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Basic  Concepts of probability

• Envision an experiment for which the result is 

unknown.  The collection of all possible outcomes is 

called the sample space.  A set of outcomes, or 

subset of the sample space, is called an event.

• A probability space is a three-tuple ( ,, P) where 

is a sample space,  is a collection of events from the 

sample space and P is a probability law that assigns a 

number to each event in .  For any events A and B, 

Pr must satisfy:

– P() = 1

– P(A)  0,  P(AC) = 1 – Pr(A)

– For any countable mutually disjoint events 

, Then.
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Basic  Concepts

•  IS a –algebra which is defined as : a nonempty collection of 

subsets of  such that the following hold: 

• 1.  is in . 

• 2. If             then so is the complement  

• 3. If is a sequence of elements                                  then the 

union of these elements is in  i.e.  . 

• One can construct many sigma-algebra such as  
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Distribution and densityfunctions
• If X is a continuous rv then 

Thus the density can be of the form
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Pr( ) ( ) is thedistribution of X.
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X x F x
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Basic probability and Distributions

Topics in Probability:

▪ What is  a random variable?

▪ Discrete vs. Continuous

▪ Density (mass)  function

▪ Probability distribution function

▪ Forms of distributions

▪ Joint distributions

▪ Conditional distributions

▪ Functions of random variables

▪ Moments of random variables

▪ Transforms and generating functions

▪ Family or sequence of random variables

▪
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What is a Random Variable

• A random variable, usually written  asX, is a variable whose 

possible values are numerical assigned to the outcomes of a 

random phenomenon or experiment. 

There are two types of random variables, discrete and 

continuous

• Suppose that an airline mandates that all pilots must weigh 

between 60 and 80 Kgm. The weight of  a pilot would be an 

example of a continuous variable; since a pilot weight could 

take on any value between 60 and 80 Kgm. 

• Suppose one flips a coin and count the number of heads. The 

number of heads could be any integer value between 0 and 

plus infinity. However, it could not be any number between 0 

and plus infinity. We could not, for example, get 2.5 heads. 

Therefore, the number of heads must be a discrete variable..
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What is a Random Variable?

• A random variable is discrete if it has a finite or countable 

infinite number of possible outcomes that can be listed.

• A random variable is continuous if it has an infinite number of 

possible outcomes represented by an interval on the real line.

• A random variable is a mixed of  discrete and continuous  if it 

has a finite or countable infinite number of possible values        

at part of its values and it has an infinite number of possible 

values represented by an interval on the real line on other 

parts..
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Types of Random variables!

A random variable can be:

• the number of people waiting at the entrance of the Louvre 

Museum

• The  number of people waiting at the barber shop

• Number of  patients waiting at the outpatients clinics or in 

hospital beds

• etc
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Distribution and densityfunctions
• If X is a continuous rv then 

Thus the density can be of the form
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Pr( ) ( ) is thedistribution of X.

(x) ( ), .

X x F x

and the density is defined by

d
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Properties of Density and distribution Functoions

• The distribution function F(x): 

It must satisfies the following conditions:

Whereas the density f(x) has to satisfy 
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Functions of Random variables

• Often one is interested in some combinations of r.v.’s

– Sum of the first k interarrival times = time of the kth

arrival

Z  is called the convolution of  

- Minimum of service times for parallel independent  

servers = time until next departure

If Z = min(X,Y), where X and Y are independent then 
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Functions of Random variables

- Maximum of service times for parallel servers = time until 

next departure

If Z = max(X,Y) then
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Functions of Random variables

- Maximum of service times for parallel servers = time 

until next departure

• If one has n independent rv’s then 

If    
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Funtions of Random variables

- maximum of service times for parallel servers = time 

until next departure

• If one has n independent rv’s then 

• If    
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Some Special Distributions

Distribution arise frequently in this course 

- Discrete

– Bernoulli           - Binomial

– Geometric        - Poisson

– Discrete uniform

– Continuous

- Uniform          - Exponential

- Gamma          - Normal, log normal

- Weibull -

}1,0{S : b
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Bernoulli Distribution
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“Single coin flip”  p = Pr(success)

