

#### Motion in Two Dimensions

# Motion in Two Dimensions

- Using + or signs is not always sufficient to fully describe motion in more than one dimension
  - Vectors can be used to more fully describe motion
- Still interested in displacement, velocity, and acceleration
- Will serve as the basis of multiple types of motion in future chapters

# **Position and Displacement**

- The position of an object is described by its position vector, r
- The displacement of the object is defined as the change in its position
  - $\Delta \mathbf{r} = \mathbf{r}_{f} \mathbf{r}_{i}$



### **General Motion Ideas**

- In two- or three-dimensional kinematics, everything is the same as as in one-dimensional motion except that we must now use full vector notation
  - Positive and negative signs are no longer sufficient to determine the direction

#### **Average Velocity**

 The average velocity is the ratio of the displacement to the time interval for the displacement

$$\overline{\mathbf{v}} = \frac{\Delta \mathbf{r}}{\Delta \mathbf{t}}$$

 The direction of the average velocity is the direction of the displacement vector, Δr



#### Average Velocity, cont

The average velocity between points is independent of the path taken

 This is because it is dependent on the displacement, also independent of the path

#### **Instantaneous Velocity**

- The instantaneous velocity is the limit of the average velocity as Δt approaches zero
  - The direction of the instantaneous velocity is along a line that is tangent to the path of the particle's direction of motion

$$\mathbf{v} \equiv \lim_{\Delta t \to 0} \frac{\Delta \mathbf{r}}{\Delta t} = \frac{d\mathbf{r}}{dt}$$

#### Instantaneous Velocity, cont

- The direction of the instantaneous velocity vector at any point in a particle's path is along a line tangent to the path at that point and in the direction of motion
- The magnitude of the instantaneous velocity vector is the speed
  - The speed is a scalar quantity

#### **Average Acceleration**

The average acceleration of a particle as it moves is defined as the change in the instantaneous velocity vector divided by the time interval during which that change occurs.

$$\overline{\mathbf{a}} = \frac{\mathbf{v}_{\mathrm{f}} - \mathbf{v}_{i}}{t_{f} - t_{i}} = \frac{\Delta \mathbf{v}}{\Delta t}$$

#### Average Acceleration, cont

- As a particle moves,
   Δv can be found in different ways
- The average acceleration is a vector quantity directed along Δv



© 2004 Thomson/Brooks Co

#### **Instantaneous Acceleration**

 The instantaneous acceleration is the limit of the average acceleration as Δv/Δt approaches zero

$$\mathbf{a} \equiv \lim_{\Delta t \to 0} \frac{\Delta \mathbf{v}}{\Delta t} = \frac{d\mathbf{v}}{dt}$$

# **Producing An Acceleration**

- Various changes in a particle's motion may produce an acceleration
  - The magnitude of the velocity vector may change
  - The direction of the velocity vector may change
    - Even if the magnitude remains constant
  - Both may change simultaneously

Kinematic Equations for Two-Dimensional Motion

- When the two-dimensional motion has a constant acceleration, a series of equations can be developed that describe the motion
- These equations will be similar to those of one-dimensional kinematics

• Position vector  $\mathbf{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}}$ 

• Velocity 
$$\mathbf{v} = \frac{d\mathbf{r}}{dt} = v_x \hat{\mathbf{i}} + v_y \hat{\mathbf{j}}$$

Since acceleration is constant, we can also find an expression for the velocity as a function of time: v<sub>f</sub> = v<sub>j</sub> + at

- The velocity vector can be represented by its components
- **v**<sub>f</sub> is generally not along the direction of either **v**<sub>i</sub> or **a**t



© 2004 Thomson/Brooks Cole

The position vector can also be expressed as a function of time:

**r**<sub>f</sub> = **r**<sub>i</sub> + **v**<sub>i</sub>t + 
$$\frac{1}{2}$$
 **a**t<sup>2</sup>

- This indicates that the position vector is the sum of three other vectors:
  - The initial position vector
  - The displacement resulting from  $\mathbf{v}_i t$
  - The displacement resulting from  $\frac{1}{2} \mathbf{a} t^2$

