Chapter 4

Motion in Two Dimensions

Motion in Two Dimensions

- Using + or - signs is not always sufficient to fully describe motion in more than one dimension
- Vectors can be used to more fully describe motion
- Still interested in displacement, velocity, and acceleration
- Will serve as the basis of multiple types of motion in future chapters

Position and Displacement

- The position of an object is described by its position vector, \mathbf{r}
- The displacement of the object is defined as the change in its position
- $\Delta \mathbf{r}=\mathbf{r}_{\mathrm{f}}-\mathbf{r}_{\mathrm{i}}$

General Motion Ideas

- In two- or three-dimensional kinematics, everything is the same as as in one-dimensional motion except that we must now use full vector notation
- Positive and negative signs are no longer sufficient to determine the direction

Average Velocity

- The average velocity is the ratio of the displacement to the time interval for the displacement

$$
\overline{\mathbf{v}}=\frac{\Delta \mathbf{r}}{\Delta \mathrm{t}}
$$

- The direction of the average velocity is the direction of the displacement vector, $\Delta \mathbf{r}$

Average Velocity, cont

- The average velocity between points is independent of the path taken
- This is because it is dependent on the displacement, also independent of the path

Instantaneous Velocity

- The instantaneous velocity is the limit of the average velocity as Δt approaches zero
- The direction of the instantaneous velocity is along a line that is tangent to the path of the particle's direction of motion

$$
\mathbf{v} \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta \mathbf{r}}{\Delta t}=\frac{d \mathbf{r}}{d t}
$$

Instantaneous Velocity, cont

- The direction of the instantaneous velocity vector at any point in a particle's path is along a line tangent to the path at that point and in the direction of motion
- The magnitude of the instantaneous velocity vector is the speed
- The speed is a scalar quantity

Average Acceleration

- The average acceleration of a particle as it moves is defined as the change in the instantaneous velocity vector divided by the time interval during which that change occurs.

$$
\overline{\mathbf{a}}=\frac{\mathbf{v}_{\mathrm{f}}-\mathbf{v}_{i}}{t_{f}-t_{i}}=\frac{\Delta \mathbf{v}}{\Delta t}
$$

Average Acceleration, cont

- As a particle moves, $\Delta \mathbf{v}$ can be found in different ways
- The average acceleration is a vector quantity directed along $\Delta \mathbf{v}$

Instantaneous Acceleration

- The instantaneous acceleration is the limit of the average acceleration as $\Delta \mathbf{v} / \Delta t$ approaches zero

$$
\mathbf{a} \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta \mathbf{v}}{\Delta t}=\frac{d \mathbf{v}}{d t}
$$

Producing An Acceleration

- Various changes in a particle's motion may produce an acceleration
- The magnitude of the velocity vector may change
- The direction of the velocity vector may change
- Even if the magnitude remains constant
- Both may change simultaneously

Kinematic Equations for TwoDimensional Motion

- When the two-dimensional motion has a constant acceleration, a series of equations can be developed that describe the motion
- These equations will be similar to those of one-dimensional kinematics

Kinematic Equations, 2

- Position vector $\mathbf{r}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}$
- Velocity $\quad \mathbf{v}=\frac{d \mathbf{r}}{d t}=v_{x} \hat{\mathbf{i}}+v_{y} \hat{\mathbf{j}}$
- Since acceleration is constant, we can also find an expression for the velocity as a function of time: $\mathbf{v}_{f}=\mathbf{v}_{i}+\mathbf{a} t$

Kinematic Equations, 3

- The velocity vector can be represented by its components
- \mathbf{v}_{f} is generally not along the direction of either \mathbf{v}_{i} or $\mathbf{a} t$

(a)

Kinematic Equations, 4

- The position vector can also be expressed as a function of time:
- $\mathbf{r}_{f}=\mathbf{r}_{i}+\mathbf{v}_{i} t+1 / 2 \mathbf{a}^{2}$
- This indicates that the position vector is the sum of three other vectors:
- The initial position vector
- The displacement resulting from $\mathbf{v}_{i} t$
- The displacement resulting from $1 / 2 \mathbf{a} t^{2}$