N = 1 if success, 0 otherwise
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Binomial Distribution
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“n independent coin flips”  p = Pr(success)

N = # of successes
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Bernoulli Distribution
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“Single coin flip”  p = Pr(success)

N = 1 if success, 0 otherwise
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Poisson Distribution
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“Occurrence of rare events”   = average rate of 

occurrence per period; 

N = # of events in an arbitrary period
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z-Transform for Geometric Distribution 

22

Given             Pn = (1-p)n-1p, n = 1, 2, ….,           find 

Then,
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Discrete Uniform Distribution 
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Discrete Uniform Distribution 
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Geometric Distribution 

25

.the geometric distribution caan have the 

following form 
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Continuous distributions 

Uniform Distribution 
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X is equally likely to fall anywhere within interval (a,b)
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The pdf for the exponential is 
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Exponential distribution

28

The distribution for the exponential is 
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Exponential distribution

29

The Random variable X is said to have memory less 
property or forgetfulness property if

In other word

)()/( tXPsXtsXP =+

()1(.))()()( FRwheretRsRtsR −==+

Theorem 1. A continuous R.V. X is exponentially distributed if 

and only if for  

or equivalently,
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Memoryless property -I
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The Random variable X is said to have memoryless
property or forgetfulness property if

In other word

)()/( tXPsXtsXP =+
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Theorem 1. A continuous R.V. X is exponentially distributed if 

and only if for  

or equivalently,
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Memoryless property -II

31

A random variable with this property is said to be 
memoryless.

Show that the Geometric RV’s enjoy the memoryless
property.is property. 
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Gamma Distribution 

32

X is nonnegative, by varying parameter b get a variety of 

shapes

When b is an integer, k say , this is called the Erlang-k

distribution, and  Erlang-1 is same as 

exponential.
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Normal  Distribution 

33

X follows a “bell-shaped” density function

From the central limit theorem, the distribution of the 

sum of independent and identically distributed 

random variables approaches a normal distribution 

as the number of summed random variables goes 

to infinity.
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FORMS OF some  PROBABILITY 

DISTRIBUTIONS
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Reliability Theory of Binary systems and 

components -I
System

– a collection of interacting or interdependent 

components, organized to provide a function or 

functions

Components

– can be unique

– can be redundant

Types of systems and components

- Engineering

- Biological

.
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Reliability of systems and components -I

Reliability

– the ability of a system or component to perform its 

required functions under stated conditions for a 

specified period of time 

System reliability is a function of:

– the reliability of the components

– the interdependence of the components

– the topology of the components

.

.
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Binary systems and components -I

Consider a system comprised of  n components, where 
each component is either functioning or has failed.  
Define

The vector x = {x1, …, xn} is called the state vector.

Or 

.
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Reliability Theory of Binary systems and 

components -I

Similarly one can define the binary function  

to represent the state of the system

Assume that whether the system as a whole is

functioning is completely determined by the state 

vector x. Define

The function ϕ(x) is called the structure function of the 

system.

.
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Reliability Theory of Binary systems and 

components -I

is a binary variable 

Binary means it takes either of two values, here 0        

and 1 .

is a binary function 

Binary means it takes either of two values, here 0 

and 1 .

It is clear that       is a function of all the 

components of the system.
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Structural reliability of Binary Systems

State  vector; is the vector that represents the state of  
all components                                in the system.

▪The state of the system is a function of the states of 
the components as 

Definition: is called the structure function 
of the system..

Since the knowledge of the system gives us 
knowledge of the structure function        and 
vice-versa 

We sometimes refer to this function by the 
structure        of the system.
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Reliability Theory of Binary systems and 

components -I

Definition: the number of the components in the system 
are known by the order of the system.

Thus a system of n components is called a system of 
order n.

Block or Venn diagrams can be used to visualize 

systems of components.