- The vector representation of the position vector
- **r**<sub>f</sub> is generally not in the same direction as **v**<sub>i</sub> or as **a**<sub>i</sub>
- **r**<sub>f</sub> and **v**<sub>f</sub> are generally not in the same direction



© 2004 Thomson/Brooks Cole

# Kinematic Equations, Components

- The equations for final velocity and final position are vector equations, therefore they may also be written in component form
- This shows that two-dimensional motion at constant acceleration is equivalent to two independent motions
  - One motion in the x-direction and the other in the y-direction

Kinematic Equations, Component Equations

•  $\mathbf{v}_{f} = \mathbf{v}_{i} + \mathbf{a}_{t}$  becomes •  $\mathbf{v}_{xf} = \mathbf{v}_{xi} + \mathbf{a}_{x}t$  and •  $\mathbf{v}_{yf} = \mathbf{v}_{yi} + \mathbf{a}_{y}t$ •  $\mathbf{r}_{f} = \mathbf{r}_{i} + \mathbf{v}_{i}t + \frac{1}{2} \mathbf{a}_{t}t^{2}$  becomes •  $\mathbf{x}_{f} = \mathbf{x}_{i} + \mathbf{v}_{xi}t + \frac{1}{2} \mathbf{a}_{x}t^{2}$  and •  $\mathbf{y}_{f} = \mathbf{y}_{i} + \mathbf{v}_{yi}t + \frac{1}{2} \mathbf{a}_{y}t^{2}$ 

# **Projectile Motion**

- An object may move in both the x and y directions simultaneously
- The form of two-dimensional motion we will deal with is called projectile motion

# Assumptions of Projectile Motion

- The free-fall acceleration g is constant over the range of motion
  - And is directed downward
- The effect of air friction is negligible
- With these assumptions, an object in projectile motion will follow a parabolic path
  - This path is called the *trajectory*

Verifying the Parabolic Trajectory

- Reference frame chosen

  y is vertical with upward positive

  Acceleration components

  a<sub>y</sub> = -g and a<sub>x</sub> = 0

  Initial velocity components

  y = y cos θ and y = y sin θ
  - $v_{xi} = v_i \cos \theta$  and  $v_{yi} = v_i \sin \theta$

Verifying the Parabolic Trajectory, cont

Displacements

x<sub>f</sub> = v<sub>xi</sub> t = (v<sub>i</sub> cos θ) t
y<sub>f</sub> = v<sub>yi</sub> t + <sup>1</sup>/<sub>2</sub>a<sub>y</sub> t<sup>2</sup> = (v<sub>i</sub> sin θ)t - <sup>1</sup>/<sub>2</sub> gt<sup>2</sup>
Combining the equations gives:

$$y = \left(\tan\theta_i\right) x - \left(\frac{g}{2v_i^2 \cos^2\theta_i}\right) x^2$$

• This is in the form of  $y = ax - bx^2$  which is the standard form of a parabola

# **Analyzing Projectile Motion**

- Consider the motion as the superposition of the motions in the x- and y-directions
- The x-direction has constant velocity

• 
$$a_x = 0$$

The y-direction is free fall

$$a_y = -g$$

• The actual position at any time is given by:  $\mathbf{r}_f = \mathbf{r}_i + \mathbf{v}_i t + \frac{1}{2} \mathbf{g} t^2$ 

#### **Projectile Motion Vectors**

- $\mathbf{r}_f = \mathbf{r}_i + \mathbf{v}_i t + \frac{1}{2} \mathbf{g} t^2$
- The final position is the vector sum of the initial position, the position resulting from the initial velocity and the position resulting from the acceleration



@ 2004 Thomson/Brooks Cole

#### **Projectile Motion Diagram**



© 2004 Thomson/Brooks Cole

Projectile Motion – Implications

- The y-component of the velocity is zero at the maximum height of the trajectory
- The accleration stays the same throughout the trajectory

# Range and Maximum Height of a Projectile

- When analyzing projectile motion, two characteristics are of special interest
- The range, *R*, is the horizontal distance of the projectile
- The maximum height the projectile reaches is *h*



