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Basic Concepts of probability

« Envision an experiment for which the result is
unknown. The collection of all possible outcomes is
called the sample space. A set of outcomes, or

subset of the sample space,

IS called an event.

« A probability space is a three-tuple (2,5, P) where Q

IS a sample space, 3 is a col
sample space and P is a pro
number to each event in 3.
Pr must satisfy:

—P(Q) =1

ection of events from the
pability law that assigns a

~or any events A and B,

— P(A) >0, P(A®) =1 -Pr(A)
— For any countable mutually disjoint events
A eQi=12..,0 Then. P(DAi )zip(Ai 4
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Basic Concepts

3 IS a —algebra which is defined as : a nonempty collection of
subsets of Q2 such that the following hold:

« 1.Q1IsiIn 3.
« 2.If A e I thensoisthe complement A® € 3

 3.Ifis asequence of elements A; € 3,1=1..,n thenthe
union of these elementsisin 3 i.e. 'UAi c
=1

3

« One can construct many sigma-algebra such as

3={¢.}


http://mathworld.wolfram.com/Subset.html
http://mathworld.wolfram.com/Sequence.html
http://mathworld.wolfram.com/Union.html
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~ Distribution and densityfunctions
 |f X IS acontinuous rv then

Pr(X <x)=F(x)isthedistribution of X.
and the density Is defined by

f (X) :d—F(x),if it exists.
dx

Thus the density can be of the form

F(x)=[f (u)du

=P(-0o< X <X)
=P (X <X)
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Basic probability and Distributions

Topics in Probability:

= What is arandom variable?

= Discrete vs. Continuous

* Density (mass) function

= Probability distribution function

= Forms of distributions

= Joint distributions

= Conditional distributions

= Functions of random variables

= Moments of random variables

* Transforms and generating functions
= Family or sequence of random variables
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What Is a Random Variable

« A random variable, usually written asX, is a variable whose
possible values are numerical assigned to the outcomes of a
random phenomenon or experiment.

There are two types of random variables, discrete and
continuous

« Suppose that an airline mandates that all pilots must weigh
between 60 and 80 Kgm. The weight of a pilot would be an
example of a continuous variable; since a pilot weight could
take on any value between 60 and 80 Kgm.

« Suppose one flips a coin and count the number of heads. The
number of heads could be any integer value between 0 and
plus infinity. However, it could not be any number between O
and plus infinity. We could not, for example, get 2.5 heads.
Therefore, the number of heads must be a discrete variablg..
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What I1s a Random Variable?

A random variable is discrete if it has a finite or countable
Infinite number of possible outcomes that can be listed.

A random variable is continuous Iif it has an infinite number of
possible outcomes represented by an interval on the real line.

A random variable is a mixed of discrete and continuous if it
has a finite or countable infinite number of possible values
at part of its values and it has an infinite number of possible
values represented by an interval on the real line on other
parts..
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Types of Random variables!

A random variable can be:

 the number of people waiting at the entrance of the Louvre
Museum

« The number of people waiting at the barber shop

« Number of patients waiting at the outpatients clinics or in
hospital beds

* elc

10
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~ Distribution and densityfunctions
 |f X IS acontinuous rv then

Pr(X <x)=F(x)isthedistribution of X.
and the density Is defined by

f (X) :d—F(x),if it exists.
dx

Thus the density can be of the form

F(x)=[f (u)du

=P(-0o< X <X)
=P (X <X)

11
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Properties of Density and distribution Functoions

 The distribution function F(x):

It must satisfies the following conditions:
1) F(—0)=0, F(x0)=1.

11 )F (X )Is nondecreaing in X.
11 ) F(X)1s left continuous
IV)F(x)=P(X <x)

Whereas the density f(x) has to satisfy
) f (x)>0.

) jo; f (u)du =1

i)P(@a<X.b)=[ f (u)dufor anyrealaand b

12
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Functions of Random variables
« Often one is interested iIn some combinations of r.v.’s
— Sum of the first k interarrival times =time of the kth

arrival - 7 =X +..+X,
Z is called the convolution of X, ...,X,

- Minimum of service times for parallel independent
servers = time until next departure

If Z=min(X,Y), where X and Y are independent then
F, (x)=P(Z <x)

=P(min[X,Y }<x)

=1-P(min[X Y }>x)

“1-P(X 2x andY >x) PX<X)=P(Y <x)P(Z<Xx)
=1-P(X 2x)P(Y =x),if independents
—1-[1-F, ()= Fy ()]

13
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Functions of Random variables

- Maximum of service times for parallel servers =time until
next departure

If Z=max(X,Y) then

F, (x)=P(Z <x)
=P(max[X )Y }<x)
=P(X <xandY <x)
=P(X <x)P(Y <x),if independent
=F, (x)F, (x)

14
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Functions of Random variables

- Maximum of service times for parallel servers =time
until next departure

* If one has nindependent rv’s X, .., X then

If Z =Min{X,,..,X }then
F, (x)=P(Z <x)

=P(min{X,,..,.X ,}<x)
=1-P(X,2>x,.,X }>x)
=1-P(min{X .., X }=x)
=1-P(X,2x)..P(X, 2x),if independents
=1 [1- Fy (O] [ Fy ()]

15
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Funtions of Random variables

- maximum of service times for parallel servers =time
until next departure

* If one has nindependentrv’s X, .., X then
* If Z =max{X,,..,X }then

F,(x)=P(Z <x)
(max{Xl, G X 3<x)
=P(Xy<x,., X, <x)
=P (X, <x) P(X, <x),if independent
=Fy ()] Fy ((X)]

16
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Some Special Distributions
Distribution arise frequently in this course
- Discrete
— Bernoulli - Binomial
— Geometric - Poisson
— Discrete uniform

— Continuous
- Uniform - Exponential
- Gamma - Normal, log normal

- Weibull -

17
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Bernoulli Distribution

“Single coin flip” p = Pr(success)

N = 1 if success, 0 otherwise

Pr(N:n):<1pip’ Ezl
E(N)=p
Var(N)=p(1-p)

Cv: = 1 p

=(1 p + pe’) y
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Binomial Distribution

“n independent coin flips” p = Pr(success)
N = # of successes

Pr(N = k):@ pK(1-p)"" k=

0,1,...

, N

19
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Bernoulli Distribution

“Single coin flip” p = Pr(success)
N = 1 if success, 0 otherwise

D, n=1
Pr(N =n)=
r(N =n) {—p, o
E(N)=p
Var(N)=p(1— p)
1—
Cv; = pp

20
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Poisson Distribution

“‘Occurrence of rare events” A = average rate of
occurrence per period;

N = # of events in an arbitrary period

K~—A
Pr(N =|<)=’1keI k=012,..

E(N)=A4
Var(N) = A
Cv: =1/A4

21



z-Transform for Geometric Distribution

Given P.=1-p)™p,n=1,2, ..., find

G(z)=>» Pz"

n=0 N

G(2)=2,,(t-p)" p" =pz} ((1-p)2)" =Pz}, ((1-p)2)

Then, 0z
_1—(1— p)z

: . : 1
, using geometric series anoa” for |a| <1

dG(z)
dz

—a

P 1
E(N)= il
() 0

z=1 ) (1_ P+ pZ)2

_2(- p),so E(NZ): 2—2p and

z=1

Var(N)=E(N?)—(E(N)) === 22



Discrete Uniform Distribution
b

2

E (X )=j§X [biajdx :[biajyz

_b%-a®_(-a)b+a)_b+a
2(b —a) 2(b —a) 2

a

3
2\ b, 2( 1 (1 Yy
E(Y )—ay (b—ajdy_(b—aj 3
b3-a3 p-a)@?+b?+ab)
- 3(b-a) 3(b —a)

_(@%+b?+ab)
3




Discrete Uniform Distribution

. a2
2 2 (a“+h“+ab) |b+a
V()=E[Y 2 |E{ )= - _
v ( ) £ 3 |2
_4(a’+b2+ab)-3p° a2 +2ab) a®+h®-2eb_(b-a)3
12 12 12

_ (b—a)z_b—aN )
0—\/ 0 —\/1_2~O.2887(b a)
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Geometric Distribution

.the geometric distribution caan have the
followmg for{n

_x)

:(1— p)x _1 y X :1, 2,...