}1,0{S : b
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Types of systems 
1. Series systems

• The block diagram corresponding to a series system

is

• The block diagram represents the logical relationship 

of the operation of the components and the system, it 

does not represent their physical layout.

• The idea is that if a path can be traced from left to 

right through the system, then the system operates.

52
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The Series Structure

A series system functions if and only if all of its n

components are functioning:

Its structure function is given by
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The Parallel Structure

2. Parallel system 

A parallel system functions if and only if at least one of 

its n components iss functioning:

Its structure function is given by
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The Parallel Structure

Notation: for any binary {0,1) variable

For a system of order 2, on, we has 
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The k-out-of-n Structure

3. A k-out-of-n system 

Examples:

▪Tri-Star aero plane that can function with at least two 

functioning engines

▪ Citroen:  that can move with at least three working 

wheels

A k-out-of-n system: functions if and only if at least k

of its n components are functioning:

Its structure function is given by
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The k-out-of-n Structure

3. Other type of systems

A system of three components can be series 

parallel,  2-out-of-3, or either one of the above 

systems
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Structural reliability of Binary Systems

Note that: for k-out-of-n system one has for k=n 

and for k=1

Hence a k-out-of-n system can be expressed as  
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Structural reliability of Binary Systems

The block diagram, for this system is

Note that: i) a series structure is n-out-of-n system

ii) a parallel structure is 1-out-of-n system

}1,0{S : b
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Binary Systems

Example: the structure function for a  2-out-of-3 system  

is 

Hence a k-out-of-n system can be expressed as  
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Structural reliability of Binary Systems

Note that:

Thus the corresponding structure functions

}1,0{S : b

( ) ( ) ( )
51 2 3 4

x x x x x x  =

1
x

1
x

1
x
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Note that:

The irrelevant component

}1,0{S : b
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The k-out-of-n Structure

Equivalently k-out-of-n:

}1,0{S : b
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The k-out-of-n Structure

Examples:

1.

2.Prove the following relation for any binary 

variable

}1,0{S : b
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3. Find the structure function for the following 

diagrams

This can be simplified as;

}1,0{S : b

...

4

21

3
1 2 3 4

( ) [( ) ] .x x x x =x

1 2 3 4

1 2 3 4

1 2 3 1 2 3 4

1 2 4 3 4 1 2 3 4

( ) [( ) ]

[1 (1 )(1 )]

( )

x x x x

x x x x

x x x x x x x

x x x x x x x x x

 =

= − − −

= + −

= + −

x
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Remarks on Structures

4. Note that for a parallel system

5. For 2-out-of- 3 system

6. Given the block diagram  

Then the structure function is

}1,0{S : b
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Additional exercises:

1. Obtain the structure functions of the following 

systems:

a) a 2-out-of-4 systems 

b)

c)

d)

}1,0{S : b

1
x
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Binary Systems

Additional exercises

2.     

3.   Find the structure functions of the following 

three a b and c  systems

}1,0{S : b

1
x
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Some Notations and Definitions

Relevant component: The i th component is 

irrelevant  to the structure     if       is constant in xi

Pivotal decompositions

The n-Pivotal decompositions:

}1,0{S : b
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Order and Monotonicity:

A partial order is defined on the set of state vectors as 
follows. Let x and y be two state vectors. We define

x ≤ y if xi ≤ yi, i =1, …, n.

Furthermore,

x < y if x ≤ y and xi < yi for some i. 

We assume that if x ≤ y then ϕ(x) ≤ ϕ(y). In this case we 
say that the system is monotone.

}1,0{S : b
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x
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x
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Some Notations and Definitions

Dual structure;

Or 

Coherent systems:

A system of component is coherent if:

1. Its structure function   is increasing;

2. Each component is relevant

}1,0{S : b
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Teoremson binary systems 

Theorem 1: Let        be a coherent structure of n 

components. Then

Proof::

Theorem 2:  

1.The dual of a series (parallel) system of n component 

is a parallel (series) system of n component.

2. The dual of a k-out-of – n structure is an (n-k+1) –

out-of – n structure

Proof:. 

