. ROI can either be positive or negative, which means that the return can either mean a profit or a loss. To measure an agent’s return on investment, the total return of an agent’s transactions over a period \(T \) is divided by the agent’s initial investment. The result is expressed as a percentage, and is defined by:

\[
ROI = \frac{\sum_{i=1}^{n} (r_i - y_i)}{w}
\]

(7.1)

where \(n \) is the total number of transactions during the period \(T \), \(y \) is the \(i^{th} \) transaction, \(r_i \) is the return from the \(i^{th} \) transaction, \(y_i \) is the investment cost of the \(i^{th} \) transaction, and \(w \) is the agent’s initial investment.

Table 7.19 reports some of the basic descriptive statistics of the agents’ ROI from four independent runs of the simulation. In terms of the profit factor, we can see that the maximum agent’s ROI occurs when the agent’s trading strategy is a high-risk one. In addition, in the case of high-risk, the average ROI is positive, while for the other three settings the average ROI is negative. This result indicates a better performance when the agent’s risk appetite involves high-risk activity. In the case of zero-risk, 99.21% of the agents achieve losses, while only 0.79% of agents achieve profits. Alternatively, we can see the reasonable percentage values of the winning and losing agents when their risk appetite is high or low, indicating the importance of involving risk in the trading strategy. The results show that being able to take high risks is closely linked with generating high profits. It is difficult to evaluate precisely the traders’ ROI due to the lack of knowledge and data about the real traders’ ROI.

The level of the agent’s risk appetite is considered to be an essential element in an ABM. In our agent-based models of traders, an agent’s risk appetite is articulated in terms of the agent’s profit objective. We found that setting a high level of agents’ risk appetites compared to the agents’ profit objectives means that the ABFXM is capable of reproducing, to a certain extent, the trading activity in the market. However, having the agent’s risk appetite higher than four times their profit objectives, results in negative correlations between the intraday price volatilities and trade numbers (- 0.02) and volumes (- 0.03). This is because of the implications of high risk activity on an agent’s wealth performance, which triggers margin calls. The
right setting of the agents’ risk appetites parameter significantly affects the correlation between intraday price volatility and market trading activities. In particular, using a low risk appetite results in a negative correlation between intraday price volatility and market trading activities. Such a negative correlation may be affected by the high intensity of trading activities when the price collapses. Accordingly, the correlation results confirm what has been observed in market data: traders in the high-frequency market tend to hold losing positions for a long period of time.

7.8 Contrarian and Trend-Following Strategies

In our ABFXM, we consider a population whose trading strategies are organized into two major classes with equal number of agents: trend-following and contrary ZI-DCT0 trading strategies. We aim to study the impact of using just one of these strategies for the entire population and hence we conducted experiments where the adopted trading strategy in the market was either the trend-following or the contrary strategy.

Also, we examined the effect of the existence of different percentages of contrary agents in comparison to trend-following agents on the exhibition of the stylized facts. Based on the results obtained, the examination can be divided into two cases, with each case involving a series of experiments. In the first case, the number of contrary agents is between 30% - 70% of the total population. In the second case, the number of contrary agents is more than (i) 70% or (ii) less than 30% of the total population: these two sub cases generate very similar results due to a very large number of agents having the same trading strategy. Hence, we only present an example of the latter in this section due to the similarity of the results and for brevity.

In addition, a series of experiments were conducted to study the impact of the inclusion of random trades in the market; random trades have been incorporated in the ABFXM to emulate the fact that in reality traders take decisions influenced by exogeneous to the market events.

Seasonality results: Figure 7.14 shows the intraday seasonality of trade numbers from the ABFXM populated with (a) just contrary agents, (b) just trend-followers agents, (c) a mixture of 40% contrary and 60% trend-followers agents, (d) a mixture of 70% contrary and 30% trend-followers agents and (e) exclusive of random trades from the agents’ trading strategy. The dynamics of intraday seasonality of trade numbers resemble those observed in the empirical data where the double U-shape pattern is exhibited. However, in the case (d) the ABFXM populated with a mixture of a mixture of 70% contrary and 30% trend-followers agents, the patterns of intraday seasonality move within a narrow level of the resistance, while in the real data they are wider. This may possibly be due to the imbalance of orders generated by the agents in the market. According to the results reported in Table 7.20 for the paired t-test, the means of the intraday seasonality statistics of trading activity from the simulation outcomes, are roughly equivalent to those of the
Figure 7.14: The intraday seasonality of trade numbers where the ABFXM populated with (a) just contrary agents, (b) just trend-followers agents, (c) a mixture of 40% contrary and 60% trend-followers agents, (d) a mixture of 70% contrary and 30% trend-followers agents and (e) exclusive random trades.

real FX market, with a 95% confidence level.

Correlation results: From Table 7.21, we can observe that the adoption of single strategies does not affect the correlation between trade numbers and volumes, number of buy and sell orders and number of opening and closing positions. However, it results in a negative correlation between the intraday price volatilities and trade numbers and volumes. This implies that the price behaviour in the market is the result of a balance of various trading strategies and levels of activity. The same is the case when random trades are excluded: although there is no impact on the correlation between various trading quantities, the intraday price volatilities and trade numbers/volumes are affected.

Scaling laws results: When either of the strategies is adopted by the whole population and when random trades are excluded, then the scaling laws are not exhibited in the simulation results. The results in Table 7.22 show that the adjusted R^2 values are not close to 1, which entails an insignificant fit. Also, the estimated standard errors are higher than the estimated errors for scaling law relationships observed in the empirical data. The results of case (c) the ABFXM populated with a mixture of 40% contrary and 60% trend-followers agents, exhibit, the full set of the FX market trading activity stylized facts.

In our ABFXM, we limit the trading strategies to two classes of trend-following and contrary trading strategies, in which agents can enter or leave the market, depending on the price behaviour. This is an extreme simplification with regards to modelling the market traders’ behaviour. The results from our ABFXM show that the simplification in the two classes of trading strategies is enough to achieve an understanding, to a certain extent, of the original market trading activity stylized facts. However, the possibility of a wider class of trading strategies in an ABFXM, and the traders’ decisions on the basis of previous performance, is without doubt an interesting area with regard to future exploration. The problem, in this respect, is that
Table 7.20: T-statistic (tsv) and Pearson correlation (corr) values, where the ABFXM populated with (a) just contrary agents, (b) just trend-followers agents, (c) a mixture of 40% contrary and 60% trend-followers agents, (d) a mixture of 70% contrary and 30% trend-followers agents and (e) exclusive random trades.

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade numbers</td>
<td>1.36E-09</td>
<td>-1.76E-09</td>
<td>-4.92E-09</td>
</tr>
<tr>
<td>Trade volumes</td>
<td>4.32E-05</td>
<td>-6.06E-05</td>
<td>5.67E-10</td>
</tr>
<tr>
<td>Opening positions</td>
<td>1.35E-09</td>
<td>-1.70E-09</td>
<td>-4.92E-09</td>
</tr>
<tr>
<td>Closing positions</td>
<td>1.34E-09</td>
<td>-1.72E-09</td>
<td>-4.90E-09</td>
</tr>
<tr>
<td></td>
<td>(d)</td>
<td>(e)</td>
<td></td>
</tr>
<tr>
<td>Trade numbers</td>
<td>-1.23E-16</td>
<td>1.74E-09</td>
<td></td>
</tr>
<tr>
<td>Trade volumes</td>
<td>7.20E-10</td>
<td>-1.59E-05</td>
<td></td>
</tr>
<tr>
<td>Opening positions</td>
<td>-1.21E-16</td>
<td>1.72E-09</td>
<td></td>
</tr>
<tr>
<td>Closing positions</td>
<td>-1.21E-16</td>
<td>1.72E-09</td>
<td></td>
</tr>
</tbody>
</table>

Table 7.21: Correlation coefficients computed for the EUR/USD trading activity where the ABFXM populated with (a) just contrary agents, (b) just trend-followers agents, (c) a mixture of 40% contrary and 60% trend-followers agents, (d) a mixture of 70% contrary and 30% trend-followers agents and (e) exclusive random trades.

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade numbers and volumes</td>
<td>+ 0.92</td>
<td>+ 0.94</td>
<td>+ 0.95</td>
<td>+ 0.88</td>
<td>+ 0.91</td>
</tr>
<tr>
<td>Numbers of buy and sell order</td>
<td>+ 0.96</td>
<td>+ 0.99</td>
<td>+ 0.99</td>
<td>+ 1</td>
<td>+ 0.99</td>
</tr>
<tr>
<td>Numbers of opening and closing positions</td>
<td>+ 0.96</td>
<td>+ 0.98</td>
<td>+ 0.98</td>
<td>+ 1</td>
<td>+ 0.98</td>
</tr>
<tr>
<td>Intraday price volatilities and trader numbers</td>
<td>- 0.01</td>
<td>- 0.03</td>
<td>+ 0.39</td>
<td>- 0.03</td>
<td>- 0.01</td>
</tr>
<tr>
<td>Intraday price volatilities and volumes</td>
<td>- 0.03</td>
<td>- 0.02</td>
<td>+ 0.26</td>
<td>- 0.10</td>
<td>- 0.05</td>
</tr>
</tbody>
</table>

Table 7.22: The adjusted R^2 values of the fits, plus their standard errors (SE), for the scaling laws measured under DC and OS events where the ABFXM populated with (a) just contrary agents, (b) just trend-followers agents, (c) a mixture of 40% contrary and 60% trend-followers agents, (d) a mixture of 70% contrary and 30% trend-followers agents and (e) exclusive random trades.

<table>
<thead>
<tr>
<th></th>
<th>DC</th>
<th>OS</th>
<th>DC</th>
<th>OS</th>
<th>DC</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>0.73</td>
<td>0.59</td>
<td>0.73</td>
<td>0.58</td>
<td>0.97</td>
<td>0.35</td>
</tr>
<tr>
<td>(b)</td>
<td>0.73</td>
<td>0.62</td>
<td>0.73</td>
<td>0.66</td>
<td>0.97</td>
<td>0.35</td>
</tr>
<tr>
<td>(c)</td>
<td>0.74</td>
<td>0.56</td>
<td>0.73</td>
<td>0.58</td>
<td>0.97</td>
<td>0.35</td>
</tr>
<tr>
<td>(d)</td>
<td>0.73</td>
<td>0.59</td>
<td>0.73</td>
<td>0.57</td>
<td>0.97</td>
<td>0.36</td>
</tr>
<tr>
<td>(e)</td>
<td>0.73</td>
<td>0.59</td>
<td>0.73</td>
<td>0.56</td>
<td>0.97</td>
<td>0.35</td>
</tr>
</tbody>
</table>
CHAPTER 7. A SYSTEMATIC EXPLORATION OF MARKET FEATURES

Figure 7.15: Scaling laws are plotted where the ABFXM populated with (a) just contrary agents, (b) just trend-followers agents, (c) a mixture of 40% contrary and 60% trend-followers agents, (d) a mixture of 70% contrary and 30% trend-followers agents and (e) exclusive random trades. The x-axis shows the price moves thresholds of the EUR/USD observations.
the analysis and exploration of trading activities in the ABFXM can become highly misleading and difficult to study, because the broader class of trading strategies may produce a source of complexity for the market analysis.

Therefore, the results support that competition between trend-follower agents and contrary agents would have a tendency to stabilize the market. The key role played by the coexistence of such agents’ trading strategies is one of the main elements responsible for exhibiting stylized facts in an ABFXM. Random trading governs the likelihood of the agents changing their trading strategy, and it is a vital element of the model. In any case, the intraday seasonality statistics of the different market trading activities are exhibited in the limit where the agents’ population is composed only of trend-followers or only by contrary traders, even without random trades taking place. Therefore, these simple experiments show us which stylized facts depend critically on the interaction between different trading strategies. The generalized scaling law properties and the correlation behaviour results appear to be sensitive to the heterogeneity of agent trading strategies.

Similar studies by [5–7] showed that the stylized facts are exhibited in an ABM by introducing the possibility of the agents to enter or leave the market depending on the behaviour of the price. The mechanism to enter or leave the market is linked to the existence of a threshold that the agents use to decide to operate in the market by comparing the threshold with the price movement.

7.9 Trading Time Window

Although the FX market operates 24 hours a day and does not have fixed trading time windows as the stock market, the worldwide FX market centres’ business hours have a significant effect on characterizing the daily flow of the market’s activity. The intensity of trading activity increases during the opening hours of the FX market centres in the morning, whereas it decreases during the closing hours. The overlapping business hours of two or more FX market centres witnesses a high level of trading activity compared to the other times.