# Height of a Projectile, equation

The maximum height of the projectile can be found in terms of the initial velocity vector:

$$h = \frac{v_i^2 \sin^2 \theta_i}{2g}$$

This equation is valid only for symmetric motion

## Range of a Projectile, equation

The range of a projectile can be expressed in terms of the initial velocity vector:

$$R = \frac{v_i^2 \sin 2\theta_i}{g}$$

 This is valid only for symmetric trajectory

# More About the Range of a Projectile



© 2004 Thomson/Brooks Cole

# Range of a Projectile, final

- The maximum range occurs at  $\theta_i = 45^\circ$
- Complementary angles will produce the same range
  - The maximum height will be different for the two angles
  - The times of the flight will be different for the two angles

# Projectile Motion – Problem Solving Hints

- Select a coordinate system
- Resolve the initial velocity into x and y components
- Analyze the horizontal motion using constant velocity techniques
- Analyze the vertical motion using constant acceleration techniques
- Remember that both directions share the same time

# Non-Symmetric Projectile Motion

- Follow the general rules for projectile motion
- Break the y-direction into parts
  - up and down or
  - symmetrical back to initial height and then the rest of the height
- May be non-symmetric in other ways



### **Uniform Circular Motion**

- Uniform circular motion occurs when an object moves in a circular path with a constant speed
- An acceleration exists since the *direction* of the motion is changing
  - This change in velocity is related to an acceleration
- The velocity vector is always tangent to the path of the object

# Changing Velocity in Uniform Circular Motion

 The change in the velocity vector is due to the change in direction

• The vector diagram shows  $\Delta \mathbf{v} = \mathbf{v}_f - \mathbf{v}_i$ 



#### **Centripetal Acceleration**

- The acceleration is always perpendicular to the path of the motion
- The acceleration always points toward the center of the circle of motion
- This acceleration is called the centripetal acceleration

#### Centripetal Acceleration, cont

The magnitude of the centripetal acceleration vector is given by

$$a_C = \frac{v^2}{r}$$

The direction of the centripetal acceleration vector is always changing, to stay directed toward the center of the circle of motion



- The *period*, *T*, is the time required for one complete revolution
- The speed of the particle would be the circumference of the circle of motion divided by the period  $2\pi r$
- Therefore, the period is  $T = \frac{2\pi r}{v}$

#### **Tangential Acceleration**

- The magnitude of the velocity could also be changing
- In this case, there would be a tangential acceleration

#### **Total Acceleration**

- The tangential acceleration causes the change in the speed of the particle
- The radial acceleration comes from a change in the direction of the velocity vector

 $\mathbf{a} = \mathbf{a}_r + \mathbf{a}_t$ 



#### Total Acceleration, equations

• The tangential acceleration:  $a_t = \frac{d|\mathbf{v}|}{dt}$ • The radial acceleration:  $a_r = -a_C = -\frac{v^2}{r}$ 

The total acceleration: • Magnitude  $a = \sqrt{a_r^2 + a_t^2}$  Total Acceleration, In Terms of Unit Vectors

# Define the following unit vectors *r̂* and *θ̂*

- r lies along the radius vector
- $\theta$  is tangent to the circle
- The total acceleration is

$$\mathbf{a} = \mathbf{a}_t + \mathbf{a}_r = \frac{d\left|\mathbf{v}\right|}{dt}\hat{\theta} - \frac{v^2}{r}\hat{\mathbf{r}}$$



#### **Relative Velocity**

- Two observers moving relative to each other generally do not agree on the outcome of an experiment
- For example, observers A and B below see different paths for the ball



# Relative Velocity, generalized

- Reference frame S is stationary
- Reference frame S is moving at v<sub>o</sub>
  - This also means that
     S moves at -v<sub>o</sub>
     relative to S
- Define time t = 0 as that time when the origins coincide



# Relative Velocity, equations

The positions as seen from the two reference frames are related through the velocity

•  $r' = r - v_o t$ 

 The derivative of the position equation will give the velocity equation

•  $\mathbf{v}' = \mathbf{v} - \mathbf{v}_{o}$ 

 These are called the Galilean transformation equations Acceleration in Different Frames of Reference

- The derivative of the velocity equation will give the acceleration equation
- The acceleration of the particle measured by an observer in one frame of reference is the same as that measured by any other observer moving at a *constant velocity* relative to the first frame.