}1,0{S : b
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Minimal Path Sets:

• A state vector x is call a path vector if

ϕ(x) = 1.

• If ϕ(y) = 0 for all y < x, then x is a minimal 

path vector.

• If x is a minimal path vector, then the set A = {i: 

xi = 1} is a minimal path set.

}1,0{S : b
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x

1
x

1
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Dual Structures

Examples;

Find the dual structures of the following systems;

1) Parallel system of order n

2) Series structure of order n

3) k-out-of-n system

4) The radio system of five components

}1,0{S : b
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Dual Structures

Examples;

Find the dual structures of the following systems;

1) Parallel system of order n

2) Series structure of order n

}1,0{S : b
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Dual Structures

Solution:

1. Let the structure             represents a parallel 

structure , then

}1,0{S : b
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Dual Structures

This means that the dsual is a series structure of 

order n.

}1,0{S : b
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Dual Structures

2. Let the structure             represents a series 

structure , then

}1,0{S : b
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Dual Structures

Thus the dual structure of a series system of order n 

is a parallel structure of order n 

}1,0{S : b
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Dual Structures

3. Let the structure             represents a k-out-of-n 

structure , then show that                 a (n-k+1)-out-

of-n system

Left as an exercise

}1,0{S : b
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Dual Structures

Exercises: Find the sual structure of the following 

systems:

1) k-out-of-n system

2) The radio system of five components

3) Find the dual structure for the following systems

}1,0{S : b
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Minimal Path Sets

Let A1, …, As be the minimal path sets of a 

system. A system will function if and only if all the 

components of at least one minimal path set are 

functioning, so that

This expresses the system as a parallel 

arrangement of series systems.

}1,0{S : b

.max)( 


=
jAi

i
j

xx
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Minimal Cut Sets

• A state vector x is call a cut vector if

ϕ(x) = 0.

• If ϕ(y) = 1 for all y > x, then x is a minimal cut 

vector.

• If x is a minimal cut vector, then the set C = {i: 

xi = 0} is a minimal cut set.

}1,0{S : b

1
x
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Examples

• The Series System of order n

– There are n minimal cut sets, namely, the sets 

consisting of all but one component.

• The Parallel System of order n

– There is one minimal cut set, namely, the empty 

set.

• The k-out-of-n System

– There are           minimal path sets, namely all of 

– the sets consisting of exactly k components.

}1,0{S : b
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Minimal cut sets

Let C1, …, Ck be the minimal cut sets of a system. A 
system will not function if and only if all the components 
of at least one minimal cut set are not functioning, so 
that

This expresses the system as a series arrangement of 
parallel systems.

:

}1,0{S : b

1
x

.max)(
1


=


=

k

j

i
Ci

x
j

x
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Example; the Bridge System

The system whose structure is shown below is called the 

bridge system. Its minimal path sets are:

{1, 4}, {1, 3, 5}, {2, 5}, {2, 3, 4}.

For example, the system will work if only 1 and 4 are 

working, but will not work if only 1 is working.

}1,0{S : b

1
x
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The bridge system:-

Its structure function is given by

Also, one may notice that 

The system whose structure is shown below is called the 

bridge system. Its minimal cut sets are:

{1, 2}, {1, 3, 5}, {4, 5}, {2, 3, 4}.

For example, the system will work if 1 and 2 are not 

working, but it can work if either 1 or 2 are working.

}1,0{S : b

).1)(1)(1)(1(1

},,,max{)(

4325253141

4325253141

xxxxxxxxxx

xxxxxxxxxx

−−−−−=

=x
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The bridge system: -

Its structure function is given by

Thus if there are p minimal path sets                                        

with structure functions 

and k minimal cut set

Then one has 

}1,0{S : b

1 2 1 3 5 4 5

2 3 4

( ) max{ , }.max{ , , }.max{ , }

.max{ , , }.

x x x x x x x

x x x

 =x

1 2
{ , ,..., }

p
  

1 2
{ , ,..., }

k
  

1 2
{ , ,..., }

k
  

1 2
{ , ,..., }

p
  
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Here again the bridge system of five components