Initially, we decided to model the agents without incorporating the role of FX market trading sessions and holidays. The motivation behind our decision was to account for the significant impact of algorithmic trading. Algorithmic trading, also referred to as automated trading, uses computer programs to place orders automatically which may be outside a trader’s normal business hours. It has attracted many FX traders and, most importantly, is one of the reasons for the growth of the FX market. However, not modelling business hours has a significant impact on the emergence stylized facts.

Seasonality results: Figure 7.16 shows the intraday seasonality of trade numbers from the simulation results, without incorporating the role of FX market trading sessions. By a simple examination, we can clearly see that the intraday seasonality of FX market trading activity is not exhibited as it is not possible to spot the double U-shape pattern. This is for the following reasons: the highest volume of trading activity takes place in the first hour of the day, as well as around 08:00 GMT. The trading activity declines sharply from around 09:00 GMT and continues throughout the day, which does not reflect reality. In reality, the daily trading activity increases between 08:00 – 09:00 GMT mirroring the opening hours of the London trading session, and peaks when London and New York trading sessions overlap around 13:00 – 16:00 GMT. According to the results reported in Table 7.23 for the paired t-test, the means of the seasonality statistics of the FX market trading activity are roughly the same to the simulation results, without incorporating the role
CHAPTER 7. A SYSTEMATIC EXPLORATION OF MARKET FEATURES

Figure 7.16: Intraday seasonality of trade numbers from the simulation results, without incorporating the role of FX market trading sessions.

Table 7.23: T-statistic (t_{sv}) values and Pearson correlation (corr) values, where the t-critical value two-tail = 2.07 - Intraday seasonality statistic from simulation results without incorporating the role of FX market trading sessions.

<table>
<thead>
<tr>
<th></th>
<th>t_{sv}</th>
<th>corr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade numbers</td>
<td>-3.02E-10</td>
<td>+ 0.05</td>
</tr>
<tr>
<td>Trade volumes</td>
<td>4.64E-10</td>
<td>+ 0.02</td>
</tr>
<tr>
<td>Number of opening positions</td>
<td>-3.05E-10</td>
<td>+ 0.05</td>
</tr>
<tr>
<td>Number of closing positions</td>
<td>-3.05E-09</td>
<td>+ 0.04</td>
</tr>
</tbody>
</table>

Table 7.23: T-statistic (t_{sv}) values and Pearson correlation (corr) values, where the t-critical value two-tail = 2.07 - Intraday seasonality statistic from simulation results without incorporating the role of FX market trading sessions.

Nevertheless, the correlations between the seasonality statistics of real data and simulation data are extremely low. The correlation results indicate the significant role of incorporating the FX market trading sessions in an agent-based model of FX trading.

Correlation results: Table 7.24 reports the correlation coefficients of the different market trading activities from the simulation results, without incorporating the role of FX market trading sessions. The inclusion of the role of FX market trading sessions does not affect the correlation between (a) trade numbers and volumes, (b) numbers of buy and sell executed orders and (c) numbers of opening and closing positions. However, it affects extensively the correlation between the intraday price volatilities and trade numbers and volumes. This means that the time periods of high market trading activity are also the time periods associated with large price volatilities.

Scaling laws results: The four scaling laws measured under DC events are not exhibited in the simu-

Table 7.24: Correlation coefficients computed for the different EUR/USD trading activity from the simulation results without incorporating the role of FX market trading sessions.

<table>
<thead>
<tr>
<th></th>
<th>Correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade numbers and volumes</td>
<td>+ 0.87</td>
</tr>
<tr>
<td>Numbers of buy and sell executed order</td>
<td>+ 0.99</td>
</tr>
<tr>
<td>Numbers of opening and closing positions</td>
<td>+ 0.98</td>
</tr>
<tr>
<td>Intraday price volatilities and trader numbers</td>
<td>+ 0.002</td>
</tr>
<tr>
<td>Intraday price volatilities and volumes</td>
<td>- 0.09</td>
</tr>
</tbody>
</table>
CHAPTER 7. A SYSTEMATIC EXPLORATION OF MARKET FEATURES

Figure 7.17: Scaling laws are plotted from the simulation results without incorporating the role of FX market trading sessions. The x-axis shows the price moves thresholds of the EUR/USD observations.

<table>
<thead>
<tr>
<th></th>
<th>DC</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade numbers</td>
<td>0.73</td>
<td>0.99</td>
</tr>
<tr>
<td>Trade volumes</td>
<td>0.75</td>
<td>0.99</td>
</tr>
<tr>
<td>Number of opening positions</td>
<td>0.74</td>
<td>0.72</td>
</tr>
<tr>
<td>Number of closing positions</td>
<td>0.72</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Table 7.25: The adjusted R\(^2\) values of the fits, plus their standard errors (SE), for the scaling laws measured under DC and OS events from the simulation results without incorporating the role of FX market trading sessions.

Simulation results when the FX market trading sessions in the agents’ trading time window are not incorporated (as shown from Figure 7.17 and Table 7.25). In addition, the trade volumes scaling law measured under OS events is not exhibited in the simulation results. Table 7.25 reports the adjusted R\(^2\) values of the fits, plus their standard errors, for the four scaling laws measured under DC and OS events. It is clear the adjusted R\(^2\) values are not very close to 1, which implies an insignificant fit.

The results reported in this section stress the importance of incorporating the role of the FX market trading sessions in modelling the agents trading time window. The behaviour of market trading activity exhibits a periodic pattern called seasonal. The seasonal patterns are evidently correlated with the changing presence of the main worldwide FX market centres. The results present evidence of a strong correlation between market trading activity and the time of day.

The correlation between market activity and volatility requires us to model a heterogeneous trading time window with the help of information related to the main worldwide FX market centres’ business trading hours. The time zones and the typical business hours of the FX market trading sessions (e.g., London, New York, Tokyo) are well known. The results demonstrate the importance of daily seasonal patterns of trading activity in the generation of scaling law properties.
7.10 Order Size

The order size parameter is a very important element with regard to any ABM as the order size is associated with changes in the agent’s wealth. In the ABM literature, there are two main approaches for characterizing the order size placed by an agent in an ABM, which are: the direct approach involves an agent placing an order in which the order size is proportional to the agent’s wealth. This approach was adopted by a number of models including [120]. The second approach uses a constant trading proportion parameter that controls the size of an agent’s order in terms of the agent’s wealth. In other words, depending on the value of the trading proportion parameter, an agent buys/sells quantities of an asset proportional to its current wealth. Thus, only a fraction x of the agent’s cash is invested. The trading proportion is defined before the launch of the simulation. Examples of ABMs using this approach are [137, 171, 172, 188].

In this section, we examine the impact of these two approaches on the behaviour of the market trading activity. With regard to the second approach, we performed several experiments in which we scaled the trading proportion parameters from 10% to 90%. For brevity, and since for some of the results the changes were insignificant, we report the results associated with having the trading proportion parameter equal to 25%, 50% and 75%. The reason behind eliminating values under 10% was because of the insignificant changes in the results with smaller values of trading proportions. For trading proportion values above 90%, the results resemble the results obtained from using the first approach in which the amount that an agent invests in the market, is proportional to the agent’s wealth.

Seasonality results: Figure 7.18 shows the intraday seasonality of trade numbers and volumes from the simulation results with two different settings of the order size parameter: (1) an agent’s order size is proportional to its wealth, and (2) an agent’s order size is a fraction of its cash, based on a constant trading proportion parameter. As can be seen from Figure 7.18, the dynamics of the intraday seasonality of trade numbers are realistic for the different settings of the order size parameter. On the other hand, the dynamics of intraday seasonality of trade volumes do not reflect reality where an agent’s order size is proportional to its wealth. The reason is that the intraday seasonality has two peaks, with the first peak being lower than the second one. In addition, from Figure 7.18 (Trade volumes), we can clearly see that the trade volume increases suddenly and sharply around 08:00 GMT, which is not the case in reality. Table 7.26 shows the intraday seasonality statistic of two different settings of the order size parameter, the t-statistic values along with the Pearson correlation values where t-critical value two-tail = 2.07. According to paired t-tests over the hypothesis ($\mu_R - \mu_S = 0$), the means of the intraday seasonality statistics of trading activity from the simulation results with different settings of the initial wealth distribution, are roughly equivalent to the case for the real FX market, with a 95% confidence level.

Correlation results: Table 7.27 reports the correlation coefficients of the different market trading activities from the simulation results of two different settings of the order size parameter. The type of the order size parameter does not affect the correlation between trade numbers and volumes, numbers of buy and sell executed orders and numbers of opening and closing positions. Nevertheless, it has a significant effect on the correlation between the intraday price volatilities and trade numbers and volumes.

Scaling laws results: The scaling laws are not exhibited in the simulation results with the two different settings of the order size parameter (as shown from Figure 7.19 and Table 7.28). Table 7.28 reports the adjusted R^2 values of the fits, plus their standard errors, for the four scaling laws measured under DC and OS events. We can note that the adjusted R^2 values are not very close to 1, which implies an insignificant fit.
Figure 7.18: The intraday seasonality of trade numbers and volumes from the simulation, results from two different settings of the order size parameter, where an agent’s order size is: (1) proportional to its wealth; (2) a fraction of its cash, based on a constant trading proportion parameter equal to (a) 75%, (b) 50% and (c) 25%.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2-a)</th>
<th>(2-b)</th>
<th>(2-c)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t_{sv}</td>
<td>corr</td>
<td>t_{sv}</td>
<td>corr</td>
</tr>
<tr>
<td>Trade numbers</td>
<td>-2.01E-09</td>
<td>+0.99</td>
<td>-9.86E-11</td>
<td>+0.99</td>
</tr>
<tr>
<td>Trade volumes</td>
<td>-6.06E-16</td>
<td>+0.99</td>
<td>-7.66E-11</td>
<td>+0.99</td>
</tr>
<tr>
<td>Opening positions</td>
<td>-1.04E-09</td>
<td>+0.99</td>
<td>-9.94E-11</td>
<td>+0.99</td>
</tr>
<tr>
<td>Closing positions</td>
<td>9.59E-10</td>
<td>+0.99</td>
<td>1.95E-10</td>
<td>+0.99</td>
</tr>
</tbody>
</table>

Table 7.26: T-statistic (t_{sv}) values and Pearson correlation (corr) values where t-critical value two-tail = 2.07 - Intraday seasonality statistic from the simulation, results from two different settings of the order size parameter, where an agent’s order size is: (1) proportional to its wealth; (2) a fraction of its cash, based on a constant trading proportion parameter equal to (a) 75%, (b) 50% and (c) 25%.
Table 7.27: Correlation coefficients computed for the different EUR/USD trading activity from two different settings of the order size parameter, where an agent’s order size is: (1) proportional to its wealth; (2) a fraction of its cash, based on a constant trading proportion parameter equal to (a) 75%, (b) 50% and (c) 25%.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2 - a)</th>
<th>(2 - b)</th>
<th>(2 - c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade numbers and volumes</td>
<td>+ 0.71</td>
<td>+ 0.81</td>
<td>+ 0.87</td>
<td>+ 0.87</td>
</tr>
<tr>
<td>Numbers of buy and sell order</td>
<td>+ 0.99</td>
<td>+ 0.99</td>
<td>+ 0.99</td>
<td>+ 0.99</td>
</tr>
<tr>
<td>Numbers of opening and closing positions</td>
<td>+ 0.99</td>
<td>+ 0.99</td>
<td>+ 0.97</td>
<td>+ 0.99</td>
</tr>
<tr>
<td>Intraday price volatilities and trader numbers</td>
<td>+ 0.01</td>
<td>+ 0.01</td>
<td>+ 0.01</td>
<td>+ 0.01</td>
</tr>
<tr>
<td>Intraday price volatilities and volumes</td>
<td>- 0.06</td>
<td>- 0.02</td>
<td>- 0.04</td>
<td>- 0.02</td>
</tr>
</tbody>
</table>