Kinematic Equations, 5

- The vector representation of the position vector
- \mathbf{r}_{f} is generally not in the same direction as \mathbf{v}_{i} or as \mathbf{a}_{i}
- \mathbf{r}_{f} and \mathbf{v}_{f} are generally not in the
 same direction

Kinematic Equations, Components

- The equations for final velocity and final position are vector equations, therefore they may also be written in component form
- This shows that two-dimensional motion at constant acceleration is equivalent to two independent motions
- One motion in the x-direction and the other in the y-direction

Kinematic Equations, Component Equations

- $\mathbf{v}_{f}=\mathbf{v}_{i}+\mathbf{a} t$ becomes
- $\mathrm{v}_{x f}=\mathrm{v}_{x i}+\mathrm{a}_{x} t$ and
- $\mathrm{v}_{y f}=\mathrm{v}_{y i}+\mathrm{a}_{y} t$
- $\mathbf{r}_{\boldsymbol{f}}=\mathbf{r}_{\boldsymbol{i}}+\mathbf{v}_{i} t+1 / 2 \mathbf{a} t^{2}$ becomes
- $\mathrm{x}_{f}=\mathrm{x}_{i}+\mathrm{v}_{x i} t+1 / 2 \mathrm{a}_{\mathrm{x}} t^{2}$ and
- $\mathrm{y}_{f}=\mathrm{y}_{i}+\mathrm{v}_{y i} t+1 / 2 \mathrm{a}_{\boldsymbol{y}} t^{t}$

Projectile Motion

- An object may move in both the x and y directions simultaneously
- The form of two-dimensional motion we will deal with is called projectile motion

Assumptions of Projectile Motion

- The free-fall acceleration \mathbf{g} is constant over the range of motion
- And is directed downward
- The effect of air friction is negligible
- With these assumptions, an object in projectile motion will follow a parabolic path
- This path is called the trajectory

Verifying the Parabolic Trajectory

- Reference frame chosen
- y is vertical with upward positive
- Acceleration components
- $\mathrm{a}_{y}=-\mathrm{g}$ and $\mathrm{a}_{x}=0$
- Initial velocity components
- $\mathrm{v}_{x i}=\mathrm{v}_{i} \cos \theta$ and $\mathrm{v}_{y i}=\mathrm{v}_{i} \sin \theta$

Verifying the Parabolic Trajectory, cont

- Displacements
- $x_{f}=v_{x i} t=\left(v_{i} \cos \theta\right) t$
- $y_{f}=v_{y i} t+1 / 2 a_{y} t^{2}=\left(v_{i} \sin \theta\right) t-1 / 2 g t^{2}$
- Combining the equations gives:

$$
y=\left(\tan \theta_{i}\right) x-\left(\frac{g}{2 v_{i}^{2} \cos ^{2} \theta_{i}}\right) x^{2}
$$

- This is in the form of $y=a x-b x^{2}$ which is the standard form of a parabola

Analyzing Projectile Motion

- Consider the motion as the superposition of the motions in the x - and y-directions
- The x-direction has constant velocity
- $a_{x}=0$
- The y-direction is free fall
- $a_{y}=-g$
- The actual position at any time is given by: $\mathbf{r}_{f}=\mathbf{r}_{i}+\mathbf{v}_{i} t+1 / 2 \mathbf{g}^{2}$

Projectile Motion Vectors

- $\mathbf{r}_{f}=\mathbf{r}_{i}+\mathbf{v}_{i} t+1 / 2 \mathbf{g} t^{2}$
- The final position is the vector sum of the initial position, the position resulting from the initial velocity and the position resulting from the acceleration

Projectile Motion Diagram

Projectile Motion Implications

- The y-component of the velocity is zero at the maximum height of the trajectory
- The accleration stays the same throughout the trajectory

Range and Maximum Height of a Projectile

- When analyzing projectile motion, two characteristics are of special interest
- The range, R, is the horizontal distance of the projectile
- The maximum height the projectile reaches is h