Here for any path set one has 

Hence one may write the corresponding structure 

function as  

}1,0{S : b

1

5
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2
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Also  for any cut set one has 

Hence one may write the corresponding structure 

function as

}1,0{S : b
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Representation of the bridge system:

a) Minimal path representation

b) Minimal cut representation

}1,0{S : b
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These representations can be written as:

Now let      be the life length of the         components 

where i=1, 2, …, n, then the life of the system is

hence one has                    

}1,0{S : b

i
t thi

( )t

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Example :What are the minimal path sets and 

the minimal cut sets  for the following four 

systems?
4

73

1

2

5
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Components relevance aand Coherent structures

Definition: the component I is irrelevant to the 

structure        if        is constant in           or 

Otherwise the component is relevant..

Remark: If component i is relevant then one can find 

at least one vector of states such that:                

such that  

or in other word

}1,0{S : b

i
x

(. , )
i

x

,
(0 , ) (1 , )

i i
x x 

,
(0 , ) (1 , )

i i
x x 
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Coherent structures

Definition: A system of components               is called 

coherent   if 

i) its structure function       is increasing and

ii)  every component is relevant.

Exercises: Show that every components of the following 

systems is relevant

1) Series system of order n.

2) Parallel system of order n. iii) 2-out-of n system

3)

}1,0{S : b

{ , }C
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Coherent structures

Theorem :  The dual structure                 of a coherent 

system                      is coherent 

Proof:  Assume that the structure              is coherent, 

then  one has   

i) its structure function       is increasing and

ii)  every component is relevant.

Therefore if       is increasing, means that for  any two 

vectors                     leads to                         .

Further, note that 

}1,0{S : b

{ , }C
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Coherent structures

Proof:- Now  note that 

This leads to

or 

This means that            is increasing.  

To complete the proof let unit i be relevant to the 

structure        , then there exist a vector

such that  

}1,0{S : b
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Coherent structures

Samples of coherent structures of order 1, 2 and 3

:

}1,0{S : b
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Theorems

Theorem: For any coherent structure , one has

i)                                            equality sign hold for all 

vectors      and      vectors iff the system is parallel

ii)                                        equality sign hold for all 

vectors      and       vectors iff the system is series.

}1,0{S : b
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Relative Importance 

Definition:

}1,0{S : b
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Relative Importance 

Definition:

-

The  definition of relative importance of a component  i  

is based on the number of all critical path vector for 

component i compared to all possible state vectors.

}1,0{S : b
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Relative Importance 

Now the relative or structural importance of a component 

with structure function and a system of order n is given 

by

}1,0{S : b
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Relative Importance 

The structural, or relative, importance of unit i in the 

coherent system               is given by                   

Where,           is the number of all possible critical 

vectors for unit i that is found by 

}1,0{S : b
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Relative Importance 

.

}1,0{S : b
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Relative Importance 

Exercise; Find the structural importance of  every 

component in the following systems

Exercise; Find the structural importance of  every 

component in the following systems

i) the radio or relay system.

ii) the bridge system

.

}1,0{S : b
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Relative Importance 

Exercise; Find the structural importance of  every 

component in the following systems.

i) Series system of order n

ii) Parallel system of order n

Solution:

i) For the series system: note that the only critical 

vector for component i is 

.

}1,0{S : b
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Relative Importance 

Solution:

i) For the parallel system: note that the only critical 

vector for component i is

Thus 

Try to find the relative importance of k-out-of-n-

system

}1,0{S : b
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Relative Importance 

Remarks

I) The sum of the structural or relative 

importance of all units in a coherent system 

need not to be one

II) Relative or structural importance is measure 

for the importance of a component compared 

to other components  in the same system and 

it is not an absolute value by itself.