P, =P (X sx)X

25



Continuous distributions
Uniform Distribution

X Is equally likely to fall anywhere within interval (a,b)

f (x):bi, a<x <b

26



The pdf for the exponential is

fie—yle
(o

FQy)=4q

o S

O

-

Other form iIs
f (x)=1e "

y

els

y >0

>0

"“elsewhere

27



Exponential distribution
The distribution for the exponential is

F(y)=[J %_t/gdt

1 Geiyﬁe —t/0Y
1/ O\ O o

28



Exponential distribution

The Random variable X is said to have memory less
property or forgetfulness property if

P(X>s+t/ X >2s5)=P(X >1)

In other word

R(s+1) = R(S)R(t) where R(.)=1-F()

Theorem 1. A continuous R.V. X is exponentially distributed if
and only if for s,t>0,

P{X >s+t| X >t}=P{X >s} (1)

or equivalently,

P{X >s+1}=P{X > s}P{X >t}.

29



Memoryless property -I

The Random variable X is said to have memoryless
property or forgetfulness property if

P(X>s+t/ X >2s5)=P(X >1)

In other word

R(s+1) = R(S)R(t) where R(.)=1-F()

Theorem 1. A continuous R.V. X is exponentially distributed if
and only if for s,t>0,

P{X >s+t| X >t}=P{X >s} (1)

or equivalently,

P{X >s+1}=P{X > s}P{X >t}.

30



Memoryless property -Il

A random variable with this property is said to be
memorylessh

Show that the Geometric RV’s enjoy the memoryless
property.is property.

31



Gamma Distribution

X IS nonnegative, by varying parameter b get a variety of
shapes

/’thb_le_ﬂx
"= )

E(X)=>

Var(X)=—

2

, x>0, where T'(b) = jooo x"e~*dx forb >0

Cvi ==
When b is an integer, k say , this is called the Erlang-k
distribution, andrl’(k) = (k —1)!Erlang-1 is same as
exponential.

32



Normal Distribution
X follows a “bell-shaped” density function

1 o

fx(x):a\/ge( et < x< oo
E(X):y
Var(X)=0"

From the central limit theorem, the distribution of the
sum of independent and identically distributed
random variables approaches a normal distribution
as the number of summed random variables goes
to Infinity.

33



Discrete Distributions

FORMS OF some PROBABILITY
DISTRIBUTIONS

Moment-
Generating
Distribuwtion Probability Fundion Mean Variance Fenction
Binomial Py = (%) p¥ (1 — py"%; np api(l — p) [pe’ 4+ (1 — p)1”
y=0,1,....m
. 1 1 —
Geometric Py = pil — p,‘l-"_J; — ,_,P
P ol
= 1.2,...

Hypergeometric

Foisson

MNegative binomial

pe’

1 — il — p)et

piry — (5 }’{::':_’.}_‘ r
' ()

,?{LM} (f‘-.-’—r)(f‘v’—n
N M N N —1
=, 1. comif e = o,
y=0,1,....rifn = r
¥ e .
POy = —F— ! A expli(e’ — 1)]
v=0,1,2,...
] L r
P = (721 )P (1L — Py —
v=ur.r+1

pe’ "
P [l—';l—.ﬁlf‘]



FORMS OF PROBABILITY
DISTRIBUTIONS

Momeni-
Gemnerating
Distribution Probability Function Meon Variamnce Fenction
) i 1 &+ &, (&, — EL}E e 25
Liniform Fiwy = Eag— 168y =¥y =6, > 12 m
Mormmal vy = ! = I: ( ) i ,L.:]E:I L o2 exp frer 4+ For?
T o2 P e ) 2
— KD wol W sl D
Exponential Fiv)y = —e ¥F. g=0 f=; B2 (1 — gy
O o W = OxD
Gaimma Fiv) = ! yr—le—wiB, o3 o3 (1 — gy
I =
=~
(20— L w2 -
Chi-sqguare (v) = —— : W 2w (1—2n—% =
“ ’ 2% (w2
B =
Cice + 81 1 1 e
Beta V)= | ————— | ¥* 1 — 8L
F¥) rfmrf,ﬁ]]' ‘ !

@5
e = 5
e e |

(e 4+ F1 (e + B + 1)

does not exist inm

closed form



EXCERCISES-1

2.1  Suppose a family contains two children of different ages, and we are interested in the gender
of these children. Let F denote that a child is female and M that the child is male and let a
pair such as FM denote that the older child is female and the younger is male. There are four
points in the set § of possible observations:

S={FF, FM, MF, MM}.

Let A denote the subset of possibilities containing no males; B, the subset containing two
males; and C, the subset containing at least one male. List the elements of A, B, C, AN B,
AUB,ANC,AUC,BNC,BUC,and CNB.

2.2 Suppose that A and B are two events. Write expressions involving unions, intersections, and
complements that describe the following:

Both events occur.
At least one occurs.
Meither occurs.

=T T = -

Exactly one occurs.

2.3 Draw Venn diagrams to verify DeMorgan’s laws. That is, for any two sets Aand B, (AU B) =
ANBand (ANB)=AUTE.



2.4

EXCERCISES-2

If A and B are two sets, draw Venn diagrams (o verify the following:

a A—(ANBYyYU{ANF).
b IfFR c Athen A = BlUJ(AMN B).

Refer to Exercise 2.4. Use the identities A = AM S and § = B U F and a distributive law to
prove that

a A=(ANByU{ANE).

b IfB C Athen A = BlU(ANMNEF).

¢ Further, show that (A4 ™ &) and (A4 HE} are mutually ex{rl_usive and therefore that A is the
union of two mutually exclusive sets, (A M B) and (A M B).

d Also show that B and (A M B) are mutually exclusive and if B < A, A is the union of two
mutually exclusive sets, & and (A B3R

From a survey of 60 students attending a university, it was found that 9 were living off campus.
36 were undergraduates, and 3 were undergraduates living off campus. Find the number of
these students who were

a undergraduates, were living off campus, or both.
b  undergraduates living on campus.

¢ graduate students living on campus.

A group of five applicants for a pair of identical jobs consists of three men and two women. The
emplover is to select two of the five applicants for the jobs. Let § denote the set of all possible
outcomes for the employver’s selection. Let A denote the subset of outcomes corresponding to
the selection of two men and 5 the subset corresponding to the selection of at least one woman.
List the outcomes in A, B. AU F. AN B.and A M F. (Denote the different men and women
by AL ML A, and W, W, respectively.)
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2.79
2.80

2.81

2.82

EXCERCISES-3

If two events, A and F. are such that P(A) = .5, P(B) = .3, and P(A N B) = .1, find the
following:

a P(A|B)

b P(B|A)
¢ P(AJAUB)

d P(AJANEB)
e P(ANEB|AUR)

Cards are dealt, one at a time, from a standard 52-card deck.

a If the first 2 cards are both spades, what is the probability that the next 3 cards are also
spades?

b If the first 3 cards are all spades, what is the probability that the next 2 cards are also
spades?

¢ If the first 4 cards are all spades, what is the probability that the next card is also a spade?

If PiA) =0, P(B) =0,and P{A) = P(A|B), show that P(F) = Pi{B|A).