Table 7.28: The adjusted R² values and standard errors (SE) of the scaling law fits under DC and OS events from the simulation, results from two different settings of the order size parameter, where an agent’s order size is: (1) proportional to its wealth; (2) a fraction of its cash, based on a constant trading proportion parameter equal to (a) 75%, (b) 50% and (c) 25%.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade numbers</td>
<td>0.73</td>
<td>0.58</td>
<td>0.74</td>
<td>0.56</td>
<td>0.76</td>
<td>0.56</td>
<td>0.76</td>
<td>0.56</td>
</tr>
<tr>
<td>Trade volumes</td>
<td>0.74</td>
<td>0.61</td>
<td>0.71</td>
<td>0.57</td>
<td>0.74</td>
<td>0.61</td>
<td>0.76</td>
<td>0.56</td>
</tr>
<tr>
<td>Opening positions</td>
<td>0.73</td>
<td>0.56</td>
<td>0.73</td>
<td>0.56</td>
<td>0.76</td>
<td>0.56</td>
<td>0.76</td>
<td>0.56</td>
</tr>
<tr>
<td>Closing positions</td>
<td>0.72</td>
<td>0.60</td>
<td>0.74</td>
<td>0.56</td>
<td>0.76</td>
<td>0.56</td>
<td>0.76</td>
<td>0.56</td>
</tr>
<tr>
<td>(2 - a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade numbers</td>
<td>0.76</td>
<td>0.56</td>
<td>0.76</td>
<td>0.56</td>
<td>0.71</td>
<td>0.56</td>
<td>0.77</td>
<td>0.58</td>
</tr>
<tr>
<td>Trade volumes</td>
<td>0.74</td>
<td>0.61</td>
<td>0.76</td>
<td>0.56</td>
<td>0.43</td>
<td>0.70</td>
<td>0.76</td>
<td>0.57</td>
</tr>
<tr>
<td>Opening positions</td>
<td>0.77</td>
<td>0.55</td>
<td>0.77</td>
<td>0.55</td>
<td>0.71</td>
<td>0.61</td>
<td>0.76</td>
<td>0.57</td>
</tr>
<tr>
<td>Closing positions</td>
<td>0.76</td>
<td>0.57</td>
<td>0.77</td>
<td>0.55</td>
<td>0.71</td>
<td>0.61</td>
<td>0.77</td>
<td>0.56</td>
</tr>
</tbody>
</table>
Figure 7.19: Scaling laws are plotted from the simulation, results from two different settings of the order size parameter, where an agent’s order size is: (1) proportional to its wealth; (2) a fraction of its cash, based on a constant trading proportion parameter equal to (a) 75%, (b) 50% and (c) 25%.
CHAPTER 7. A SYSTEMATIC EXPLORATION OF MARKET FEATURES

Assuming that a single order size placed by an agent in the market is proportional to the agent’s wealth, such as in [120], does not reproduce the stylized facts of market trading activity. This is because it creates an extremely high trading risk, since an agent invests the full cash it acquires in a single order. This in turn triggers cascaded margin calls, which induce a price fall. A second important reason is the lack of heterogeneity in the amount of an agent’s investments during the simulation.

The second approach for an agent’s single order size entails that the amount the agent invests in the market [137, 171, 172, 188] will be a fraction of its cash, based on a constant trading proportion parameter. This assumption affects the generation of real market trading activity’s stylized facts in an ABFXM. Similarly to the first approach, the second approach lacks heterogeneity of investments in the market. In addition, having a high value in terms of the trading proportion parameter causes cascading margin calls in the market. Margin calls affect the agent’s performance and is one of the forces driving the dynamics of the price in the market. In contrast, having small values in terms of the trading proportion parameter results in drastic changes in the statistical properties of market trading activity. This is due to the low liquidity in the market, and the lack of correlation between the trade numbers and volumes.

According to the results, these two approaches are not appropriate for modelling the agent order size in the market. In our ABFXM, an agent’s order size depends on the agent’s margin available. In detail, each order size is determined randomly within a specified range. The maximum order size is equal to the Unit Available (UA), while the minimum size is 10% of the UA. The UA is the maximum number of currency units an agent is capable of trading, subject to the agents available margin. For more details regarding the setting of the order size in our ABFXM, we refer the reader to section 6.5.8. This approach adopted for characterizing the agent order size in the market gives adequate results. This is because it generates a source of heterogeneity in the agent investment strategy which affects the fluctuations of price in the market. Therefore, an excessively stable market is unattractive for traders, whereas the existence of price movements attracts traders into the market.

7.11 Simplicity and Heterogeneity

With a complex agent-based financial market it is a difficult task to search for the essential elements under which the market stylized facts emerge. The complexity of some ABMs prevents the researcher from clearly identifying the essential elements of the ABM that account for the emergence of stylized facts. The simplicity issue of an ABM has been under debate in [110, 143, 193]. In these reviews, the authors emphasise the importance of simplicity in building ABMs. To this end we attempt to offer as simple a description as possible of the elements involved in the ABFXM that are capable of reproducing, to a certain extent, the stylized facts of the high-frequency FX market trading activity. This has an important consequence for investigating the origins of trading activity stylized facts by means of exploring each of the model’s elements in isolation and their impact on the other elements. The simplicity of our ABFXM relies on two main aspects: the use of a simple market mechanism in which we used currency pair historical prices as a substitute for generating artificial prices from the ABM, and the simple representation of the trading agents. The agents’ trading strategy is based on a zero-intelligent directional-change event trading strategy (ZI-DCT0) in which the agents respond by buying or selling to a periodic pattern in the price time series based on their expectations from the market. For detailed information regarding the ZI-DCT0 we refer the interested reader to chapter 3.

The role of heterogeneity in modelling the trading activities of the financial market traders is imperative
as in reality, traders have different degrees of wealth, demands, aspirations, trading hours, trading strategies, etc. Heterogeneity without doubt affects and characterizes the flow of trading activity in the market. In our ABFXM, heterogeneity exists in different forms: (a) the different behavioural groups of ZI-DCT0 agents; (b) within each group the trading agents are endowed with different amounts of cash (wealth); (c) the trading agents have different profit objectives; (d) different risk appetites that lead to the existence of long and short term investors; (e) the trading agents use different trading time windows; (f) different leverage that build a source of heterogeneity into the model; leading to the characterization of different trading activities.

7.12 Conclusion

A simple ABM is important in order to identify the essential elements under which the market stylized facts emerge in an ABM. Most importantly, each element of the ABM can certainly contribute in different ways to a deeper understanding of the original processes involved in the financial market. In this chapter, we have undertaken a systematic experimental examination which involved varying a number of elements of the ABFXM. The aim of this experimentation was to evaluate the effects of the various elements on the market behaviour and their impact on reproducing the stylized facts observed in the empirical data. Our work presented in this chapter contributes to the literature in a number of ways as explained below:

• Using the ABFXM, we have been able to ascertain the impact of changing several elements of the ABFXM. To the best of our knowledge, this is the first work where a comprehensive search for the essential elements under which the stylized facts of the trading activity in the high-frequency FX market emerge in an ABM has been undertaken.

• The introduction of a threshold which the agent uses to operate in the market if the price fluctuations are above or below a certain level seems to be important. This has a consequence in terms of the stability of the stylized facts. The threshold triggering the agents’ trading activities is proposed to represent a key element in modelling the market traders’ trading activities. This is in line with the results obtained by Alfi and colleagues in [5–7].

• The simulation results stress the sensitivity of the total number of agents in an ABM. In the limited situation of a small number of agents participating in the market, the ABFXM does not reproduce the stylized facts. Nevertheless, with regard to the situation of there being a large number of agents, the ABFXM exhibits the stylized facts. In principle, the total number of agents in an ABM is considered to be one of the factors responsible for stabilizing the dynamics of trading activities in the market. This confirmed the results provided in [71, 235].

• The initial distribution of wealth in the agent population in an ABM does affect the exhibition of the stylized facts of trading activity in the FX market. The assumptions that (a) all agents are endowed with the same wealth in an ABM such as in [64, 124, 140, 150, 172], or even (b) all agents are endowed with different amounts of wealth, using a continuous uniform distribution, do not appear to be representative of what happens in reality and we have been able to experimentally ascertain that these are not contributing to the appearance of the stylized facts in the FX market. The observed market stylized facts find explanations in the presence of uneven distribution in the agents’ initial wealth.
• The simulation results highlight that an agent’s decision regarding the order size is important as the size of the order is one of the major forces driving liquidity in the market. In the literature, there exist two main approaches for characterizing a single order size for an agent. These are: (a) the direct approach entails an agent placing an order in which the order’s size is proportional to the agent’s wealth such as in [120]; (b) an agent’s order size is a fraction of its cash, based on a constant trading proportion parameter such as in [137, 171, 172, 188]. We have showed experimentally that these two approaches are not adequate for modelling an agent’s order size in an ABFXM. Consequently, we have proposed a new approach for characterizing a single order size for an agent which our results show is able to reproduce the stylized facts in the market.

• We have demonstrated the effect of different levels of the risk appetite on trading activities in the market, and on the agents’ performance. However, we must stress that changes in the level of the agent’s risk appetites should be associated with changes in the agent’s wealth. Nevertheless, the level of the agents’ risk appetites can be considered as an element that has an important impact on the dynamics of the trading activity in an ABFXM.

• Asynchronous trading time windows essentially have to be considered in modelling the activities of market traders. This confirmed the results provided in [40, 64]. In modelling the trading time window for the agents, we considered three imperative features: (a) the agents’ activation time in the market, (b) the notion of market business hours, and (c) holidays. We have verified how the asynchronous trading time window plays a key role in studying the dynamics of trading activity in the market. Our work is one of the first ones that considers asynchronous trading time windows as part of an agent’s model.
Chapter 8

The Impact of Trading Strategies on the Stylized Facts

8.1 Introduction

One of the most difficult and critical design questions in an ABM is the representation and structure of the agents’ trading strategies [137]. The analysis and understanding of the traders’ behaviour and their expectations is one of the most difficult tasks for understanding the market behaviour [63]. In the literature, the representation of the agents’ trading strategy ranges from simple budget constrained zero-intelligence (ZI) agents as in [64, 69, 99], to complicated intelligent agents such as in [54, 172]. Different trading strategies suppose different means of identifying arbitrage opportunities in the market [137]. Critically, the fundamental question becomes what is the simplest strategy that would lead to the emergence of the same stylized facts in the ABM as the real market. An interesting and related question is whether learning is a necessary and important element of such a strategy. This chapter seeks to understand this and investigates three different strategy designs in an ABM of the FX market.

This chapter extends the work in chapters 6 and 7: in chapter 6, we have constructed an ABM of the FX market which is able to reproduce, to a certain extent, the stylized facts of FX market trading activity, while in chapter 7, and using a systematic approach, we examined the implications of varying the market’s features and the effect on reproducing the stylized facts. In this chapter, we study the impact of the agents’ trading strategies on the emergence of the stylized facts.

The organization of this chapter is as follows. Section 8.2 presents a discussion of related work. Section 8.3 provides a description of the ZI-CV agents, the ZI-DCT0 agents and the GPAs. In section 8.4, we report on the experiments undertaken in the ABFXM that we developed and the three strategies. The chapter closes with a discussion and the conclusions.

8.2 Related Work

One of the aims of developing agent-based models of financial markets is to identify and understand the origins of the observed stylized facts of real market behaviour [193]. Intrinsically, and as the market consists of multiple interacting agents, one would expect that the design of the agent’s trading strategies would have a significant impact on the emergence of the stylized facts [137]. From a developer/designer point of view it
is essential that the agent’s trading strategies are clear and simple in order to facilitate analytical tractability, and the interpretation and understanding of the impact of individual behaviour on the market [110, 143].

One of the earliest leading and most influential ABMs was the Santa Fe Artificial Stock Market (SF ASM) [21, 146]. The SF ASM can be viewed as a population of intelligent agents, wherein such agents learn and forecast future price movements using a classifier forecasting system. Although, the SF ASM exhibits some of the stock market’s stylized facts [143], due to the large number and complexity of the parameters used in modelling the agents’ trading strategies, it is not possible to identify and interpret their origin [135]. A number of works have expanded and modified the SF ASM in terms of the agents’ trading strategies such as in [23, 48, 99, 170, 172, 212, 232]. However, as yet, the origins of the stylized facts remain opaque and indefinable [135].

A number of ABMs have made use of what they are known as Zero Intelligence (ZI) agents to interpret various phenomena in markets [32, 64, 99, 100]. Before the advent of agent-based computational economics, Becker [32] first introduced participants that behave randomly and irrationally in markets. He demonstrated that some market features such as demand and supply were the results of the market mechanism which ruled the interaction of the participants. However, only minor works followed Becker’s approach due to the difficulties of analysing market behaviour.