}1,0{S : b
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Standardized Relative Importance 

Definition: The standardized structural or relative 

importance of any component i in a cohernt system of 

order n is 

The above definition leads to the following 

}1,0{S : b
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System Reliability 

Observing components and system over time 

one can note that 

Component Reliability:

Further 

:

}1,0{S : b
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115

1. 1

{ }

{ } { }

{

0. 0

1 }

i i i i

i i

i i i

EX x P X x

P X P X

P X p

= +

=

=

= =

= =

=



System Reliability 

System  Reliability:

When the components are independent then one 

can represent the system in term of the 

components that is 

:

}1,0{S : b
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When the components are independent, then h 

can be expressed as a function of the component 

reliabilities:

h= h(p), where p = (p1, …, pn).

The function h(p) is called the reliability function.

System Reliability 
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• The system reliability, h, is defined by

• h is a function of p, the reliability vector 

(p1,…,pn), so we write h=h(p).

• There are several techniques for calculating 

h(p).

– Applying the definition.

– Using the expectation operator.

– Using path vectors.

– Using cut vectors.- Decomposition.  -Monte Carlo 

Simulation in spreadsheets.

( ( ) 1).h P X= =

System Reliability 



System Reliability 

The function h(p) is called the reliability function

and if all the components have the same 

reliability then 

Examples:-

1. The series system 

:

}1,0{S : b
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n
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2. The parallel system

:

}1,0{S : b
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Using Expectation

• Be careful when using the expectation method.

• What is the system reliability of a 2 out of 3 

system?

– Notice that E[Xi
2]=pi, not pi

2, so

System Reliability 
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Using Expectation

1 2 2 3 1 3

1 2 2 3 1 3

2 2 2

1 2 3 1 2 3 1 2 3

2 2 2

1 2 3

1 2 2 3 1 3

1 2 3 1 2 3 1 2 3

1 2 3

1 2 2 3 1 3 1 2 3

 ( )]

1 1 1 1

2 .

h(p)  E[ X

 E[ - ( - X X )( - X X )( - X X )]

E[X X X X X X

X X X X X X X X X

X X X ]

p p p p p p

p p p p p p p p p

p p p

p p p p p p p p p

=

=

= + +

− − −

+

= + +
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+
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3. k-out-of-n system where

Then

:

}1,0{S : b
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System Reliability 

Theorem . If h(p) is the reliability function of a  

coherent system of independent components, 

then h(p) is an increasing function in p.

Proof: Since               is a coherent structure 

then            is increasing function in every 

argument.

Thus 
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System Reliability 

Theorem.:  Let         and be           the reliability of 

coherent system of order n with units’ 

reliabilities. 

Then

i)

ii)

Equality hold for all values for (i) if the system is 

parallel and for (ii) if the system is series.

.
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Example - Communications 

System

Suppose we are concerned 

about the reliability of the 

controller, server and 

transformer. Assume that 

these components are 

independent, and that

pcontroller = .95

pserver = .96

ptransformer = .99

System Reliability 
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Example - Communications System

Since these three 

components connect in 

series, the system A 

consisting of these 

components has reliability

hsystem_A

= pcontroller · pserver · ptransformer

= .90

System Reliability 
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Example - Communications System

Suppose that we want to 
increase the reliability of 
system A. What are our 
options?

Suppose that we have two 
controllers, two servers, 
and two transformers.

System Reliability 
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Example - Communications System

Option 1: Duplicate the entire system A, creating a 
new system B made up of two “A”s

hsystem_B

= 1 ‒ (1 ‒ hsystem_A )2

= .991

System Reliability 
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hsystem_C

= [1 ‒ (1 ‒ pcontroller )2] [1 ‒ (1 ‒ pserver)
2] [1 

‒ (1 ‒ ptransformer)
2]

= .996

Example - Communications System

Option 2: Replicate components within system A, 
creating a new system C

System Reliability 
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Find the value for the following reliability for 

the earlier system

1.

2.

and compare the results. 

Example - Communications System

System Reliability 
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Example

:

}1,0{S : b
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Modeling Failures 

Over Time

• So far we have only seen indicators of 

failure over a given period.

• This does not give us information about 

when items fail during the period.

• We may be interested in changing the 

mission length.