Suppose that A C F and that P{A) = Oand P(F) = 0. Are A and F independent? Prove your
answer.

Suppose that A and B are mutually exclusive events, with F{A) = Oand P(B) < 1. Are A
and F independent? Prove your answer.

Suppose that A C B and that P{A) = Oand P(F) = . Show that P(F|A) = 1l and P{A|F) =
iAW P(UE).



EXCERCISES-4

3.12  Let Y be a random variable with p(v) given in the accompanying table. Find E(Y), E(1/Y),
Ei(¥?— 1), and V(¥).

y |1 2 3 4
py |4 3 2 .

3.22 A single fair die is tossed once. Let ¥ be the number facing up. Find the expected value and
variance of .

*3.29 IfY isadiscrete random variable that assigns positive probabilities to only the positive integers,
show that

E(Y) = Z P(Y = k).

i=l

3.77  If Y has a geometric distribution with success probability p, show that

P(Y = an odd integer ) = ﬁ
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3.123
3.138

3.145

3.146

3.147

3.148

3.149

EXCERCISES-5

Let ¥ denote a random variable that has a Poisson distribution with mean A = 2. Find
P(Y =4).

P(Y = 4).

P(Y = 4).

P(Y = 4|¥ = 2).

e s T o

The random variable ¥ has a Poisson distribution and is such that p(0) = p{1). What is p{2)?

Let ¥ have a Poisson distribution with mean A. Find E[Y(Y — 1)] and then use this to show
that V(YY) = A.

If ¥ has a binomial distribution with »n trials and probability of success p, show that the
moment-generating function for ¥ is

mit) = (pe’ +q)", where g = 1 — p.
Differentiate the moment-generating function in Exercise 3.145 to find E(}Y ) and ELI"EJ. Then
find V(Y.

If ¥ has a geometric distribution with probability of success p, show that the moment-generating
function for Y is

pe'
1 —get’
Differentiate the moment-generating function in Exercise 3.147 to find E(¥) and E(¥?). Then
find V({Y¥).

mity = where g = 1 — p.

Refer to Exercise 3.145. Use the unigqueness of moment-generating functions to give the dis-
tribution of a random variable with moment-generating function m{r) = (.6 + ENES



EXCERCISES-6

3.158 If ¥ is a random wvariable with moment-generating function m(f) and if W is given by
W = a¥ + b, show that the moment-generating function of W is e®mar).

3.159 Use the result in Exercise 3.158 to prove that, if W = a¥ + b, then E{W) = aE(¥) + b and
VIiW)=aVi¥).
4.11 Suppose that ¥ possesses the density function
cy, O0=y=2,
ry = | 0, elsewhere.
Find the value of ¢ that makes f({v) a probability density function.
Find Fiwv).
CGraph fiv) and F(v).
Use Fiv) tofind P(1 = ¥ = 2).
Use f(v) and geometry to find P{l = ¥ = 2).

m s T oW

4.29  The temperature ¥ at which a thermostatically controlled switch turns on has probability density
function given by
1/2, 59 =y =061,
flyy=

0, elsewhere.
Find E(Y)and V{Y).

4.41 A random variable ¥ has a uniform distribution over the interval (8, #;). Derive the variance
of ¥.



EXCERCISES-7

A random variable ¥ is said to have a gamma distribution with parameters
o = 0 and g = 0 if and only if the density function of Y is

}:.E:'—J. E_"l".l'rﬁ
fiv) = Bl ()

0, elsewhere,

0 =<1v < 00,

where

20
i) = f v le™¥ dy.
i

4.81 a Ife = 0, I(a)is defined by T(e) = [ ¥ ‘e~ dy, show that (1) = 1.
*bh If @ = 1, integrate by parts to prove that Tia) = (@ — D) — 1).

4.82 Use the results obtained in Exercise 4.81 to prove that if n is a positive integer, then I'in) =
in — 1) What are the numerical values of I'(2), I'(d), and '(7)?

42
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Reliability Theory of Binary systems and

components -|
System

— a collection of interacting or interdependent

components, organized to provide a function or
functions

Components
— can be unique
— can be redundant

Types of systems and components
- Engineering
- Biological 45
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Reliability of systems and components -l

Reliability

— the ability of a system or component to perform its
required functions under stated conditions for a
specified period of time

System reliability is a function of:

—1
—1
—1

ne reliability of the components
ne interdependence of the components

ne topology of the components

46
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Binary systems and components -|

Consider a system comprised of n components, where
each component is either functioning or has failed.
Define

1 ifthei" component isfunctioning
X =1

0, if thei™ component has failed

.

The vector x = {x,, ..., X} Is called the state vector.
Or
X = (X, X,y X )

47
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Reliability Theory of Binary systems and
components -|

Similarly one can define the binary function

to represent the state of the system

Assume that whether the system as a whole Is
functioning is completely determined by the state
vector x. Define

1, if the system isfunctioning when the state vector Is X
0, If the system has failed when the state vector is x

¢(X)={

The function ¢(x) Is called the structure function of the
system. 48
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Reliability Theory of Binary systems and
components -|
X. Is a binary variable

Binary means it takes either of two values, here O
and 1.
? is a binary function

Binary means it takes either of two values, here O
and 1.

It is clear that ¢ is a function of all the
components of the system.

49
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Structural reliability of Binary Systems

State vector; Is the vector that represents the state of
all components X =(X,,...,X_) in the system.

*The state of the system is a function of the states of
the components as

P(X)=d(X ..., X )
Definition: ¢ Is called the structure function
of the system..

Since the knowledge of the system gives us
knowledge of the structure function ¢ and
vice-versa

We sometimes refer to this function by the
structure ¢ of the system.

50



““Reliability Theory of Binary systems and
components -l

Definition: the number of the components in the system
are known by the order of the system.

Thus a system of n components is called a system of
order n.

Block or Venn diagrams can be used to visualize
systems of components.

51



| ypes of systems
1. Series systems

* The block diagram corresponding to a series system
IS

* The block diagram represents the logical relationship
of the operation of the components and the system, it
does not represent their physical layout.

 The idea Is that Iif a path can be traced from left to
right through the system, then the system operates.

52



The Series Structure

A series system functions if and only if all of its n
components are functioning:

Its structure function Is given by
H(X) =min{X,,....x }

=X, X ,...X

=1

n

53



The Parallel Structure

2. Parallel system

A parallel system functions if and only if at least one of
Its n components iss functioning:

Its structure function is given by

54
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The Parallel Structure

Notation: for any binary {0,1) variable

n N

1] x =1-]] @-x,)

|
1=1 1=1

For a system of order 2, on, we has

2

H X; =1-{1-x,){1-X,)

99
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The k-out-of-n Structure

3. A k-out-of-n system
Examples:

=Tri-Star aero plane that can function with at least two
functioning engines

= Citroen: that can move with at least three working
wheels

A k-out-of-n system: functions if and only If at least k
of its n components are functioning:

n
Its structure function is given by L if ) % 2k
=1

#(X) = - :
0, if Y x, <k.
L =1
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The k-out-of-n Structure

3. Other type of systems

‘__» - Sl

el
L :

A system of three components can be series
parallel, 2-out-of-3, or either one of the above
systems

Y



Structural reliability of Binary Systems
Note that: for k-out-of-n system one has for k=n

or equivalently,

P(x) = ]_11.“ for k = n,
. .
and for k=1

h(x) = ]_I r; = max(z,,...,z,)

i

Hence a k-out-of-n system can be expressed as

';E'{J"*]' = {II'“It}1'[l:Il"'In—IILH:'H"'”{I.-Hi'”:fn]

—

= maxi(z; rx), (B T B e (T 1)

for 1 < k < n, where every choiee of k out of the n z's appears once exadtly,
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Structural reliability of Binary Systems
The block diagram, for this system is

Note that: I) a series structure is n-out-of-n system
I1) a parallel structure is 1-out-of-n system

59



Binary Systems
Example: the structure function for a 2-out-of-3 system
| P(x) = z,.7. % 2,7, ¥ 2,7,
- :,:E:c,'-i- 2l = 25) + (1 = Zg)zg + (1 — 2))2,0y.