The ZI agent was introduced by Gode and Sunder [99] in 1993 to examine the continuous double-auction (CDA) mechanism. A ZI agent trades randomly, subject to budget constraints. Therefore, ZI agents have no intelligence in the sense that they do not observe nor learn the trend movements in terms of price. They do not remember nor have they any knowledge of their past orders in the market. They are not aware of the present conditions in the market, nor do they have any expectations over future price movements [99]. Thus, ZI agents do not seek to maximize profits. The aim of Gode and Sunder’s work was to examine the CDA mechanism and to demonstrate clearly the effect of the agents’ trading strategy and rationality. From their experimental results, they found that markets operating with human traders and ZI constrained agents converged to the equilibrium price while the market operating with ZI unconstrained agents did not. Furthermore, the comparative results showed that markets operating with ZI constrained agents behaved similarly to the market operating with human traders.

In subsequent work, Gode and Sunder [100] examined the lower-bounds of the level of intelligence or learning agents required to achieve adequate outcomes. They were able to show that a simple budget constrained ZI strategy is able to achieve highly satisfactory outcomes, and that intelligence in the form of learning is not necessary. Their results show that the theoretical equilibrium price in financial markets is determined more by market structure than by the level of intelligence of the traders in that market. Daniel’s study in [64] shows that the stylized facts of the intraday price changes exhibited by real financial markets can be reproduced with ZI agents.

Cliff and Bruten [54] challenged Gode and Sunder’s hypothesis [99, 100] showing different failures in the ability of ZI agents to achieve desirable outcomes. They argue that an approach more intelligent than ZI agents is required to reproduce a real trader’s behaviour in a CDA. Cliff and Bruten subsequently introduced the zero-intelligence plus (ZIP) strategy which they show reproduces more accurately the behaviour of real traders [55]. ZIP agents can be viewed as a modified version of ZI in which the agents use heuristic rules and simple machine learning techniques to forecast investment opportunities to make a decision for operating in the market.

Tseng et al. [225] conducted a series of experiments on a web-based market platform to study the
properties of real financial markets. In their work, three strategies were built: the ZI, ZIP and the Gjerstad-Dickhaut (GD) auction strategy. The GD strategy is a memory-based agent architecture in which agents place orders based on maximising the expected profit. This relies on the GD agents forming a belief and payoff function. Tseng et al. found that although the ZI strategy is the most naive, ZI agents are the best among the ZIP and GD strategies in terms of describing the stylized facts observed in real financial markets. Their study emphasised the importance of a continuously evolving dynamic trading strategy which implies features similar to that of the ZI model.

Rayner et al. showed that when agents imitate each other in the market (social learning), this does not result in the exhibition of the long memory phenomenon [189]. The results show that a non-learning contrarian model of agents who perform a dynamic switching trading strategy produces a more accurate result in terms of long memory than models which imply learning in the agents’ trading strategy. Therefore, they conclude that modelling agents’ learning is neither sufficient nor necessary for the reproduction of the long memory phenomenon.

Concerns have been raised regarding the use of the ZI approach and computational intelligence techniques to model the agents’ trading strategies [54, 55, 135, 225]. The randomness in the ZI strategy prevents us from identifying and understanding the reasons behind the dynamics of trading activities. On the other hand, the use of computational intelligence techniques creates a source of complexity and makes analytical tractability of the agents’ behaviour more difficult.

Alfi et al. in [5–7] model the agents’ strategy using a simple learning mechanism which depends on observing the price’s trend movements. Specifically, each agent commits to a fixed threshold, and therefore the agent places an order when the price fluctuations are above this threshold. Due to the simplicity and explicitness of the learning mechanism, the authors defined and interpreted the origins of the stylized facts associated with price returns. They suggested that introducing a threshold which triggers the agent’s activities based on observing the price movements, is one of the factors responsible for the emergence of stylized facts. However, the strategy by Alfi et al. does not consider the direction and the overshoot of the price trend where the overshoot represents the magnitude of the price movement beyond the threshold used by the agent.

In this chapter, having constructed an ABM for the FX market which is able to reproduce to a satisfactory extent a set of stylized facts that we have uncovered in the real transactions data, we focus on studying the impact of trading strategies in the emergence of such stylized facts. In particular, we have modelled three agent strategies: a variation of the ZI with a constraint (ZI-CV) strategy, the ZI directional-change event (ZI-DCT0) strategy and the genetic programming-based (GP) strategy. The ZI-CV agents trade randomly, subject to budget constraints. The ZI-DCT0 agents detect periodic patterns of a fixed size in the price time series. The GP-based agents (GPAs) use genetic programming to forecast price changes in the market. The motivation for modelling the ZI-CV strategy is that similar strategies have been used in past studies [64, 69, 189, 225] to explain the emergence of stylized facts in financial markets. The ZI-DCT0 is inspired and based on the work of [5], but addresses the limitations of that strategy by considering the direction and the overshoot of the price trend. We have also used a GP-based strategy that has parallel characteristics to those of ZIP agents. Both the GPAs and the ZIP agents use computational intelligence techniques to predict the best decision given the situation in the market. However, the GPAs use genetic programming while the ZIP agents use machine learning techniques. There are other strategies that we could have used such as the ZIP and the Adaptive Aggressiveness (AA) strategy. However, we chose to use a GP-based strategy as such.
strategies have been used in previous related work in the FX markets [48, 122, 154, 172, 198].

8.3 Agent Strategies

This section describes the agent strategies that have been implemented in our ABFXM. The ZI-DCT0 strategy has already been described in section 6.5.5 in chapter 6. In the following we describe the two other strategies implemented for this set of experiments.

8.3.1 ZI-CV Agents

Zero-intelligence with a constraint (ZI-C) agents as introduced by Gode and Sunder [99] where designed for a continuous double auction (CDA) market. Although ZI-C agents are characterized as randomly behaving agents, they trade randomly subject to budget constraints in order to avoid losses. During the market run, for a given unit, the bid and offer prices are drawn from a uniform distribution between the limit price of the unit and either a minimum allowable bid or a maximum allowable offer price [99]. In this work, we use a variation of the ZI-C approach and we call it ZI-CV since the characteristics of the FX markets are different to those of the CDA. The ZI-CV agents trade randomly subject to budget constraints in order to avoid investments losses. ZI-CV agents trade with a probability $\lambda \in [0, 1]$ which is drawn independently from a uniform distribution. Therefore, a ZI-CV agent decides to either place a buy or a sell order, or to hold with equal probability. ZI-CV agents are able to place profit-taking and stop-loss limit orders in turn to lock in a certain profit realization or seek to limit the loss potential for an investment.

8.3.2 Genetic Programming-Based Agents

Neural networks [231], genetic algorithms [108], genetic programming [132] and other machine learning techniques [109, 195, 196] have been used for financial forecasting. In our work, we used genetic programming (GP) to model the genetic programming based agent (GPA). GP was chosen because it has been used successfully to model forecasting mechanisms for agents in ABMs [122, 171, 172, 198]. The design and behaviour of the GPAs used in this work are based on [172]. The GPAs are essentially technical traders that use technical analysis in making an investment decision and under certain conditions can vary their trading strategy and switch to fundamental analysis.

A GPA trader is able to forecast if the price is going to rise/fall by a defined percentage within a specified number of days. A buy order (an open long position) at time t takes place from the prediction of a price rise, while a sell order (an open short position) follows from the prediction of a price drop. A decision to hold will occur when there is no indication of a good opportunity to invest as a result of a price rise or fall. The forecasting is conducted using a set of technical indicators which the GPA is equipped with and considers relevant when it comes to forming trading decision rules. A GPA will use technical analysis for its investment decisions until the difference between the asset price and the fundamental value of the asset price exceeds a threshold defined by the GPA. Afterwards, the GPA will use fundamental analysis until such a difference between the fundamental value and the asset price disappears. The workings of the GPA, technical and fundamental analysis are explained in more detail in the subsequent sections.
8.3.2.1 The GPA Forecasting Mechanism

As it is standard with GP, the mechanism starts before the launch of the simulation and each GPA is assigned an initial population of decision rules randomly generated. The decision rules comprise trends following technical indicators. Each individual decision rule is represented by a decision tree which consists of rules and decisions. A rule contains one technical indicator, one relational operator and a threshold value. A single rule cooperates with other rules in the form of one decision tree through logic operators. The logic operators are Not, And, Or and If-Then-Else. The threshold values are the magnitude of the price movement either in terms of a positive or a negative price movement trend. The root node of a decision tree is always an If-Then-Else node. The root node must have three children, the left node of which is a condition node. The two right children could be either a decision node or an If-Then-Else node. Figure 8.1 presents the Backus Naur Form (BNF) of decision trees. Figure 8.2 depicts an example of a possible decision tree. In Figure 8.2, the code next to the decision tree illustrates how a decision rule is derived from a decision tree.

Each decision rule in the initial population has to be evaluated and assigned a fitness value. The fitness function measures the forecasting accuracy for each decision rule by defining the Rate of Correctness (RC)
CHAPTER 8. THE IMPACT OF TRADING STRATEGIES ON THE STYLIZED FACTS

Algorithm 8.1 Pseudo code for the forecasting mechanism that the GPAs follow.

Input (Training dataset, \(N_G, N_{Pop}\)) // training dataset is used to train GPA to find the best investment decision rule; \(N_G\) is the number of generations; and \(N_{Pop}\) is the population size.

Begin
\(i = 1\) // Generation number.
\(Pop_i \leftarrow \text{initializeFirstPopulation}()\); // Randomly creates the first population of \(N_{Pop}\) genetic decision rules.
\(\text{Evaluation}(Pop_i)\); // Evaluate the population by computing the fitness value of each genetic decision rule in the population.
While \((i < N_G)\) do // Check if we have reached the maximum number of generations.
Begin
\(i = i + 1\)
\(Pop_i \leftarrow \text{Reproduction}(Pop_{i-1}) + \text{Crossover}(Pop_{i-1})\); // Create a new population by applying genetic operators of reproduction and crossover to the current population. The reproduction creates \(N_{Pop} \times \gamma\) individuals where \(\gamma\) denotes the reproduction probability. The crossover creates \(N_{Pop} \times (1 - \gamma)\).
\(Pop_i \leftarrow \text{Mutation}(Pop_i)\); // apply mutation to the new population.
\(\text{Evaluation}(Pop_i)\); // Using the training dataset, evaluate the population by computing the fitness value of each genetic decision rule in the population.
End
Apply the best genetic decision rule to the agent’s decision on the investment;
End

and the Rate of Failure (RF). Given a training set of historical prices over a period \(T\), the forecasted price of every decision rule is classified into a positive forecast, where the objective return is realized, and a negative forecast, where the objective return is not realized. The RC is defined as the number of correct forecasts over the total number of forecasts. The RF is the proportion of forecasts that were wrongly forecasted as being positive, over the number of positive forecasts. The RC and RF are allocated a different weight in the fitness function in order to reflect the preferences of the agents. For example, a GPA would want to avoid failure; thus a higher weight for the RF should be used. There are different fitness measures such as the profitability of the investment and the rate of missed opportunities. Li and Tsang in [151], study the impact of modifying the fitness measures on the forecasting performance. In our study, we have used the RC and RF measures, as they have been used in previous relevant work [123, 152, 171, 172, 222, 224].

A GPA preserves a set of decision rules called a population, \(Pop\), and works through iteration. In each iteration, a new population \((Pop+1)\) is created by updating the fittest decision rules from the last \(Pop\) through genetic operators: crossover, mutation and reproduction. Crossover creates a new decision rule by merging two of the fittest decision rules, called parents, from the last \(Pop\). Mutation operates on one decision rule. A random mutation point is selected, the sub-tree rooted at the selected point is deleted, and a new sub-tree is created. Reproduction copies the existing decision rule to the new population. In the crossover and mutation genetic operators, the type of the node that will be selected is important given that it affects the decision tree’s consistency. For instance, in the mutation operation, if the deleted node is a condition node, then the root of the randomly generated sub-tree must be a condition node. The same situation should apply for the crossover operation in which there needs to be compatibility between the sub-trees that are going to be swapped by the parents. Following the creation of the new \((Pop+1)\), each decision rule in the population will be evaluated on a historical prices training set for the participation in generating a population of decision rules in the next generation. The decision rule with the highest fitness value at the last generation is applied for the GPA’s decision to place an order. Algorithm 8.1 shows the core mechanism of GPAs for making investment decisions.