• So how do we incorporate time information 

into the analysis.
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Modeling Failures 

Over Time

• Firstly, we must define the random variables.

• Let Ti = time to failure of the i-th component.

• In the next class we will see different ways to 

characterize the distribution of Ti.
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Survival Probability

• The survival probability of the i-th item at 

time t is Si(t)=P(Ti>t).

• In standard probability modeling, we use the 

cumulative distribution function Fi(t)= P(Ti<t).

• Of course, Si(t)=1- Fi(t)..
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Survival Probability

• We use the survival probability as it 

sounds more optimistic.

• We will discuss this at greater length next 

week.

• However, it is useful to use this 

representation of the distribution for 

system lifetime (T) calculations.
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Series Systems

• A series system functions when all of its 

components function.

– Thus (X) = 1 if all the Xi take the value 1 and 

0 otherwise.

}.X,...,min{)( n1XX =

}.T,...,min{)( n1TT =

1 2 3 n
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Series Systems

– This can be written in several ways

– So

( )

t.independen are T if ),(

t)T,...,P(

t)}T,...,(min{

i

1

n1

n1


=

=

=

=

n

i

i tS

tT

TPtTP
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Parallel Systems

• A parallel system functions when any of its 

components function.

– Thus (X) = 1 if all the Xi take the value 

1 and 0 otherwise.

}.X,...,max{)( n1XX =

1

2

3

n
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Parallel Systems

• A This can be written in several ways

– So

( )

t.independen are T if )),(1(1

t)T,...,P(1

t)}T,...,(max{1

t)}T,...,(max{

i

1

n1

n1

n1


=

−−=

−=

−=

=

n

i

i tS

tT

TP

TPtTP
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Examples

• Suppose

• What is the S(t) for:

– A series system of n such components?

– A parallel system of n such components?

– A 2 out of 3 system?

- t

i (t) e iS 
=

1
2
1

2
3
3
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Examples

– Find the survival function for the system

If the dlife distribution for each components is  

1
2

3

- t

i (t) e , 1,2,3i

if i
= =
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Reliability properties 

Failure rate revisited and the notion of aging

.

}1,0{S : b
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Reliability properties 

Failure rate revisited and the notion of aging

.

}1,0{S : b
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Reliability properties 

Another approach to define failure rate

}1,0{S : b
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Reliability properties 

Another approach to define failure rate

}1,0{S : b
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Reliability properties 

Another approach to define failure rate

}1,0{S : b
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Some Initial Thoughts Warranty

• Will you buy additional warranty?

• Burn in and removal of early failures.

(Lemon Law).

Time

F
a

il
u

re
 R

a
te

Early Failures

Constant
Failure Rate

Increasing
Failure
Rate
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Reliability Definitions

Reliability is a time dependent characteristic. 

❖It can only be determined after an elapsed time 

but can be predicted at any time.

❖It is the probability that a product or service will 

operate properly for a specified period of time 

(design life) under the design operating conditions 

without failure.
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Other Measures of Reliability

Availability is used for repairable systems

▪ It is the probability that the system is operational 
at any random time t.

▪ It can also be specified as a proportion of time 
that the system is available for use in a given 
interval  (0,T).  

152



153

Other Measures of Reliability

Mean Time To Failure (MTTF): It is the average 

time that elapses until a failure occurs.

It does not provide information about the distribution

of the TTF, hence we need to estimate the variance

of the TTF.  

Mean Time Between Failure (MTBF): It is the 

average time between successive failures.  

It is used for repairable systems.
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Mean Time to Failure: MTTF

1

1 n

i

i

MTTF t
n =

= 

0 0
( ) ( )MTTF tf t dt R t dt

 

= = 

Time t

R
(t

)

1

0

1

2
2 is better than 1?
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Mean Time Between Failure: MTBF
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Other Measures of Reliability

Mean Residual Life (MRL): It is the expected remaining 

life, T-t, given that the product, component, or a system 

has survived to time t.