Note that we have replicated each component for purposes of analysis;,
physically each component appears once only.
1.5, Example. A more claborate example is a stereo hi-fi system with the

following components:

(a) FM tuner,
(1Y) Record changer.
(¢) Amplitier.
(d) Speaker A
(¢) Speaker B,
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Note that:

We consider the system functioning if we can obtain music (monaural or
sterco) through FM or records. The system diagram s illustrated in
Figure 1.1.4.

Eﬂl:'..j*.
4
I— o T
nmg alia Boeei .
‘1—4.3——5 Xq —_———
Clhranmip S asn
£
Figure 1.1.4.

H-fi system.

Thus the corresponding structure functions

P(X]) = (xlvx 2)x 3(x 4vx 5)
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Structural reliability of Binary Systems
Note that:

1.6. Definition, The tth component is irrelevant to the structure ¢ if ¢ is

constant in z;; that s, ¢(1,, x) = $(U;, x) for all (-, x).! Otherwise the ith
component is relevant to the structure,

I Notation.
{l.i, :h:]' = [Il.,,. vo g The=Ts 1, = of JTRY R IJI}"'
i, x) = (r), oo s Xm0 Ty e -0 T,
(-irx} = (x),..., Timds "+ Tidls =« = 2 T)

The irrelevant component

For example, component 2

2 is irrelevant to the structure pictured in
Figure 1.1.5.

I I‘
2 i
2 1

62
Figure 1.1.5. '

Fyamnle of irrelevant commooaneon
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The k-out-of-n Structure
Equivalently k-out-of-n:

or equivalently,

P(x) = 1_[-"51 for k = n,
. I

while

Px)=(z,---x)u(x, -5 T e u (T g T,)

= maxy(z; ) (T T Ty - (T T 7))

for1 < k < n, where every choice of k out of the n x's appears onee exactly,

To -l!u:,tra.h.. the k-out-of-n structure further, consider the special case
of the 2-out-of-3 structure, with structure function given by

P(x) = z 7. ¥ x,x, ¥ T3,

= X, 2Ty + T,75(1 — 23) + 7,(1 — T)Ty + (1 — X, Jx,zy.

Note that we have replicated each component for purposes of analysis;
physically cach component appears once only.
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The k-out-of-n Structure

Examples:
1 An airplane which is capable of functioning if and only if at least two of

its three engines are functioning 1s an example of a 2-out-of-3 system.

2. Prove the following relation for any binary

! - UI—I—H{I—I

=]

oz, =1 (1 =x2)(l - 2)
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Structural reliability of Binary Systems

3. Find the structure function for the following
diagrams

P(X) =X X, )vx, IX,. :

S— 4 |—

This can be simplified as:
d(X) =[(X. X, )vx,]X,

H1-(1-xXx,)1-x,)Ix,

= (X, X, + X, =X X X )X,

= X X, X, + X X, — XX X X

17273 4
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Remarks on Structures

4. Note that for a parallel system

5. For 2-out-of- 3 system
P(X) =1 (1= X X, ){1= X, X)L - X, X;).

6. Given the block diagram
- H -+
Then the structure function is 2 4

P(X ) =(1=(1-X)A=X,))A-1-X3)A=X,)).
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Structural reliability of Binary Systems
Additional exercises:

1. Obtain the structure functions of the following

systems:
a) a 2-out-of-4 svstems

> S

[L.F}—IT_F!
C) L 0 | sk
_l_.___'"l —{4] “ _
d) GHEH
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Binary Systems

Additional exercises

2 Draw the block diagrams for the coherent systems having structure functions
(2) 0(x) = x,x5(1 = (1 = x3)(1 = x)).
(bYd(x) = (1 = {1 = x )1 = w323 X1 = x4))xs.
(€) B(X) = XXy + X ¥y + XaXy = Lo Xydy = .n.ri.r, - _r,x:,xi # (X, 5200

3. Find the structure functions of the following
three ab and ¢ systems

Lot e [

System A System B System C
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Some Notations and Definitions

Relevant component: The | th component is
irrelevant to the structure ¢ if ¢ Is constant in xi

¢(1i 7X):¢(Oi X )
Note : P, X )=(X, 0 Xy LX g0 X, )

¢(O| X ):(Xl""’xi-l’ O'Xi+17""xn)

Pivotal decompositions
d(x) = z,b(1;, x) + (1 — m.-]uj;—{ﬂ'n x) forall x(z=1,...,n). (1.1)

rram [ | f . .

The n-Pivotal decompositions:

P(x) = Eﬂmhu — z,)' " Vigly)
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Order and Monotonicity:

A partial order is defined on the set of state vectors as
follows. Let x and y be two state vectors. We define

X<yifx<y,i=1, ..., n.

Furthermore, "

1

X <y Ifx £y and x, <y, for some I.

We assume that if x <y then ¢(x) < ¢(y). In this case we
say that the system is monotone.
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Some Notations and Definitions

Dual structure;
" 1.9. Definition. Given a structure ¢, we define its dual ¢ by
¢°(x) = 1 — ¢(1 — x),

where 1 — x = (1 — x,,..., 1 — z.).
O P (x)=1— @ —x)

Coherent systems:

A system of component is coherent If:
1. Its structure function Is increasing;
2. Each component is relevant
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Teoremson binary systems

Theorem 1: Let ¢(x) be a coherent structure of n
components. Then

min{X,,..., X, } < #(X) < max{x,..., X, k
Proof::

Theorem 2:

1.The dual of a series (parallel) system of n component
IS a parallel (series) system of n component.

2. The dual of a k-out-of — n structure is an (n-k+1) —
out-of — n structure

Proof:.
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Structural reliability of Binary Systems
Minimal Path Sets:

* A state vector x Is call a path vector if
o(x) = 1.
* Ifp(y)=0forally <x,then xisaminimal
path vector. .

 If X Is a minimal path vector, then the set A = {i:
X; = 1} Is a minimal path set.
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Structural reliability of Binary Systems
Dual Structures

Definition. Given a structure ¢, we define its dual ¢ by
¢°(x) = 1 — @1 — x),

wherel = x =(1 - x,,...,1 — z,).

Examples;

Find the dual structures of the following systems;
1) Parallel system of order n

2) Series structure of order n

3) k-out-of-n system

4) The radio system of five components
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Structural reliability of Binary Systems
Dual Structures
Definition. Given a structure ¢, we define its dual ¢ by
¢°(x) = 1 — $(1 — x),

wherel = x =(1 - x,,...,1 — z,).