After the GPA makes a trade, it re-evaluates its trading rules and consequently increases the fitness
value for each rule that formed the right decision, and reduces the fitness value for the rules that gave wrong decisions. In addition, each GPA is aware of its trading performance during the market and when its wealth falls below a threshold, which is equal to half of its initial wealth in the market, the GPA evolves a new population of rules. The first half of the new population is generated randomly, while the second half is generated by retaining half of the GPA’s current population of trading rules. By doing so, the GPA resets the fitness value of each decision rule, and then each decision rule in the population will be evaluated on a historical prices training set. The threshold for the retraining condition is reset to half of the GPA’s current wealth. Finally, the GPA uses the decision rule with the highest fitness value with regard to the new population.

The level of GPAs’ computational capability is determined by the number of generations and the population size which establish the search space for the GPA to evolve the decision rules. Using a small population limits the search space for a set of investment decision rules and therefore a few and less varied investment decisions will be used by a GPA. On the other hand, using a small number of generations means that the evolutionary mechanism has relatively few opportunities to process the search over the set of investment decision rules, which could result in poor rules. For the GPAs used in this study, we chose a population of 50 decision rules, which are evolved over 50 generations, over a training period of 60 days. The computational cost which represents the time for a GPA to evolve good decision rules must not be ignored. Using a large size in terms of both the number of generations and the population size takes a GPA a long time to evolve good decision rules which may not be applicable for investment decisions in high-frequency or other markets [86]. For investment decisions in financial markets, traders have to consider continuous changes in the time series of prices, which sometimes take place to the nearest second.

8.3.2.2 Technical Indicators

Technical analysis uses indicators to forecast price movement and is a significant tool for investment decision making. Each GPA is equipped with a set of indicators. We used six different indicators which have been shown to be useful for forecasting price movements in previous works [172, 198]. Although GPAs may possibly use any source of financial information as part of the forecasting mechanism, in our work and for the purposes of this study, we did not include any exogenous sources of financial information as this would create a source of complexity in the ABFXM.

The technical indicators are presented in Table 8.1 and are briefly described below. Each indicator uses just two periods, a short-term and a long-term period, since this is the way they are used by technical analysis traders [172]. By using these indicators, we sought to limit the size of the search space for a GPA.

<table>
<thead>
<tr>
<th>Technical Indicator</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moving average</td>
<td>12 & 50 days</td>
</tr>
<tr>
<td>Filter</td>
<td>5 & 50 days</td>
</tr>
<tr>
<td>Trade Break Out</td>
<td>5 & 63 days</td>
</tr>
<tr>
<td>Volatility</td>
<td>12 & 50 days</td>
</tr>
<tr>
<td>Momentum</td>
<td>10 & 50 days</td>
</tr>
<tr>
<td>Momentum Moving Average</td>
<td>10 & 50 days</td>
</tr>
</tbody>
</table>

Table 8.1: The indicators used by GPAs to form decision rules and their respective short and long-term periods.
used, along with their formulas (Equations (8.1) to (8.6)) as follows:

The Moving Average (MA) indicator shows the mean price value of an asset over a specific period of time. There are many different types of moving average such as the simple moving average and the cumulative moving average. In this study, we use the simple form of moving average which is defined by computing the average price of an asset over a specific time. The MA indicator is computed by:

$$MA_{L,t} = \frac{p_t - \left(\frac{1}{L} \sum_{i=1}^{L} p_{t-i}\right)}{\frac{1}{L} \sum_{i=1}^{L} p_{t-i}}$$ \hspace{1cm} (8.1)

The Filter indicator (FLR) suggests a buy/sell opportunity, depending on whether the price reverses by a predefined amount of size Δx. For example, if the price movement alters from an upward to a downward trend by Δx from the highest price, then the FLR shows a sell opportunity. The FLR indicator is computed by:

$$FLR_{L,t} = \frac{p_t - \min\{p_{t-1}, \ldots, p_{t-L}\}}{\min\{p_{t-1}, \ldots, p_{t-L}\}}$$ \hspace{1cm} (8.2)

Technical analysis indicates that an upward price trend is likely to halt at a resistance point, which is the point at which the price trend stops moving upwards. Similarly, a downward price trend is likely to reserve at a support point. But it is possible that the price trend will continue in the same direction when the price trend breaks through the resistance and support points. Accordingly, the Trade Break Out (TRB) indicator indicates a buy opportunity when an asset’s price moves above its point of resistance, while an indication of sell opportunity is given when the asset’s price moves below its point of support. The TRB indicator is computed by:

$$TRB_{L,t} = \frac{p_t - \max\{p_{t-1}, \ldots, p_{t-L}\}}{\max\{p_{t-1}, \ldots, p_{t-L}\}}$$ \hspace{1cm} (8.3)

The volatility indicator (Vol) indicates a buy opportunity when there is a period of declining volatility in the price time series; this would indicate an upward trend. A period of increasing volatility will possibly indicate a sharp downward trend which is an indication of a sell opportunity. The Vol indicator is computed by:

$$Vol_{L,t} = \frac{\sigma(p_{t}, \ldots, p_{t-L+1})}{\frac{1}{L} \sum_{i=1}^{L} p_{t-i}}$$ \hspace{1cm} (8.4)

The Momentum (Mom) indicator measures the rate at which an asset’s price is changing. An indication of an upward trend is given when the momentum is positive, while an indication of a downward trend is given when the momentum is negative. The Mom indicator is computed by:

$$Mom_{L,t} = \frac{p_t - p_{t-L}}{p_t - p_{t-L}}$$ \hspace{1cm} (8.5)

From the Mom indicator we can compute its moving average (MomMA):

$$MomMA_{L,t} = \frac{1}{L} \sum_{i=1}^{L} Mom_{L,t-i}$$ \hspace{1cm} (8.6)
8.3.2.3 Fundamental Analysis

The fundamental analysis of an asset price is based on analysing the factors which could possibly influence the changes of the asset price such as financial market reports, earnings and sales on the asset price. The concept of fundamental analysis is based on generating a fundamental value using financial information. Consequently, a trader is able to compare the fundamental value of the asset price with the current asset price in order to take an investment decision based on the comparative results. Therefore, the performance of an investment decision based on fundamental analysis depends on the precision of the fundamental value of the asset price. In the literature, there are different ways for defining the fundamental value of an asset price which agents consider in their investment decisions. For example, in [82] there is one fundamental value for all the agents in the market, whereas in [153] agents possess different fundamental values.

In our work, the GPAs are able to vary their trading strategy using fundamental analysis. A GPA will use technical analysis for its investment decisions until the difference between the asset price and the fundamental value of the asset price exceeds a threshold defined by the GPA. Afterwards, the GPA will use fundamental analysis until such a difference between the fundamental value and the asset price disappears. The GPAs in the market possess one fundamental value of the asset price just as in [82]. The reason behind using just one fundamental value is to avoid complexity in terms of the GPAs’ trading behaviour. During the operation of the market, the fundamental value of the asset price is given by an exogenous random process and is defined as:

\[f_t = f_{t-1} + \eta_t \]

where \(f_t \) denotes the fundamental value at time \(t \) and \(\eta_t \) is a normal noise process with mean \(\mu \) and standard deviation \(\sigma \).

However, although GPAs possess one fundamental value, this does not mean that all the GPAs will be making the same decision. In detail, GPAs who adopt fundamental analysis for their strategy are committed to a fixed threshold which is generated randomly from uniform intervals before the launch of the market. A GPA takes a decision to invest if the asset price departs from the fundamental value by an amount equal to, above, or below, the threshold. To demonstrate, if the difference between the asset price and the fundamental value is above the threshold, the GPA is recommended to place a sell order (take a short position). On the other hand, if the difference between the asset price and the fundamental value is below the threshold, a buying order is recommended for the GPA (taking a long position). These GPAs will continue updating their beliefs with regard to the market until the difference between the asset price and the fundamental value is lower than a threshold [172]. This fundamental behaviour was introduced in [172].

8.4 Experiments

In this section, we report on the experiments undertaken in the ABFXM that we developed and the three strategies. Our aim in particular, is to examine the impact of the use of the three strategies in the reproduction of the stylized facts in the FX market; this can subsequently inform the design of trading strategies and decision support systems for the FX market.
CHAPTER 8. THE IMPACT OF TRADING STRATEGIES ON THE STYLIZED FACTS

<table>
<thead>
<tr>
<th>GP parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum initial tree depth</td>
<td>5</td>
</tr>
<tr>
<td>Maximum tree depth</td>
<td>9</td>
</tr>
<tr>
<td>Number of generations</td>
<td>50</td>
</tr>
<tr>
<td>Population size</td>
<td>50</td>
</tr>
<tr>
<td>Crossover probability</td>
<td>0.9</td>
</tr>
<tr>
<td>Mutation probability</td>
<td>0.01</td>
</tr>
<tr>
<td>Reproduction probability</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Table 8.2: Initial configuration for the GP parameter values used for the GPAs.

8.4.1 Experimental Setup

The ABFXM operates for a period of one simulated month, where each trading round corresponds to one simulated second. The main parameters used in the ABFXM can be grouped into three main groups: market, agent, and GP parameters. The initial configuration for the main market and agent parameter values used in the ABFXM are reported in section 6.9 in chapter 6. Table 8.2 reports the initial configuration for the GP parameter values for the GPAs. We assess the robustness of the GP parameters by performing a sensitivity analysis. Furthermore, in order to define the appropriate value for each parameter, we scan each of the parameter search space individually over a given range of possible values, while keeping the other parameters at their original values. Such a sensitivity analysis allows us to set an appropriate value for each parameter of the GP in order for the mechanism to work effectively.

8.4.2 Results

In this section, we report the stylized facts of FX market trading activity established (a) in the real market data in comparison to those established from the ABFXM populated with: (b) ZI-CV agents; (c) ZI-DCT0 agents; (d) GPAs; a mixture of (e) 50% ZI-CV and 50% ZI-DCT0 agents; (f) 70% ZI-CV and 30% ZI-DCT0 agents; (g) 30% ZI-CV and 70% ZI-DCT0 agents; (h) ZI-DCT0 and GPAs where GPAs <50%; (i) ZI-DCT0 and GPAs where GPAs ≥ 50%; (j) ZI-CV and GPAs where GPAs <50% and (k) ZI-CV and GPAs where GPAs ≥ 50%.

The simulation uses historical bid and ask prices for the EUR/USD currency pair over a defined one month period by feeding these prices into the market and having the agents respond to the price changes. We use this dataset as the purpose of this work is to explore the impact of various strategies on the trading activity generated within the ABFXM. The price data are used to anchor the simulation results so that we can establish whether the transactions data generated by the ABFXM have the same properties as the real market data. The historical dataset of prices acts as a constant so that multiple simulation runs can be performed in which different strategies and their impact can be systematically studied without having to worry about price setting in the market.

The total number of agents in the ABFXM is 10^4. The only exception is case (d) where the ABFXM is populated just by GPAs and due to limited computational capacity there are only 8,000 GPAs running. The stylized facts generated from the ABFXM are averaged over 30 independent simulation runs, each run being one simulated month, and with different initial seeds provided by random number generators, and different time horizons over the 2.25 years of the EUR/USD prices data samples. We performed the different independent simulation runs with the same parameter configuration values but with different seeds and time
Figure 8.3: The intraday seasonality of the trade numbers from (a) the dataset of EUR/USD transactions, the ABFXM populated with (b) ZI-CV, (c) ZI-DCT0, (d) GPAs, (e) 50% ZI-CV and 50% ZI-DCT0, (f) 70% ZI-CV and 30% ZI-DCT0, (g) 30% ZI-CV and 70% ZI-DCT0, (h) ZI-DCT0 and GPAs (<50%), (i) ZI-DCT0 and GPAs (⩾50%), (j) ZI-CV and GPAs (<50%), (k) ZI-CV and GPAs (⩾50%).

Figure 8.3 shows the intraday seasonality of the trade numbers from the different data samples as explained in section 8.4.2 with case (a) being the seasonality exhibited in the real data. From Figure 8.3, the intraday seasonality of the trade numbers exhibits the double U-shape for two cases when the ABFXM is populated with (c) just ZI-DCT0 and (h) a mixture of ZI-DCT0 and GPAs (<50%). In contrast, when the ABFXM is populated with GPAs (⩾50%), the U-shape pattern does not emerge. Similarly, all other cases do not exhibit this intraday seasonality measure. In particular, in the three cases (b, j and k) where the ABFXM is populated with ZI-CV agents, the intensity of trade numbers increases sharply around 4:00am. Afterwards, the intensity of trade numbers declines sharply, and then remains very stable throughout the rest of the day, in contrast to the real market. In all of the three cases where the ABFXM is populated with a mixture of ZI-CV and ZI-DCT0 agents, the intensity of trade numbers remains stable throughout the day.

