ONSET AND PHYSIOLOGY OF LABOR

Dr. Hana Alzamil
Parturition

- **Definition**
 - Uterine contractions that lead to expulsion of the fetus to extrauterine environment
 - Towards the end of pregnancy the uterus become progressively more excitable and develops strong rhythmic contractions that lead to expulsion of the fetus.
Parturition

- Uterus is spontaneously active.
- Spontaneous depolarization of pacemaker cells.
- Gap junctions spread depolarization
- Exact trigger is unknown
 - Hormonal changes
 - Mechanical changes
Hormonal changes

- Estrogen & Progesterone
 - Progesterone inhibit uterine contractility
 - Estrogen stimulate uterine contractility
- From 7th month till term
 - Progesterone secretion remain constant
 - Estrogen secretion continuously increase
 - Increase estrogen/progesterone ratio
Hormonal changes

- **Progesteron**
 - ▼ GAP junctions
 - ▼ Oxytocin receptor
 - ▼ prostaglandins.
 - ▲ resting mem. Potential

- **Estrogen**
 - ▲ GAP junctions with onset of labour.
 - ▲ Oxytocin receptors.
 - ▲ Prostaglandins
Hormonal changes

- **Oxytocin**
 - Dramatic ▲ of oxytocin receptors (200 folds)
 - gradual transition from passive relaxed to active excitatory muscle (↑responsiveness).

- Increase in Oxytocin secretion at labor
- Oxytocin increase uterine contractions by
 - Directly on its receptors
 - Indirectly by stimulating prostaglandin production
Hormonal changes

- **Prostaglandins**
 - Central role in initiation & progression of human labour
 - Locally produced (intrauterine)
 - Oxytocin and cytokines stimulate its production
 - Prostaglandin stimulate uterine contractions by:
 - **Direct effect:**
 - Through their own receptors
 - Upregulation of myometrial gap junctions
 - **Indirect effect:**
 - Upregulation of oxytocin receptors
Parturition

Diagram showing the hormonal interactions involved in parturition:

- **Fetus**: Hypothalamus (CRH), Anterior pituitary (ACTH), Adrenal gland (DHEAS, Cortisol), Placental CRH.
- **Placenta**: Estradiol-17β, Estriol, Prostaglandin E₂, Prostaglandin F₂α.
- **Mother**: Hypothalamus (Oxytocin), Posterior pituitary (Oxytocin), Adrenal gland.

Key points:
1. Increased receptors for oxytocin and prostaglandins.
2. Increased gap junctions in myometrium.

Labor induction mechanisms:
- Positive feedback loop involving CRH and oxytocin.
- Prostaglandin E₂ and F₂α regulate uterine contractions.
Mechanical changes

- **Stretch of the uterine muscle**
 - Increases contractility
 - Fetal movements
 - Multiple pregnancy

- **Stretch of the cervix**
 - Increases contractility (reflex)
 - Membrane sweeping & rupture
 - Fetal head
 - Positive feedback mechanism
Positive feedback mechanism

- Contraction of uterus wall force baby's head or body into the cervix, thus increasing.
- Stretching of cervix
- Receptors: Stretch-sensitive nerve cells in cervix send input (nerve impulses) to the control center.
- Control center: Brain interprets input and releases oxytocin.
- Oxytocin
- Effectors: Muscles in wall of uterus contract more forcefully, resulting in more stretching of cervix.
- Baby's body stretches cervix more

Positive feedback: Increased stretching of cervix causes release of more oxytocin, which results in more stretching of cervix.
Phases of parturition

- Phase 0
 - Pregnancy: uterus is relaxed (quiescent)

- Phase 1
 - Activation

- Phase 2
 - Stimulation: stage 1 & stage 2

- Phase 3 = stage 3
 - Delivery of the placenta and uterine involution
Phases of parturition

- Phase 0 (pregnancy)
 - Increase in cAMP level
 - Increase in production of
 - Prostacyclin (PGI$_2$) cause uterine relaxation
 - Nitric oxide (NO) cause uterine relaxation

Adapted from Smith, 2007
Phases of parturition

- **Phase 1 (activation)**
 - Occurs in third trimester
 - Promote a switch from quiescent to active uterus
 - Increase excitability & responsiveness to stimulators by
 - Increase expression of gap junctions
 - Increase G protein-coupled receptors
 - Oxytocin receptors
 - Increase PGF receptors
Phases of parturition

- **Phase 2 (stimulation)**
 - Occurs in last 2-3 gestational weeks
 - Increase in synthesis of
 - Cytokines
 - Prostaglandins
 - Oxytocin
 - Includes 2 stages:
 - Stage 1
 - Stage 2
Phases of parturition

- **Phase 3 (uterine involution)**
 - Pulsatile release of oxytocin
 - Delivery of the placenta
 - Involution of the uterus
 - Occurs in 4-5 weeks after delivery
 - Lactation helps in complete involution
Mechanism of parturition

- Contractions start at the fundus and spread to the lower segment
- The intensity of contractions is strong at the fundus but weak at the lower segment
- In early stages 1 contraction/30 minuets
- As labor progresses 1 contraction/1-3 minutes
- Abdominal wall muscles contract
- Rhythmical contractions allow blood flow
Onset of labor

- During pregnancy
 - Periodic episodes of weak and slow rhythmical uterine contractions (Braxton Hicks) 2nd trimester

- Towards end of pregnancy
 - Uterine contractions become progressively stronger
 - Suddenly uterine contractions become very strong leading to:
 - cervical effacement and dilatation
Cervical effacement and dilatation
Stages of labor

- **Stage 1:**
 - Commences with the onset of labour and terminates when the cervix has reached full dilatation and membranes ruptured (lasts 8-24 hours).

- **Stage 2:**
 - Stage of expulsion begins at full cervical dilatation and ends with expulsion of the fetus (lasts 1-30 minutes).

- **Stage 3:**
 - Begins with the delivery of the child and ends with the expulsion of the placenta.
Stages of labor

1. Dilation stage
2. Expulsion stage
3. Placental stage
New arrival