Examples;

Find the dual structures of the following systems;
1) Parallel system of order n

2) Series structure of order n
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Structural reliability of Binary Systems
Dual Structures
Solution:

1. Let the structure {¢,C }represents a parallel
structure , then

¢(z@)=_ﬂ1xi =1—1_”11(1—xi)
Thus

n n

p(@-x)=]10-x,) =1-]]x,

=1 1 =1

Therfore,
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Structural reliability of Binary Systems

@ (X

Dual Structures

)=1—g(@—X

)

n

=1-[1—-]]
:ij

X, ]

This means that the dsual Is a series structure of

order n.
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Structural reliability of Binary Systems
Dual Structures

2. Let the structure  {@,C }epresents a series
structure , then

#(x) =[x,

T hus -
p@-x)=[]@—x,)
T herfore, -
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Structural reliability of Binary Systems
Dual Structures

#° =1—p@—x)=1-T[@—X,)
Ix

Thus the dual structure of a series system of order n
IS a parallel structure of order n
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Structural reliability of Binary Systems
Dual Structures

3. Let the structure{¢,C} represents a k-out-of-n
structure , then show that {¢° ,C} a (n-k+1)-out-
of-n system

| eft as an exercise
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Structural reliability of Binary Systems
Dual Structures

Exercises: Find the sual structure of the following
systems:

1) k-out-of-n system
2) The radio system of five components
3) Find the dual structure for the following systems

— = - ——
: :

4 i e -
l — L..l. I l \g-3 o
L -
— A ——1 r—
- ) —— 3
} - 4
o @}
. r—
4 2F—{s}

System B System C
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Structural reliability of Binary Systems
Minimal Path Sets

Let A, ..., A, be the minimal path sets of a
system. A system will function if and only if all the
components of at least one minimal path set are
functioning, so that
X) =max | | x:.

909 =mex[ I x
This expresses the system as a parallel
arrangement of series systems.
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Structural reliability of Binary Systems

Minimal Cut Sets
A state vector x Is call a cut vector If
¢(x) = 0.
* If¢(y)=1torally >x,then x is a minimal cut
vector.

* If x Is a minimal cut vector, then the set C = {i.
X; = 0} Is a minimal cut set.
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Structural reliability of Binary Systems
Examples

* The Series System of order n

— There are n minimal cut sets, namely, the sets
consisting of all but one component.

* The Parallel System of order n

— There I1s one minimal cut set, namely, the empty
set.

* The k-out-of-n, System
— There are - " minimal path sets, namely all of
— the sets consisting of exactly k components.
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Structural reliability of Binary Systems

Minimal cut sets

Let C,, ..., C, be the minimal cut sets of a system. A
system will not function if and only if all the components
of at least one minimal cut set are not functioning, so
that

B(X) = H miax X. .

i1 IeC

This expresses the system as a series arrangement of
parallel systems.
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Structural reliability of Binary Systems
Examble: the Bridae Svstem

-

03 f
2 5

N/

The system whose structure is shown below is called the
bridge system. Its minimal path sets are:

{1, 4}, {1, 3, 5}, {2, 5}, {2, 3, 4}.

For example, the system will work if only 1 and 4 are
working, but will not work if only 1 is working.
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Structural reliability of Binary Systems
The bridge system:-
Its structure function is given by

P(X) = Max{X;X,, X X3Xs, X, Xs, X, XX, }
== (1_ X1X4)(1_X1X3X5)(1_ X2 Xs)(l_ X2 X3X4)-

Also, one may notice that

The system whose structure is shown below is called the
bridge system. Its minimal cut sets are:

{1, 2}, {1, 3, 5}, {4, 5}, {2, 3, 4}.

For example, the system will work If 1 and 2 are not
working, but it can work if either 1 or 2 are working.
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Structural reliability of Binary Systems
The bridge system: -
Its structure function Is given by

o(X) = e, X} maxf, X, X . maxf., .}

max{x,,x,,X,}
Thus If there are p minimal path sets {Pl’PZ yror Pp}
with structure functions {/01’ Lorees pp}

and k minimal cut set {Ky Kz ey Kk}

Then one has {Kl’KZ""’Kk}
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Structural reliability of Binary Systems
Here again the bridge system of five components

[
~P

—

1

/4

2

Here for any path set one has

pilx) = I-l L

ic P

s

—pA

Hence one may write the corresponding structure

function as

lll

-
px) = || o0 =1 = 110 = pex,
4= j= 1
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Also for any cut set one has

eix) = || =,

1eh

Hence one may write the corresponding structure
function as

[

P{x) = 1—[ K (%),

i=1
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Structural reliability of Binary Systems
Representation of the bridge system:
a) Minimal path representation

) i o
| 7 3 s
!-—-L‘l- T A M Bl TLH
AJ l 4 4 e ol Lol T
' | iy Ny
__;I} _E'__ s o T IS

b) Minimal cut representation

F—C—1 , o —
1 | a | 1 | | 2 | Ky T 1 a, &l
| i i | | '- — ) L? 1 [1 J.‘_l11 Alﬂ]
| ‘ | | 3| T L B TR I B T
_ L_ - | B i_‘:._“ kg 1 11 x0T = 00
4

. 5

Ln

Ayl
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Structural reliability of Binary Systems
These representations can be written as:

$(x) = max p,x) = max min x,
< i< p Ilsi=p ic Py

¢(x) = min Ky x) = min max x,.
1< =<Kk Ik e K

Now let t be the life length of the| i components
where i=1, 2, ..., n, then the life of the system is

T¢ (t) hence one has

and minimal cut sets &'\, ..., A, then

max min {; = 1,(t) = min max{; 03
1<jzspiel l<jzk ie K,



Structural reliability of Binary Systems

Example :What are the minimal path sets and
the minimal cut sets for the following four
systems?

4

L'a]} {—{j

4

Ui

7,,_7

System A System B System C
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Structural reliability of Binary Systems
Components relevance aand Coherent structures

Definition: the component | is irrelevant to the
structure if is constantin X, or

Otherwise the component is relevant..

Remark: If component i is relevant then one can find
at least one vector of states such that: (.i : )

such that
¢(0;, X)) # ¢(1, ,X])

or in other word
#(0,,x) <g(L, ,X)
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Coherent structures

Definition: A system of components {¢,C } is called
coherent If

) Its structure function s Increasing and
Il) every component is relevant.

Exercises: Show that every components of the following
systems is relevant

1) Series system of order n.

2) Parallel system of order n. iii) 2-out-of n system

3) oG ;*‘T’—]_ w
= ~’:{E}_}1 | e

13}

Systerm B Syssemn C

Systemm A
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Structural reliability of Binary Systems
Coherent structures

Theorem : The dual structure {¢D ,C}of a coherent

system {¢,C} IS coherent

Proof: Assume that the structure {¢,C}is coherent,
then one has

) Its structure function ¢ IS Increasing and
Il) every component is relevant.
Therefore if ¢ IS Increasing, means that for any two

vectors  X] <Y leads to ¢(§@S¢(my

Further, note that

0—X1>0— Y,
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Structural reliability of Binary Systems
Coherent structures
Proof:- Now note that

d— X)) = p@—y)

This leads to

1- (1, ,1—-x) <1-4(0, ,1-X)
¢ (X)<¢°(y)

This means that ¢D IS increasing.

To complete the proof let unit i be relevant to the
structure ¢ , then there exist a vector (-i ,2@)

such that ¢, X)) > ¢(0, , X))

or
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Structural reliability of Binary Systems
Coherent structures
Samples of coherent structures of order 1, 2 and 3

Oraber 1, oix) X e ———— 1 2 o |

Cirallier 2. el e {3 ¥ 1
1 2
gelx] = X K, F oK ——
] . o | ?
o8

lx o 2= 2, N —_———— —
a -

e N ik el T LI T P
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Structural reliability of Binary Systems

Theorems
Theorem: For any coherent structure , one has

) P ) =o(XI)ved( Y) equality sign hold for all

vectors y and Y vectors Iff the system is parallel

i) (X1 Y) <o(X7).0(Y) equality sign hold for all

vectors x| and Y vectors iff the system is series.

PROOF. z,uy, > x; Vi, so that ¢(xx y) > ¢(x) since ¢ is increasing.
Similarly, z, x y, > , Vi, so that ¢(x x ¥) > ¢(y). It follows that

¢(x xy) > max[¢(x), ¢y)] = ¢(x) x ¢(y).
A similar argument proves (b).
[f the system is serics, g(x-y) = i<y za = [1i=) % I1is1 40 = @(x)0(y),
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Structural reliability of Binary Systems
Relative Importance

DefinitioN:Relative Importance of Components. For a given coherent system, some

components are more important than others In Ll{:tc;nnining whether the
system functions or not. For example, if a component is in series with the
rest of the system, then it would scem to be at least as important as any other
component in the system. 1t is clearly of value to the designer and reliability
analyst to have a quantitative measurc of the importance of the individual
components in the system.