Table 8.3 reports the intraday seasonality statistics, the t-statistic values and the Pearson correlation values where the t-critical value two-tail = 2.07 are presented. According to the paired t-tests with a 95%
Table 8.3: T-statistic (tsv) and Pearson (corr) correlation when the ABFXM is populated with (b) ZI-CV, (c) ZI-DCT0, (d) GPAs, (e) 50% ZI-CV and 50% ZI-DCT0, (f) 70% ZI-CV and 30% ZI-DCT0, (g) 30% ZI-CV and 70% ZI-DCT0, (h) ZI-DCT0 and GPAs <50%, (i) ZI-DCT0 and GPAs ≥ 50%, (j) ZI-CV and GPAs <50%, (K) ZI-CV and GPAs ≥ 50%.

<table>
<thead>
<tr>
<th></th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade numbers</td>
<td>2.2E-10 - 0.21</td>
<td>-7.1E-10 + 0.98</td>
<td>-3.9E-02 + 0.68</td>
<td>-1.3E-10 +0.52</td>
</tr>
<tr>
<td>Trade volumes</td>
<td>2.2E-11 - 0.23</td>
<td>4.6E-16 + 0.87</td>
<td>4.7E-02 + 0.50</td>
<td>-7.0E-10 +0.99</td>
</tr>
<tr>
<td>Opening positions</td>
<td>-2.7E-10 - 0.21</td>
<td>-2.1E-09 + 0.98</td>
<td>-5.3E-02 + 0.66</td>
<td>-1.3E-10 +0.52</td>
</tr>
<tr>
<td>Closing positions</td>
<td>5.3E-10 - 0.20</td>
<td>2.3E-09 + 0.98</td>
<td>-1.7E-02 + 0.78</td>
<td>1.3E-10 +0.53</td>
</tr>
<tr>
<td>Trade numbers</td>
<td>-1.3E-10 +0.40</td>
<td>-2.6E-10 +0.32</td>
<td>-3.2E-09 + 0.99</td>
<td>-3.7E-02 + 0.78</td>
</tr>
<tr>
<td>Trade volumes</td>
<td>-1.5E-09 +0.99</td>
<td>-1.5E-09 +0.99</td>
<td>-1.4E-09 + 0.99</td>
<td>5.8E-02 + 0.55</td>
</tr>
<tr>
<td>Opening positions</td>
<td>5.8E-17 +0.39</td>
<td>-3.9E-10 +0.30</td>
<td>-3.8E-16 + 0.99</td>
<td>-5.2E-02 + 0.70</td>
</tr>
<tr>
<td>Closing positions</td>
<td>2.5E-10 +0.40</td>
<td>3.8E-10 +0.33</td>
<td>1.5E-09 + 0.99</td>
<td>-1.3E-02 + 0.85</td>
</tr>
<tr>
<td>Trade numbers</td>
<td>-3.63E-16 -0.23</td>
<td>-2.42E-10 -0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade volumes</td>
<td>-1.90E-10 +0.05</td>
<td>-3.75E-11 -0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opening positions</td>
<td>-1.89E-10 -0.24</td>
<td>-1.21E-10 -0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closing positions</td>
<td>2.52E-10 -0.23</td>
<td>3.03E-10 -0.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The periodic patterns are correlated with the changes in the behaviour of the worldwide FX market participants [63]. We believe that the lack of a trading strategy in the ZI-CV agents, may be responsible for the absence of such periodic patterns. The randomness in the ZI-CV agents’ behaviour also makes it difficult to interpret the incompatible results between the correlation values for trade numbers and volumes. Although, the GPA models in our experiments had been calibrated, the use of such strategies do not seem to yield results close to those of real data. Identifying which of the parameters in the GPAs’ strategy are responsible for the deviation from the periodic patterns observed in real data is not straightforward due to the underlying complexity of the strategy. The experimental results suggest that a random strategy (even with budget constraints) or a strategy that involves learning are not able to reproduce the stylized facts of the FX market to a satisfactory extent. The ZI-DCT0 strategy on the other hand which is based on the idea of identifying perioding patterns and responding to them, seems to achieve results that are close to those of the real market.
Correlation Behaviour

The correlation between the different trading activities in the FX market data (Table 8.4 (a)), reveal a positive linear relationship between trade numbers and volumes, numbers of buy and sell executed orders, number of opening and closing positions, and intraday price volatilities and trade numbers and volumes. From Table 8.4 (c), we can see that the results when the ABFXM is populated with only ZI-DCT0 agents, case (c), exhibit very similar correlation behaviour to that of the real data. This means that there are linear dependencies between the current and past values of the different trading activities in the FX market data. We believe that the success of the ZI-DCT0 approach in modelling agents is the link between the variations in price changes and thresholds of different sizes which trigger the agents to trade.

In contrast, in all other cases the correlation is not satisfactory. These results indicate that there is no dependency between the variations in price changes and the trading activity emerging from the ABFXM with ZI-CVs or GPAs. The ZI-CV agents trade randomly, subject to budget constraints, and therefore do not respond to price changes. On the other hand, GPAs use different forms of technical and fundamental analysis of price changes for their investment decisions, as described in section 8.3.2. Hence, this results in a variety of decision rules used by the GPAs.

When the ABFXM is populated with a mixture of ZI-CV and ZI-DCT0 agents, cases (e, f, g), this affects extensively the correlation between the trade numbers and volumes. The statistics show that there is weak relationship between trade numbers and volumes which is contrary to what has been confirmed using real market data [63]. Tracking the ZI-CV agents’ trading activity, we found that a low level of cash in their accounts affects the order size of their trade, which consequently results in a low level of trade volumes in the market. Low cash in the ZI-CV agents accounts results from their unsuccessful investments during the simulation run. This explains why there is lack of autocorrelation between ZI-CV agents’ trade numbers and volumes.

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade numbers and volumes</td>
<td>+ 0.81</td>
<td>+ 0.70</td>
<td>+ 0.92</td>
<td>+ 0.86</td>
<td>+ 0.04</td>
<td>+ 0.02</td>
</tr>
<tr>
<td>Buy and sell orders</td>
<td>+ 0.95</td>
<td>+ 1</td>
<td>+ 0.99</td>
<td>+ 0.85</td>
<td>+ 1</td>
<td>+ 1</td>
</tr>
<tr>
<td>Opening and closing positions</td>
<td>+ 0.98</td>
<td>+ 1</td>
<td>+ 0.98</td>
<td>+ 0.80</td>
<td>+ 1</td>
<td>+ 1</td>
</tr>
<tr>
<td>Volatilities and trades</td>
<td>+ 0.43</td>
<td>- 0.10</td>
<td>+ 0.46</td>
<td>+ 0.05</td>
<td>- 0.03</td>
<td>+ 0.03</td>
</tr>
<tr>
<td>Volatilities and volumes</td>
<td>+ 0.28</td>
<td>- 0.06</td>
<td>+ 0.31</td>
<td>- 0.01</td>
<td>- 0.09</td>
<td>+ 0.03</td>
</tr>
<tr>
<td>(g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade numbers and volumes</td>
<td>+ 0.04</td>
<td>+ 0.88</td>
<td>+ 0.89</td>
<td>+ 0.41</td>
<td>+ 0.59</td>
<td></td>
</tr>
<tr>
<td>Buy and sell orders</td>
<td>+ 1</td>
<td>+ 1</td>
<td>+ 0.89</td>
<td>+ 1</td>
<td>+ 1</td>
<td></td>
</tr>
<tr>
<td>Opening and closing positions</td>
<td>+ 1</td>
<td>+ 0.96</td>
<td>+ 0.83</td>
<td>+ 1</td>
<td>+ 1</td>
<td></td>
</tr>
<tr>
<td>Volatilities and trades</td>
<td>+ 0.01</td>
<td>+ 0.01</td>
<td>+ 0.03</td>
<td>- 0.12</td>
<td>- 0.12</td>
<td></td>
</tr>
<tr>
<td>Volatilities and volumes</td>
<td>- 0.03</td>
<td>- 0.04</td>
<td>- 0.01</td>
<td>+ 0.02</td>
<td>- 0.01</td>
<td></td>
</tr>
</tbody>
</table>

Table 8.4: Correlation coefficients computed for the different EUR/USD trading activity from (a) the dataset of EUR/USD transactions, the ABFXM populated with (b) ZI-CV, (c) ZI-DCT0, (d) GPAs, (e) 50% ZI-CV and 50% ZI-DCT0, (f) 70% ZI-CV and 30% ZI-DCT0, (g) 30% ZI-CV and 70% ZI-DCT0, (h) ZI-DCT0 and GPAs (<50%), (i) ZI-DCT0 and GPAs (⩾ 50%), (j) ZI-CV and GPAs (<50%), (K) ZI-CV and GPAs (⩾ 50%).
Table 8.5: The adjusted R^2 values of the fits and standard errors (SE), for the scaling laws measured under DC and OS events from (a) the dataset of EUR/USD transactions, the ABFXM populated with (c) ZI-DCT0, (d) GPAs, (e) 50% ZI-CV and 50% ZI-DCT0, (f) 70% ZI-CV and 30% ZI-DCT0, (g) 30% ZI-CV and 70% ZI-DCT0, (h) ZI-DCT0 and GPAs ($<50\%$), (i) ZI-DCT0 and GPAs ($\geq 50\%$), (j) ZI-CV and GPAs ($<50\%$), (K) ZI-CV and GPAs ($\geq 50\%$).

Scaling Laws

The scaling laws as confirmed in the FX market data are plotted in Figure 8.4 (a). Table 8.5 (a) reports the adjusted R^2 values and standard errors of the fits. The existence of the six quantitative relationships amongst the four scaling laws, holding across EUR/USD trading activity can also be established from the same figure.

When the ABFXM is populated with just ZI-CVs, case (b), it is not possible to discern the scaling laws and the dynamics of the trading activity do not match those observed in the real data. As such, the graphs could not be drawn and hence this case has been omitted from Figure 8.4 and Table 8.5. In detail, and as can also be observed from Figure 8.3, the intensity of trading activity increases sharply during the few first hours of the simulation, after which the trading activity declines suddenly and sharply to a much lower level, and continues to be stable at this very low level during the remaining time of the simulation. We believe that this is due to the ZI-CV agents’ random strategy and as a consequence their inability to react to price changes in the market.

The scaling laws and the six quantitative relationships amongst them, are exhibited in the data generated.
Figure 8.4: Scaling laws are plotted where the x-axis shows the price moves thresholds of the EUR/USD observations and the y-axis shows the average: trade numbers; trade volumes; number of opening positions; and number of closing positions. Scaling laws are defined from (a) the dataset of EUR/USD transactions, the ABFXM populated with (c) ZI-DCT0, (d) GPAs, (e) a mixture of 50% ZI-CV and 50% ZI-DCT0.
Figure 8.5: Scaling laws are plotted where the x-axis shows the price moves thresholds of the EUR/USD observations and the y-axis shows the average: trade numbers; trade volumes; number of opening positions; and number of closing positions. Scaling laws are defined from the ABFXM populated with a mixture of (f) 70% ZI-CV and 30% ZI-DCT0, (g) 30% ZI-CV and 70% ZI-DCT0, (h) ZI-DCT0 and GPAs (<50%) and (i) ZI-DCT0 and GPAs (≥ 50%).
Figure 8.6: Scaling laws are defined from the ABFXM populated with a mixture of (j) ZI-CV and GPAs (<50%), (K) ZI-CV and GPAs (>50%).

from the ABFXM populated with just ZI-DCT0 agents, Figure 8.4 (c). Table 8.5 (c) reports the adjusted R² values and standard errors of the fits. The significance of the fit of the line which is an indication of linear dependency between the different sizes of the price movements and the observed market trading activity measured at these different sizes of price movements, is obvious from the adjusted R² values. The standard errors of the fits are roughly equivalent to the estimated errors for scaling laws in the empirical data reported in Table 8.5 (a). We therefore conclude that a key element in modelling the agents’ strategies is the linking of variations in price changes to thresholds of different sizes in order to trigger trading behaviour on the part of the agents.