Failure Rate (FITs failures in 109 hours): The failure rate in 

a time interval [        ] is the probability that a failure per 

unit time occurs in the interval given that no failure has 

occurred prior to the beginning of the interval.

Hazard Function: It is the limit of the failure rate as the 

length of the interval approaches zero.

1 2
t t−

1
( ) [ | ] ( )

( ) t

L t E T t T t f d t
R t

  


= −  = −

156



157

Basic Calculations

0

1

0 0

0

( )ˆ,              ( )       

( )( )ˆ ˆ( ) ,      ( ) ( )
( )

n

i

i f

sf
r

s

t
n t

MTTF f t
n n t

n tn t
t R t P T t

n t t n


== =


= =  =




Suppose n0 identical units are subjected to a 

test. During the interval (t, t+∆t), we observed 

nf(t) failed components. Let ns(t) be the 

surviving components at time t, then the MTTF, 

failure density, hazard rate, and reliability at 

time t are:
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Basic Definitions :-

The unreliability F(t) is  
 

( ) 1 ( )F t R t= −  
 

Example: 200 light bulbs were tested and the failures in 
1000-hour intervals are 

Time Interval (Hours) Failures in the
interval

0-1000
1001-2000
2001-3000
3001-4000
4001-5000
5001-6000
6001-7000

100
40
20
15
10
8
7

Total 200
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Calculations

Time 

Interval 

Failure Density 

( )f t  x 410−  

Hazard rate 

  ( )h t  x 410−  

0-1000 

 

 

1001-2000 

 

2001-3000 

 

…… 

 

6001-7000 

3

100
5.0

200 10
=


 

 

 

3

40
2.0

200 10
=



 

 

3

20
1.0

200 10
=


 

 

…….. 

 

3

7
0.35

200 10
=


 

 

3

100
5.0

200 10
=


 

 

 

3

40
4.0

100 10
=


 

 

3

20
3.33

60 10
=


 

 

…… 

 

3

7
10

7 10
=


 

 

 

Time Interval 
(Hours)

Failures 
in the

interval

0-1000
1001-2000
2001-3000
3001-4000
4001-5000
5001-6000
6001-7000

100
40
20
15
10
8
7

Total 200
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( )( )ˆ ˆ( ) ,      ( ) ( )
( )

n

i

i f
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r

s

t
n t

MTTF f t
n n t

n tn t
t R t P T t

n t t n


== =


= =  =

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Failure Density vs. Time

1            2           3            4           5            6           7 x 103

Time in hours

160

×
1

0
-4
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Hazard Rate vs. Time

1           2            3           4           5            6          7    × 103

Time in Hours

161

×
1

0
-4
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Calculations

Time Interval Reliability ( )R t  

0-1000 

 

1001-2000 

 

2001-3000 

 

…… 

 

6001-7000 

200/200=1.0 

 

100/200=0.5 

 

60/200=0.33 

 

…… 

 

0.35/10=.035 

 

Time Interval
(Hours)

Failures 
in the

interval

0-1000
1001-2000
2001-3000
3001-4000
4001-5000
5001-6000
6001-7000

100
40
20
15
10
8
7

Total 200
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t
n t

MTTF f t
n n t

n tn t
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== =
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= =  =

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Reliability vs. Time

1           2           3          4           5           6           7    x 103

Time in hours
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Reliability properties 

Example: 

.

}1,0{S : b
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Reliability properties 

Example: Failur or hazard rate for Weibull with scal 

parameter one and different shape parameter 

.

}1,0{S : b
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Reliability properties 

Shapes for IFR, DFR and bath tub failure rates

.

}1,0{S : b
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Reliability properties 

The mean remaining life

.

}1,0{S : b
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Reliability properties 
The mean remaining life

.

}1,0{S : b
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Reliability properties 

The mean remaining life

.

}1,0{S : b
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Reliability properties 

Llife time distribution representation relationships

.

}1,0{S : b
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Reliability properties 

Example:

}1,0{S : b
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Reliability properties 
Failure rate revisited and the notion of aging

.

}1,0{S : b
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