How important is component ¢ in determining whether the system fune-
tions or not? First, supposc we are given the state of cach of the remaining
components, (-, x). Then if ¢(1,, x) = 1 while ¢{0,, x) = 0, that is, if

o1, x) = ¢(0;, x) = I,
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Structural reliability of Binary Systems
Relative Importance

Definition:

we would consider component ¢ more important than if (1., x) = 1 =
g0, x) or @(1,x) =0 = ¢0,x). In the lirst case, (3.8), the state of
component 1 determines whether the svstem functions or not, whereas in the
alternative cases [(3.8) not true], the state of component 1 is of no conse-
quence. When (3.8) holds, we call (I, x) a er.. ,.ath veclor for 1 and
(,(1,, x) the corresponding critical palh set for 1. We let '
The definition of relative importance of a component |

IS based on the number of all critical path vector for
component | compared to all possible state vectors.
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Structural reliability of Binary Systems
Relative Importance

neli) = 2. [$ll;x) — ¢(0, x)]
ixix;= 1]
denote the total number of critical path vectors for 1 (or equivalently, the
total number of eritical path sets for ).
This suggests the following plausible measure of the struclural importance
aof component 1:

Now the relative or structural Importance of a component
with structure function and a system of order n is given

b . l . 1

y I'ﬁ'f;-} — I']-H" ﬂ*{i} = En_l Z {¢{Iil x} = [ﬁ[ﬂ.l' x}‘ll
= xlx:= 11
the proportion of the 2"7! outcomes having x; = 1 which arc critical path
veclors for 1.

Thus for any given structure ¢, we may order the components as to
structural importance by ordering the values Ju(1), ..., T (n). 106
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Structural reliability of Binary Systems
Relative Importance

The structural, or relative, importance of unit i in the
coherent system{C ,¢} is given by

SI,(1) =strucural 1mpor tance for

component 1 under the structure ¢
=n,(1)/ 2"

Where, ﬂ¢ (I) IS the number of all possible critical
vectors for unit | that is found by

n, ()= [$@ x)—¢O,,x)]
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Structural reliability of Binary Systems
Relative Importance

Examples. (a) Let ¢ be a 2-out-of-3 structure. Then J (1) = 1/2°-2 = 1/2,
since among the four outecomes 100, 101, 110, 111, there are two eritical path
veetors for component 1 (101 and 110).

By svmmetry, [,(2) = 1,(3) = 1{2 also.

() Let (x) = z,(xs 1 24). Then T4(1) = 1/2° -3 = 3[4, sincc among the
four outcomes 100, 101, 110, 111, there are three critical path vectors for
component 1 (101, 110, and 111).

However, 142) = 1/2°-1 = 1/4, since among the four outcomes 010,
O1L, 110, 111, there is only one critical path veetor for eomponent 2—
namely, 110. By symmetry, 1,(3) = 1/4 also.

Note that compenent 1 1= distinetly more important than component 2
or 3. This is 1o be expected, since component 115 in series with the rest of the
sVvstem.
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Structural reliability of Binary Systems
Relative Importance
Exercise; Find the structural importance of every
component in the following systems
(a) The 2.out-of-1 svstein;
(1) The d-out-of-4 svslem;
(e} The sermes system of three components;

(1) The parallel systemn of throe componenits.

Exercise; Find the structural importance of every
component in the following systems

) the radio or relay system.
Il) the bridge system
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Structural reliability of Binary Systems
Relative Importance

Exercise; Find the structural importance of every
component in the following systems.

) Series system of order n
) Parallel system of order n

Solution:
1) For the series system: note that the only critical
vector for componentiis 1,1,...,.;,1,...,1)

SI,(i)=n,(i)/2""
—1/ 2"
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Structural reliability of Binary Systems
Relative Importance

Solution:

) For the parallel system: not? that the only cr | ritical
vector for component i is SRR ,0)

Thus g1 (i)=n,(i)/2"*
=1/ 2"

Try to find the relative importance of k-out-of-n-
system
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Structural reliability of Binary Systems
Relative Importance

Remarks

1) The sum of the structural or relative

Importance of all units in a coherent system
need not to be one

II) Relative or structural importance is measure
for the iImportance of a component compared
to other components In the same system and
It IS not an absolute value by itself.
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Structural reliability of Binary Systems
Standardized Relative Importance

Definition: The standardized structural or relative
Importance of any component i in a cohernt system of
ordernis

SSI,(i)=SSI,(i)
=SI¢(i)/Zn_:SI¢(j)s

The above definition leads to the following

Zn:33|¢(i )=1

113



Theory of Reliability and
Life Testing

Lectures 131415
System Reliability

Abdulrahman M. Abouammoh
Department of Statistics & OR
King Saud University

114



:5,{0,1}

System Reliability

Observing components and system over time
one can note that

Component Reliability:

P, = P{Xi — 1}
Further

EX. => x.P{X. =x}
=1.P{Xi =1}-I-O.|:){Xi =0}
:P{Xi :1i}:pi
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System Reliability

System Reliability:
=E¢(X)

=2 P(X)P{g(X) = p(x)}

¢(x)

—1.P{A(X) =13+ 0.P{4(X) = O}
=P{g(X) =1}

=h(p)

When the components are independent then one
can represent the system in term of the
components that is
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System Reliability

When the components are independent, then h

can be expressed as a function of the component
reliabilities:

h=h(p), where p = (p4, ---, Py)-

The function h(p) Is called the reliability function.
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System Reliability
* The system reliability, h, is defined by

h =P ((X ) =1).
* his a function of p, the reliability vector
(pq,---,P,), SO we write h=nh(p).

* There are several techniques for calculating
h(p).
— Applying the definition.
— Using the expectation operator.
— Using path vectors.

— Using cut vectors.- Decomposition. -Monte Carlo
Simulation in spreadshgets.
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System Reliability

h=h(p), where p= (p,, -..,P,
he functlon h(p) Is called the rellablllty function

and If all the components have the same
reliability then

h=h(p)=h(p), where p= (p, ...,p).

Examples:-
1. The series system ' P)=E@X)=P1X)=]

“ET[X .=]]EX..
:Hpi'
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System Reliability
2. The parallel system

h (IO) =P{g¢(X) =1}
=E¢(X)

=[1—_r”;(1—E><i).]
=1—ﬁ(1— p,).
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System Reliability

Using Expectation

* Be careful when using the expectation method.

* What is the system reliability of a 2 out of 3
system?
— Notice that E[X:?]=p,, not p;?, SO
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System Reliability

Using Expectation

h(p) = E[ ¢(X )]
= E[1- (1- X X ,)(1- X, X ;)(1- X, ;X ;)]
= E[X , X ,+ XX ,+X X,
X EX X =X X 2X =X X X 2
+X X X 7]
= P1P>2+ P2P3s + P1Ps3
—P1P2P3 = P1P2P3s = P1 P2Ps3
+P1 P> Ps
= PP+ P>P3z+ PP —2P; P-P5-
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System Reliability
3. k-out-of-n system where

p.=p, VIi=12..n
Then
(p) = P14(X) =1}

—P{YX, >k}
=i(?jp‘(1— p)".

| =K
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System Reliability

Theorem . If h(p) Is the reliability function of a
coherent system of independent components,
then h(p) Is an increasing function in p.

Proof: Since {c,#} Is acoherent structure
then @(x ) Is increasing function in every
argument.