In the three cases (e, f, g), where the ABFXM is populated with a mixture of ZI-CV and ZI-DCT0 agents, surprisingly the simulation results exhibit the scaling laws according to the adjusted R² values, Table 8.5 (e, f, g). However, the six quantitative relationships amongst the scaling laws are not exhibited, as shown from Figure 8.4 (e) and 8.5 (f, g). Additionally, the trade numbers are much higher than in the real FX market data, as can be seeing from Figure 8.4 (a). Such results are questionable, in that unrealistically high trade numbers occur during DC and OS events. One possible reason is that the ZI-CVs do not react to price changes in the market, and consequently do not consider a DC event as a pattern set up for the price trend movement. Such a pattern influences agents’ decisions, assuming that the current price trend will continue in the same direction or move in the opposite direction. Therefore, this might explain why the DC and OS events contain roughly the same number of trades in the ABFXM populated with ZI-CVs. This is in contrast to the real FX market data wherein an OS event contains twice as many trades as a DC event.

The scaling laws and the quantitative relationships amongst them are not exhibited in the data produced from the ABFXM populated with just GPAs or a mixture of ZI-DCT0 and GPAs, Figure 8.4 (d) and 8.5 (h, i).
CHAPTER 8. THE IMPACT OF TRADING STRATEGIES ON THE STYLIZED FACTS

Table 8.6: Descriptive statistics of the agents’ ROI from the ABFXM populated with (b) ZI-CV, (c) ZI-DCT0, (d) GPAs, (e) 50% ZI-CV and 50% ZI-DCT0, (f) 70% ZI-CV and 30% ZI-DCT0, (g) 30% ZI-CV and 70% ZI-DCT0, (h) ZI-DCT0 and GPAs (<50%), (i) ZI-DCT0 and GPAs (⩾50%), (j) ZI-CV and GPAs (<50%), (K) ZI-CV and GPAs (⩾50%).

i). From Table 8.5 (d, h, i), the adjusted R^2 values are not very close to 1, which implies non-significant fit. The scaling laws are exhibited under DC events from the ABFXM populated with a mixture of ZI-CV and GPAs where GPAs <50% (Figure 8.6 - j). The adjusted R^2 values in Table 8.5 - j shows the significant of the fit. However, the scaling laws of trade numbers are not exhibited under OS events from the ABFXM populated with a mixture of ZI-CV and GPAs where GPAs <50%. The adjusted R^2 values in Table 8.5 - k are negative. When the ABFXM is populated with a mixture of ZI-CV and GPAs where GPAs ⩾50% (Figure Figure 8.6 - k), the scaling laws are not exhibited. According to the results, the ensuing GPAs’ behaviour in the ABFXM does not reproduce the scaling laws, thus supporting other studies which emphasize that some properties in the financial markets may not indeed be the result of interactions between agents who possess sophisticated learning and adaptation mechanisms [5, 64, 225].

Return on Investment (ROI)

ROI is a performance measure which is defined as the total return with regard to an agent’s investment over a defined period, divided by the cost of the investment. The ROI is expressed as a percentage and can
either be positive or negative, which means respectively that the agent achieves a profit or makes a loss. We measure the ROI for each agent’s account over a period of a simulated month. The aim is to evaluate the profitability and performance of the agents’ trading strategies in the ABFXM. Table 8.6 shows a number of basic descriptive statistics of the agents’ ROI from different simulation runs. For the situation in which the ABFXM is populated with ZI-CV agents, case (b), the performance of such agents is extremely poor as all the agents achieved losses. The results indicate that the ZI-CV trading strategy may not be suitable for high-frequency trades. The reason behind the success of ZI agents in previous works such as [100, 212, 225] may be due to the fact that these ZI agents trade in low frequency markets.

When the ABFXM is populated with just ZI-DCT0 agents, case (c), the results are satisfactory and the average ZI-DCT0 agents’ ROI is 13.13% while 44.90% of the agents achieve profits. Interestingly, and across all the simulation runs with different percentages of ZI-DCT0 agents present, such agents on average achieve better results (in terms of average and winning agents) than ZI-CV and GPAs. The results reported in Table 8.6 may be indicative, but require further exploration and analysis. The profitability of individual traders is not necessarily easy to establish. According to [181] over 80% of traders in any one year achieve losses in their investments, and there is a possibility that the remaining 20% of traders lose money in their investment in the following year. This can be explained due to the difficulty of earning money in FX markets. In future work, we aim to establish a set of stylized facts regarding the real traders’ investment profitability and performance. Such research will allow us to evaluate precisely the performance of different trading strategies.

8.5 Discussion and Conclusions

We have studied the impact of the agents’ trading strategies on the emergence of the stylized facts of trading activity in the high-frequency FX market. Three different type of agents are studied: a variation of the ZI strategy with a constraint (ZI-CV) agents, ZI directional-change event (ZI-DCT0) agents, and genetic programming-based agents (GPAs).

The experimental results in section 8.4.2 show that the full set of stylized facts, as observed in the real FX market data, are reproduced by case (c) where all agents use the ZI-DCT0 strategy. The market setting (b) with the ABFXM being populated just with ZI-CV agents fails to generate the full set of stylized facts. The market setting (d) with just GPAs is able to reproduce the seasonality pattern in intraday data, but does not demonstrate the scaling laws, while the correlation behaviour of the trading activity generated is also not close to that exhibited in the real data. The other cases exhibited very limited aspects of the stylized facts, but not the full set. Looking at the return on investment, the agents with the ZI-DCT0 strategy are clearly the most successful ones (in terms of the average as well as the number of winning agents).

The ZI-CV approach involves random decisions subject to budget constraints and is frequently used in the ABM field [135] and for understanding the market mechanism effects [64, 99]. Sunder suggested that agent-based models of ZI can be used to study the link between micro and macro behaviours of the traders in the market [213]. Although the ZI-CV agents have advantages when it comes to investigating the effects of the market mechanism, from our experiments it appears that the randomness in the agents’ trading activities and their inability to keep track of the overall market is the reason why the stylized facts are not exhibited.

On the other hand, employing a complex strategy which involves learning does not seem to be able to reproduce the full set of stylized facts as observed in the real FX market data. This seems to provide further
support to studies such as [64, 99, 100, 189, 225] that have argued that complex strategies and in particular strategies that involve learning may not be necessary nor sufficient for the emergence of phenomena such as stylized facts emerging in markets. In our work, we have attempted to calibrate the parameters of the GPAs, but the wide variance in the decision rules that GPAs use does not allow us to pinpoint a single element of the GPAs’ trading strategy mechanism as being one of the factors accountable for the non-emergence of the stylized facts. The complexity in the GPAs’ trading strategy makes it difficult to draw out general conclusions regarding the results or inputs of the GPAs’ trading activity in the market. Unlike the ZI-DCT0 strategy, the GPAs’ forecasting mechanism for detecting patterns in price time series using various technical indicators as the main tool, is more complex. The character and structure of these detected patterns can be of different magnitude and can use different time scales to unfold. For instance, the Santa Fe Artificial Stock Market (SF ASM) is populated by heterogeneous agents whose trading strategies involve learning, evolutionary processes and a classifier system. The SF ASM is able to reproduce some of the stylized facts observed in stock markets. However, the interaction of these agents makes explaining the stylized facts of the stock market behaviour a very difficult task [135].

The ZI-DCT0 strategy avoids the complexity of GPAs and also the randomness of the ZI-CV strategy. ZI-DCT0 agents respond to periodic patterns in the price time series of a fixed size. This relatively simple strategy appears to be effective in the HF FX market and the experiments suggest that this kind of behaviour is able to reproduce the stylized facts observed in the real market. The scaling law relations in the HF FX data also seem to suggest that these highly depend on the agents’ responses to different price fluctuations. Our results provide evidence that introducing a threshold for the agents to trade when the price fluctuations exceed the threshold represents a key element in for an agent’s trading strategy in the HF FX. The authors in [64, 69, 99, 110, 143, 189, 193] stress the importance of simplicity in building agent-based models in order to make possible the understanding of market behaviour and the forces driving the market. We believe that the ZI-DCT0 strategy allows us to gain a good insight into market behaviour dynamics without having to make various assumptions about the strategic behaviour of the agents.
Chapter 9

Conclusions

This chapter provides a summary of the work presented in this thesis (section 9.1), identifies the thesis contributions to the area of ABMs (section 9.2), and describes some potential avenues for future research by which this work can be extended (section 9.3).

9.1 Summary

One of the principle goals of agent-based simulations is to study and understand complex real-life phenomena, where the use of analytical models is not applicable. ABMs have emerged as a means of studying the behaviour of individual agents within a market setting, the interaction effects, emergent macro properties, collective behaviour, and the impact of market rules or policies, among others.

The aim of this thesis is to contribute to the research area of ABMs by identifying the essential elements under which the stylized facts of the trading activity in the high-frequency FX markets are exhibited in an ABM. This consequently implies that the areas of FX markets and ABMs have to be studied, described and their relevant literature reviewed. In chapter 2, we start by describing the FX market structure and associated studies on FX market behaviour. As FX markets generate masses of data we discuss high frequency data and the challenges associated with their processing and analysis. We subsequently review the state of the art in the ABM area including key design issues in the development of ABMs. The chapter also includes a brief overview of artificial intelligence techniques, and in particular, evolutionary computation ones that are commonly used in financial forecasting.

Before developing an ABFXM, the trading activity in the high-frequency FX markets has to be observed, analyzed and properly understood. Therefore, the first research step focuses on defining a proper effective approach for analyzing and studying the financial markets’ behaviour. This is the subject of chapter 3. Surveying the literature we found an effective approach which is the directional-change event introduced by Guillaume et al. in [104], where events of different magnitudes are the time-scale of the time series. Financial markets are highly active at some times, but calm at others. Therefore using fixed time scales runs the risk of missing important activities. An alternative approach is to focus on directional-change events that capture periodic activities in the market. In chapter 3, we showed the potential significance of the directional-change event approach for studying and analyzing financial markets. Our study confirmed that the length of the price curve coastline, as defined by directional-change events, turns out to be a long one. We showed by means of experimental results that automated trading algorithms could potentially be derived by means of directional-change events.
CHAPTER 9. CONCLUSIONS

Having the essential tools for observing, analyzing and studying the trading activity in the FX market, next comes the fundamental step of our study which is establishing stylized facts of the trading activity in the high-frequency FX market. To establish stylized facts of the trading activity, we need to explore high-frequency data of individual traders’ historical transactions in the FX market. Fortunately, our study has acquired a unique high-frequency dataset of individual traders’ historical transactions on the OANDA FX trading platform over 2.25 years. Prior to analyzing and studying the dataset, we have conducted a filtering procedure to remove misleading and spurious data from the dataset, in chapter 4. The filtering process is an essential step prior to the analysis of a high-frequency dataset, in that failure to recognize misleading and spurious data will affect the validity of the results derived from the analysis. Validating the adopted filtering procedure, we confirmed a clean transaction dataset. We have shown the behaviour and effects of both the original and filtered datasets in the exhibition of the intraday seasonality of the trade numbers in FX market which confirms the impact of the filtering process on the validity of the analysis of high-frequency datasets.

In chapter 5, we analysed and studied the dataset. Our work confirms established stylized facts of seasonality and correlation behaviour in the literature [63, 117] but also goes beyond those as we have discovered four new scaling laws and established six quantitative relationships amongst them, holding across EUR/USD and EUR/CHF transactions. Given a fixed threshold (Δx), the observed four new scaling laws state that the average (a) trade numbers, (b) trade volumes, numbers of (c) opening and (d) closing positions observed during an event of size Δx is scale-invariant to the size of this threshold (Δx). The established stylized facts of the trading activity in high-frequency FX markets can offer insights into the market workings and traders’ behaviour but also serve as a benchmark for validating agent-based models of FX markets.

In chapter 6, we have constructed an ABFXM which simulates the intraday trading activity at the level of a FX market-maker market. The ABFXM is able to reproduce the stylized facts of the trading activity as exhibited in the real FX market. This is confirmed by the statistical analysis. Our study uses the historical dataset provided by OANDA to anchor the results of the simulation. The ABFXM has a number of distinguishing features including: modelling heterogeneity in different forms; asynchronous trading-time windows, the generation of limit orders and an approach for determining an agent’s order size. The agents have been modelled as simple zero-intelligence directional-change event trading (ZI-DCT0) agents. The ZI-DCT0 agents commit themselves to a fixed threshold to detect periodic fixed patterns in the price time series. The individual agents are characterised by different levels of wealth, different profit objectives and risk appetites and initial activation conditions.