Thus — h(p)=P{s(X)=1
=E[¢(X)]

:Zi p(p(X)=1)
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System Reliability

Theorem.: Let h(p)and be h(p’) the reliability of
coherent system of order n with units’

reliabilities. 0<p. <1, and 0<p’ <1, i =1,2,..., n
Then
) h(pv p")=h(p)vh(p’)
i) #(p.p’)<h(p).h(p’)
Equaﬁty hold for all values for (1) If the system Is
parallel and for (ii) if the system Is series.
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System Reliability

Example - Communications
System

Suppose we are concerned
about the reliabllity of the
controller, server and
transformer. Assume that
these components are
iIndependent, and that

Ocontroller =.95
Oserver = .96
C)transformer =.99

74 °
7/ °
7 ==
L)
° -
° © o/}
° oo 1
———
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System Reliability

Example - Communications System

Since these three
components connect in
series, the system A
consisting of these
components has reliability

h

=]
(F=)
_
,

system_A

- pcontroller ' pserver ' ptransformer

=.90

ﬁj
|

4]
o -
° © o/}
° oo 1
—_———
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System Reliability

Example - Communications System

Suppose that we want to
Increase the reliability of
system A. What are our

options? il

Suppose that we have two \j

controllers, two servers,
and two transformers.
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System Reliability
Example - Communications System

Option 1: Duplicate the entire system A, creating a
new system B made up of two “A’s

system B

=1- (1 o hsystem_A )2
=.991 129
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System Reliability

Example - Communications System

Option 2: Replicate components within system A,

Creatlng a new system C
= )
\i\:::.gﬂﬁ

hsystem C ' < &
— [1 (1 pcontroller )2] [1 (1 pserver)z] [1
o (1 o ptransformer)z]

130
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System Reliability

Example - Communications System

Find the value for the following reliability for
the earlier system

1. #(p.p)

2. h(p).-h(p")
and compare the results.
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Svystem Reliability

Example. If we take the structure of Example 4.2 of Chapter 1, then

P(x) = x,(x, ¥ 24)(2, ¥ 2,)

= )(1y + 2y — 27)(7y + T, — 2T)

= T)Z2%¢ + 2 %%y — T\ T T,

2
H
3

H.,

:I_ t T\ Tg%y + T\ Xy — T\ T T

Hence

= T\ TpXyXy = T \XoZy¥s + T ToX3T Ty

hip) = E@(X) = p1papy + P1PaPs = P1PoPyPs + P1 P3Py + PiPsPs
= P\ P3PsPs — P1P2PaPy = P1PePaPs + P1P2 P3Py Py

132



Theory of Reliability and
Life Testing

Lectures 161718
System Reliability
Associationa and Reliability Bounds

Abdulrahman M. Abouammoh
Department of Statistics & OR
King Saud University
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Modeling Failures

Over Time
So far we have only seen indicators of
failure over a given period.

This does not give us information about
when items fall during the period.

We may be interested in changing the
mission length.

So how do we incorporate time information
Into the analysis.
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Modeling Failures
Over Time

 Firstly, we must define the random variables.
* Let T, = time to failure of the I-th component.

* In the next class we will see different ways to
characterize the distribution of T..
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Survival Probability

* The survival probability of the i-th item at
time tis S;(t)=P(T>t).

* In standard probablility modeling, we use the
cumulative distribution function F;(t)= P(T.<t).

« Of course, S(t)=1- F(1)..
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Survival Probability

* \We use the survival probability as it
sounds more optimistic.

* We will discuss this at greater length next
week.

 However, It Is useful to use this
representation of the distribution for
system lifetime (T) calculations.
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Series Systems

* A series system functions when all of its
components function.

— 123/ =—=='— pn —

— Thus ¢(X)y=D K alirthe. X take the value 1 and
O otherwise.

(T)=min{Tl,,..., T_}.
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Series Systems

— This can be written in several ways

— SO0

=P(T, >1t,..., T =1

=] | S: (). if T, are independent.
=1
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Parallel Systems

» A parallel system functions when any of its
components function.

—Thus ¢(X) = 1 if all the X; take the value
1 and O otherwise.



Parallel Systems

* A This can be written in several ways

— SO0

=1 — |__1| (A— S, (1)), 1f T, are independent.
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Examples

e Suppose
S, (t)=e""
 What Is the S(t) for:

— A series system of n such components?
— A parallel system of n such components?
— A 2 out of 3 system?

21
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Examples

— Find the survival function for the system

— 1

-2

3

If the dlife distribution for each components is

fi(t):/l.e_ﬂit’

143
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Theory of Reliability and
Life Testing

Lectures 192021
Families of life distributions

Abdulrahman M. Abouammoh
Department of Statistics & OR
King Saud University

144



:S,{0.1}
Reliability properties
Failure rate revisited and the notion of aging

The reliability (or survival probability) of a fresh unit corresponding to

a mission of duration z is, by definition, F(z) = 1 — F(z), where F is the

life distribution of the unit. The corresponding conditional reliability of a

unit of age t is

F(t + z)
F()

Similarly, the conditional probability of faiiure during the next interval of
duration x of a vnit of age t is

F(t + z) — F(t)
F(t)

F(x|t) = if F(t) > 0.

Fz|t) = =1-— F(z|).

Finally, we may obtain a conditional failure rate r(t) at time ¢:

. 1 F(t 4+ z) — F(t)
= lim =
A x':?;z Ft)

L
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Reliability properties
Failure rate revisited and the notion of aging

s0 that

rt) = Z—, (1.1)

when f(t) exists and F(t) > 0. [Alternate names for r(t) defined in (1.1) are
hazard rate, foree of mortality, and intensity rate.)
Usecful identitics are readily obtained by integrating both sides of (1.1),

J-: r(t) dt = —log F(z), (1.2)
0
and then exponentiating,
Fiz) = m;p\--.l rr{ﬁ}dﬁ]. , (1.3)
LJo
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Reliability properties
Another approach to deflne fallure rate

Thc hazard function can be derived using condmonal probability. First, consider
the probability of failure between r and 1 + Ar:

1+41
PIt<T S14 )= j fdn= $(1)- S(t + Ar)

[

Conditioning on the event that the item is working at time ¢ yields

Plir<sT<t+At] ()~ 8(r+41)

STLt+ AT 21) = =
Pt t+ AT 21] Y, 50
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Reliability properties

Another approach to define failure rate
[f this conditional probability is averaged over the interval [t, 1 + At] by dividing by At,

an average rate of failure is obtained:
S(r) - S(r + Ar)
S(1)At '

As At = 0, this becomes the instantaneous failure rate, which is the hazard function

S(t) - S(r + Ar)

) T
_ =5
S
iy t20

Y0
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Reliability properties
Another approach to define failure rate

Thus, the hazard function is the ratio of the probability density function to the survivor

function. Using the previous derivation, a probabilistic interpretation of the hazard func-
tion is

(At =Pt ST<t+ AT 21]

for small At values, which is a conditional version of the interpretation for the probabil-
ity density function. All hazard functions must satisfy two conditions:

Ih(r)d:=m (1) 2.0 for all ¢ 20.
0
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Some Initial Thoughts Warranty

« Will you buy additional warranty?
« Burn in and removal of early failures.

(Lemon Law).

Early Failures
A Increasing
Constant

: Failure
;allure Rate R;te/

Time 150

Failure Rate




Reliability Definitions

Reliability is a time dependent characteristic.

* It can only be determined after an elapsed time
but can be predicted at any time.

It Is the probability that a product or service will
operate properly for a specified period of time
(design life) under the design operating conditions
without failure.
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Other Measures of Reliability

Availability Is used for repairable systems

= |t is the probability that the system is operational
at any random time t.

* |t can also be specified as a proportion of time
that the system is available for use in a given
interval (O,T).

152



Other Measures of Reliability

Mean Time To Failure (MTTF): It is the average
time that elapses until a failure occurs.

It does not provide information about the distribution
of the TTF, hence we need to estimate the variance
of the TTF.

Mean Time Between Failure (MTBF): It is the
average time between successive failures.
It Is used for repairable systems.
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Mean Time to Failure: MTTF

MTTF = jo“’tf (t)dt = jo“’R(t)dt

MTTF = izn:ti
n iz

2 is better than 1?

Time t
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Mean Time Between Failure: MTBF

TTF

TTR

TBF

Time
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Other Measures of Reliability

Mean Residual Life (MRL): It is the expected remaining
life, T-t, given that the product, component, or a system
has survived to time t.

1
R (t)

Failure Rate (FITs failures in 10° hours): The failure rate in
a time interval [t,—T ] is the probability that a failure per
unit time occurs in the interval given that no failure has
occurred prior to the beginning of the interval.

L(t)=E[T —t|T >t]=——[f (r)dr -t

Hazard Function: It is the limit of the failure rate as the

length of the interval approaches zero.
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Basic Calculations

Suppose n, identical units are subjected to a
test. During the interval (t, t+At), we observed
n«(t) failed components. Let n (t) be the
surviving components at time t, then the MTTF,
failure density, hazard rate, and reliability at
time t are:

2t
MTTF =1L, )=
n, n,At
n; (t) n, (t)

— o RO=RI>0==
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Basic Definitions :-

The unreliability F(t) is

Rt)=1-R t)

Example: 200 light bulbs were tested and the failures in

1000-hour intervals are

Time Interval (Hours)

Failures in the

interval
0-1000 100

1001-2000 40
2001-3000 20
3001-4000 15
4001-5000 10
5001-6000 8

6001-7000 7

Total

200

158



Calculations

2t
MTTF =2 i)
n, n At
. n (t) . . (t)
AMt)=——— R{t)=P (T >t)==
Oy FO=RO>0-7
Time Interval Failures
(Hours) in the
interval
0-1000 100
1001-2000 40
2001-3000 20
3001-4000 15
4001-5000 10
5001-6000 8
6001-7000 7
Total 200

Time Failure Density |Hazard rate
Interval f(t) x 10™ h(t) x 10™*
100 100
0-1000 | 3p0x10° ~°° |200x10° ~ >°
40 40
20 20
6001-7000 | -~ =035 ‘T _10
B 200 x10° ' 7 x10°
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Failure Density vs. Time

4 S 6 7 x103

Time in hours
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Hazard Rate vs. Time

h() x10-4

1 2 3 4 5 6 7 x103
Time in Hours
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)

n; (t)

MTTF =12, ft)=—-
n, n At
A n. (t A n. (t
=" f-proy=nY
n, (t)At n,
Time Interval Failures
(Hours) in the
interval
0-1000 100
1001-2000 40
2001-3000 20
3001-4000 15
4001-5000 10
5001-6000 8
6001-7000 7
Total 200

Calculations

Time Interval

Reliability R(t)

0-1000

1001-2000

2001-3000

6001-7000

200/200=1.0

100/200=0.5

60/200=0.33

0.35/10=.035
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Reliability vs. Time

1.2

1 2 3 4 S 6 7 x103

Time in hours
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Reliability properties

Example:
Consider the Weibull distribution defined by the survivor function

S)=e ™ 120

with positive scale parameter A and positive shape parameter K. Find the hazard function.
By differentiating the survivor function with respect to ¢ and negating, the probability
density function is

f()=AcA)<~ e ™ 120,
and the hazard function is

h(t) = 0 = AK(AL) t20.

Figure 3.4 shows that the hazard function for A = | and several x values is constant if x = 1,
increasing if X > | and decreasing if K < 1.
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Reliability properties

Example: Failur or hazard rate for Weibull with scal
parameter one and different shape parameter

h(t)
5 ol

0.0 0.5 1.0 5 2.0
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Reliability properties

Shapes for IFR, DFR and bath tub failure rates

hir)

5 —

IFR

DFR

BT

0.0

0.5 1.0 1.5 2.0
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Reliability properties
The mean remaining life

Mean Residual Life Function

The last hfetime distnbution representation, the mean residual life function, L(r), is

defined by
L(ty= E[T=tIT =1] r=0.

The mean residual life function is the expected remaining life, T — ¢, given that the item
has survived to time r. The unconditional mean of the distnbution, E[T], is a special

case given by L{0). To determine a formula for this expectation, the conditional proba-
bility density function is needed

(
frlra:{1}=% T21.

This conditional probability density function is actually a family of probability density
functions (one for each value of ), each of which has an associated mean

EITIT 21] = j TiniradT)dT= | 1 Ej dT.
r r

S(r)
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Reliability properties
The mean remaining life

Since the mean residual life function is the expected remaining life, r must be subtracted,
yielding

[ f(x) [ fo 17
LiN=E[T=rITZ21)l=|(t=1)—dt=|T—dt—t=— | T f(T)dTt —1.
-j S5(r) . S(r) S(r) :[

All mean residual life functions associated with distnibutions having a finite mean must
satisfy three conditions:

Ln=0 L@z-1 Ii=n.
L]

Example 3.2
Consider the exponential distnbution defined by the survivor function

Sny=e" 20

with positive scale parameter . Find the mean residual life function.



:S,{0.1}

Reliability properties
The mean remaining life

| By diﬁ'crcmi'uing the survivor function with respect to ¢ and negating, the probability
density function is

f=h™ 120

Using the survivor function and the probability density function, the mean residual life
function is

' jtf(t)dt-:=¢"Jtl.e'“dt-l=l 120

L(l)'—‘-'s—(‘—)‘ 1

by using integration by parts. This indicates that regardless of the age of the item the mean
remaining lifetime is always | /A
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Reliability properties

Llife time distribution representation relationships

Sfir)

]

hr)

Hr)

Lir)

Ty 3 Lty H(r) L)
- 40! - [ rrea
s =lo j Sithdt ]
- j IETH" J I{tut € . - -F
. r j Slo)dx
L3
- 5°(r) Lr
- 50 - S0 —log S(r) S_{ILI !S{TH‘:
H [ = = | e rhty
- L dt
= § Wizt = | Wit jl.'
hre ! . _j !Mr}m P
L 1
N
H*(r)e™ Hin g~ M H(r) - g I P
] r
[ +Ln . . ‘ .
1+ ] - o T
r T

Lir)
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Reliability properties
Example:

Given A(r) = 18¢, find f(r).

Using the (h(r), f(r)) element of the matnx,

- | k1) dt -Jl!tdt .
f()=h(t)e © =18te® =18 120,

which is a special case of the Weibull distribution with A =3 and x = 2.
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Reliability properties

Fallure rate revisited and the notion of aaina

The cumulative failure rate, R(x) = j.'; r(t) di, is referred. to as the hazard
function, or simply the hazard. Equation (1.3) gives a useful theoretical
representation of reliability as a .function of failure rate. An alternate
representation, ' -

F(z) = e Rx} (1.4)
gives reliability in terms of hazard.

Now consider a device which does not age stochastically; that is, its
survival probability over an additional period of duration = is the same
regardless of its present age . Symbolically,

F(x|t) = F(x) forall =, ¢t > O.
Equivalently,
Fi + ) = F@)F(=x) forall =, ¢t > O. (1.5)

Equation (1.5) is classical; taking into account the rcquircment that
0 < F(x) < 1, its solution is of the form

F(x) = e %=, A>0, >0, (1.6)

an exponcntial survival probability, as shown in Theorem 2.2 below. In
Section 2 we derive a number of useful properties of the exponential
distribution.
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