Chapter 7 presents a systematic experimental examination by varying a number of elements of the ABFXM. Such experimentation aimed to evaluate the effects of the different elements on reproducing the stylized facts observed in the empirical data. This allowed us to identify the set of essential elements that should be present in an ABM in order to reproduce the stylized facts of the trading activity in the high-frequency FX market to a satisfactory extent. Our study suggests that among the key elements that affect the emergence of stylized facts are the number of agents in the market and heterogeneity in the agents’ strategies which in our model takes a number of forms: varying profit objectives, risk appetites and wealth distribution. The generation of limit orders also seem to play an important role as this provides another dimension to the agent’s trading strategy coupled with orders of varying size. The mixture of contrarian and trend-following ZI-DCT0 agents in the market also seem to have an impact in the emergence of stylized facts. We have been able to study extensively the effect of each of the constituent elements of the market on the stylized facts through anchoring the simulation results by using a historical transactions dataset. The
use of this dataset enables to run multiple simulation runs and draw comparisons and conclusions for each market setting against the real data but also by comparing different market settings.

Chapter 8 can be considered as an extension of chapter 7. In this chapter we discussed the design issue of the type and structure of the agents’ trading strategies in an ABFXM. We explored the effects of three alternative approaches to the design of the agents’ trading strategies: a variation of the zero-intelligence with a constraint (ZI-CV) strategy; the zero-intelligence directional-change event (ZI-DCT0) strategy; and the genetic programming-based (GP) strategy. A series of experiments were conducted on the ABFXM which populated with these three agent-based models and the results were compared against a high-frequency dataset from the FX market. Understanding the market workings through stylized facts is fundamental for developing more effective decision support systems. The results of this study suggest that the ZI-DCT0 strategy is particularly suitable for approximating the stylized facts of the FX market activity and in comparison with the other strategies also has achieved better results in terms of Return on Investment (ROI). Hence, we could suppose that the observed properties of the trading activity in the FX market could be the result of introducing a threshold which triggers the agents to respond to fixed periodic patterns in the price time series. As such, our study also suggests that being able to recognise patterns in the time series such as DC and OS events may be key to providing effective decision support in the FX markets. The simple learning mechanism employed by the ZI-DCT0 is clearly more effective than the GP strategy which uses a series of technical indicators and fundamental analysis. Although, we cannot draw more generic conclusions about the use of other learning strategies in the FX market, our results provide evidence that a complex learning strategy may not be necessary.

9.2 Contributions

The presented work in this thesis is contributing to the area of ABMs. In this thesis, we have made the following major contributions:

- We have used an extensive high-frequency FX transactions dataset for the stylized facts study. In addition, the ABFXM uses a high-frequency historical prices dataset which enables more comprehensive experiments to be run.

- We have established a number of stylized facts that characterise the trading activity in the high-frequency FX market which can serve as a benchmark for validating agent-based FX markets. As part of the stylized facts analysis we uncovered four new scaling laws and six quantitative relationships among them holding across the FX market transactions data.

- We have constructed an ABFXM able to approximate the stylized facts of the trading activity as exhibited in the corresponding real FX markets to a satisfactory extent as demonstrated by the statistical analysis. Our aim was to construct an ABFXM that on the one hand would be able to exhibit the discovered stylized facts, but on the other, would not be overly complex so that it could prevent us from clearly studying and analyzing its behaviour. To the best of our knowledge, this is the first work modelling the trading activity in the high-frequency FX market.

- We have identified a set of essential elements that characterise the FX market and affect the emergence of the stylized facts of the trading activity in this market. To the best of our knowledge, the thesis
presents the first study where a search for the essential elements under which the stylized facts of the trading activity in the high-frequency FX market emerge as a consequence in an ABM.

- We have examined three different approaches for the design of the agents’ trading strategies in an ABFXM. The aim is to show the effect of the agents’ trading strategies on approximating the stylized facts and understanding the trading in the FX market. To our knowledge, this is the first study which experiments with different strategies on the FX market, studies and analyses the ensuing behaviour.

The major contributions we have made in this thesis are supported by the following contributions:

- We have measured the length of the price-curve coastline, which represents the profit potential, under physical time (fixed time intervals) and intrinsic time (directional-change events). The measurement shows a long coastline of price changes defined by intrinsic time. We have also measured the total error of the length of the price curve coastline under both physical and intrinsic time. The results confirmed that studying the price time series using intrinsic time gives a more advanced description of price changes than does using physical time with fixed time intervals.

- We performed a customized filtering procedure to eliminate misleading and spurious data from the high-frequency dataset of individual traders’ historical transactions on the OANDA FX trading platform.

- We have modelled a simple zero-intelligence directional-change event trading (ZI-DCT0) agents. This is different from other works in the literature [5–7, 21, 42, 46, 48, 49, 52, 56, 64, 83, 95, 100, 114, 128, 138, 146, 149, 150, 153, 158, 159, 170, 172, 215, 232, 238] as the ZI-DCT0 agents avoids the complexity of intelligent strategic behaviour and also the vagueness of zero-intelligence strategy in which agents trade randomly subject to budget constraint. We show that the stylized facts of real markets can be reproduced by ZI-DCT0 agents, subject to budget constraints. We believe that this is the first such work that is able to demonstrate this.

- The modelling of heterogeneity in different forms. Heterogeneity is inherent in real markets, so in creating ABMs this is an important characteristic that needs to be modelled. Heterogeneity in our ABM is modelled in the agents’ initial wealth, leverage ratio used by the agents, their trading strategies, their profit objectives, their risk appetites, and their trading windows which represent geographical distribution. Whereas there are other works that have modelled heterogeneity such as [5–7, 21, 46, 49, 52, 64, 83, 95, 114, 138, 146, 149, 150, 153, 158, 159, 170, 172, 215, 232, 238], these do so in a limited way or through a small number of elements. No other work in the literature has used as many and as varying elements to model heterogeneity as we have.

- We have modelled asynchronous trading in our ABFXM as present in real markets. To this end, we have considered four important factors: the agents’ activation time in the market, the notion of market business hours, holidays and the introduction of a threshold to trigger the agents’ activities. Again this is in contrast with what has been done in the literature to date where a number of ABMs entail continuous-time trading which means that at each time of the market each agent updates their beliefs and as a result places an order or holds [120, 172]. Employing continuous-time trading in an ABM results in a rise in the computational cost since at every time in the market each agent has to perform some trading computation. Hence, the computational cost has to be considered in
the design of an ABM. An alternative approach is proposed by the Genoa artificial stock market [188] where the determination of the agents who will be active in the next time step in the market is drawn randomly. Nevertheless, such randomisation is not sufficient considering that it might introduce ambiguity regarding the arrival time of the order.

- The construction of a new approach for determining an agent’s order size which is based on the agent’s available margin and drawing randomly within a defined range. The advantage of this new approach is that it provides a further source of heterogeneity in the agents’ trading activities and hence the market. This is unlike other works in the literature where the agent’s order size is (a) proportional to its wealth [120]; (b) a fraction of its cash, based on a constant trading proportion parameter [137, 171, 172, 188]. These two approaches lack heterogeneity in terms of the amount of an agent’s investments during the market run. In addition, the first approach results in inducing a high trading risk seeing that an agent invests the full cash it holds in a single order. Similarly, in the second approach, a high value of the trading proportion parameter also results in high trading risk for the agent. High trading risk sequentially causes cascading margin calls in the market, which persuade a price drop in the market and accordingly affect the agent’s performance.

- We have studied the impact of changing the different elements of the ABFXM on the market behaviour and their effect on reproducing the stylized facts observed in the empirical data. Such a study is the core step towards achieving the thesis aim which is identifying a set of essential elements under which the stylized facts of the trading activity in the FX market are exhibited in an ABM.

9.3 Future Work

This thesis offers the first agent-based model of the trading activity in the high-frequency FX market. Despite the fact that the thesis has achieved its intended aim and objectives, further work can extend this study and provide further insights into the workings of the high-frequency FX market:

- Although we have established a set of stylized facts from the high-frequency transactions dataset that was made available to this study by OANDA, the dataset is very rich in information and it would be worth extending its study. In particular, further analysis could establish more stylized facts regarding the FX market trading activity and traders’ portfolios. Identifying more stylized facts facilitates and improves our understanding of FX market behaviour and, most importantly, allows us to identify the forces that drive the traders’ behaviour in such markets. Having more stylized facts would also enable us to validate the ABFXM further but also conduct further experiments to investigate their origins.

- As we have established that the developed ABFXM is able to approximate the FX market stylized facts when fed with real historical prices data, as part of further work, this feed can be removed so that the market-maker can generate artificial prices. Market-makers in the FX market generate prices by observing the demand and supply in the market, historical information, information about current political and economic events and other factors. Hence, studying price formation through the market-maker component of the ABFXM could further our understanding of the FX market workings and would also enable the study of the characteristics of the price time series generated. In addition, more than one market maker could be modelled to enable the study of such competition in the market and
the impact on the price time series. There are some interesting studies already being done in the subject of modelling the competition between market-makers [35, 133, 134, 177].

- In the present work and to facilitate the analysis, the ABFXM only includes one traded currency pair. Further work can explore including more than one traded assets in the market and as a result more complex strategies for the trading agents.

- Although the ABFXM allows margin trading (use of leverage), we have not examined and studied the impact of leverage on the emergence of the stylized facts either on the traders’ performance or the results of cascading margin calls. Such a study would require a series of controlled experiments where the agents’ wealth and the desired order size must be considered.

There are several noteworthy avenues for future research that the work presented in this thesis can contribute to, including the following:

- Establish a foundation for modelling traders’ behaviour from the microscopic analysis of the individual traders’ transactions in the FX market. The statistical results from the microscopic analysis could provide a foundation of useful tools for predicting price movements in the market in order to identify investment arbitrage opportunities.

- Define the individual trader’s adopted trading strategies through observing and analyzing the high-frequency dataset of OANDA individual traders’ historical transactions. The aim is to assess the trading strategies’ performance by identifying and evaluating the strategies adopted. Accordingly, one could assess and classify the trading strategies that would lead to success or failure.

- Study the interaction between different types of trading strategies, such as trading strategy based on directional-change event approach, Zero-Intelligence Plus (ZIP) [55] and Adaptive Aggressiveness (AA) [228]. The aim is evaluating different adopted strategies by assessing the traders’ investment performance in the market. This in turn could help us answer a number of questions which have arisen such as: which adopted trading strategy leads to success or failure under different circumstances? Which trading strategies are most efficient? Going even further, more work could be done in observing the results of the interactions between different trading strategies. Such observations, on one hand, can be used as feedback to change the models of interaction, and on the other hand can provide exploration of some traders’ behavioural phenomena such as herding behaviour. ABMs enable us to study and test scientifically different trading strategies.

- Compare different market mechanisms for the high-frequency FX market. Such a comparison study helps in answering a variety of questions such as: what are the implications of the market mechanism in the price formation? Does the setting of the market mechanism attract more trading activity; increase price volatility; increase the likelihood of market collapse? Furthermore, such a study can potentially help to design and evaluate new market mechanisms. Obviously, it would be unimaginable to launch new market rules before analyzing and studying their impact thoroughly.

- Examine the effects of the agents’ type and structure in the appearance of the stylized facts of price returns and order-flow in an ABM. The results will be significant in providing comprehensive details of the effects of the agents’ strategic behaviour on the emergence of the market stylized facts in an ABM.
• In response to the financial crises, the constructed ABFXM can be used as an experimental laboratory for exploring and identify conditions as a result of which collapses occur in the market. Simulations have the potential to answer essential questions such as: under what conditions does price collapse occur? Can we identify early signs of market crisis? How can the market rules be improved to avoid excessive price collapses? A mechanism for forecasting financial crises must be developed, along with a means by which we can analyse patterns with regard to what has happened prior to the crisis. An early warning system for the financial market can be a solution to providing early indications of a financial crisis to prevent enormous losses toward improvement of the market efficiency.

• The directional-change event approach opens doors to several avenues of future research into financial markets. One promising research direction is to use the directional-change event approach in studying volatility and measuring trading risk in the market. Going further, the directional-change event approach can be of significant use in building forecasting models regarding the behaviour of prices in the market.

We aim to explore some of these avenues in our future research.
Bibliography

[140] LeBaron, B. (2002), Building the Santa Fe artificial stock market, *Tech. rep.*, Brandeis University. 16, 20, 21, 22, 25, 71, 72, 102, 104, 124

BIBLIOGRAPHY

[214] Tesfatsion, L. (2002), Agent-based computational economics: growing economies from the bottom up, Artificial Life, 8, 55–82. 2, 15