Height of a Projectile, equation

- The maximum height of the projectile can be found in terms of the initial velocity vector:

$$
h=\frac{v_{i}^{2} \sin ^{2} \theta_{i}}{2 g}
$$

- This equation is valid only for symmetric motion

Range of a Projectile, equation

- The range of a projectile can be expressed in terms of the initial velocity vector:

$$
R=\frac{v_{i}^{2} \sin 2 \theta_{i}}{g}
$$

- This is valid only for symmetric trajectory

More About the Range of a Projectile

Range of a Projectile, final

- The maximum range occurs at $\theta_{i}=45^{\circ}$
- Complementary angles will produce the same range
- The maximum height will be different for the two angles
- The times of the flight will be different for the two angles

Projectile Motion - Problem Solving Hints

- Select a coordinate system
- Resolve the initial velocity into x and y components
- Analyze the horizontal motion using constant velocity techniques
- Analyze the vertical motion using constant acceleration techniques
- Remember that both directions share the same time

Non-Symmetric Projectile Motion

- Follow the general rules for projectile motion
- Break the y-direction into parts
- up and down or
- symmetrical back to initial height and then the rest of the height
- May be non-symmetric in other ways

Uniform Circular Motion

- Uniform circular motion occurs when an object moves in a circular path with a constant speed
- An acceleration exists since the direction of the motion is changing
- This change in velocity is related to an acceleration
- The velocity vector is always tangent to the path of the object

Changing Velocity in Uniform Circular Motion

- The change in the velocity vector is due to the change in direction

(b)
- The vector diagram shows $\Delta \mathbf{v}=\mathbf{v}_{f}-\mathbf{v}_{i}$

Centripetal Acceleration

- The acceleration is always perpendicular to the path of the motion
- The acceleration always points toward the center of the circle of motion
- This acceleration is called the centripetal acceleration

Centripetal Acceleration, cont

- The magnitude of the centripetal acceleration vector is given by

$$
a_{C}=\frac{v^{2}}{r}
$$

- The direction of the centripetal acceleration vector is always changing, to stay directed toward the center of the circle of motion

Period

- The period, T, is the time required for one complete revolution
- The speed of the particle would be the circumference of the circle of motion divided by the period
- Therefore, the period is $T \equiv \frac{2 \pi r}{v}$

Tangential Acceleration

- The magnitude of the velocity could also be changing
- In this case, there would be a tangential acceleration

Total Acceleration

- The tangential acceleration causes the change in the speed of the particle
- The radial acceleration comes from a change in the direction of the velocity vector

$$
\mathbf{a}=\mathbf{a}_{r}+\mathbf{a}_{t}
$$

Total Acceleration, equations

- The tangential acceleration: $a_{t}=\frac{d|\mathbf{v}|}{d t}$
- The radial acceleration: $a_{r}=-a_{C}=-\frac{v^{2}}{r}$
- The total acceleration:
- Magnitude $a=\sqrt{a_{r}^{2}+a_{t}^{2}}$

Total Acceleration, In Terms of Unit Vectors

- Define the following unit vectors

$$
\hat{\mathbf{r}} \text { and } \hat{\theta}
$$

- r lies along the radius vector
- θ is tangent to the circle
- The total acceleration is

$$
\mathbf{a}=\mathbf{a}_{t}+\mathbf{a}_{r}=\frac{d|\mathbf{v}|}{d t} \hat{\theta}-\frac{v^{2}}{r} \hat{\mathbf{r}}
$$

Relative Velocity

- Two observers moving relative to each other generally do not agree on the outcome of an experiment
- For example, observers A and B below see different paths for the ball

© 2004 Thomson/Brooks Cole

Relative Velocity, generalized

- Reference frame S is stationary
- Reference frame S is moving at \mathbf{v}_{0}
- This also means that S moves at $-\mathbf{v}_{\text {o }}$ relative to S
- Define time $t=0$ as that time when the origins coincide

Relative Velocity, equations

- The positions as seen from the two reference frames are related through the velocity
- $\mathbf{r}^{\prime}=\mathbf{r}-\mathbf{v}_{0} t$
- The derivative of the position equation will give the velocity equation
- $\mathbf{v}^{\prime}=\mathbf{v}$ - $\mathbf{v}_{\text {o }}$
- These are called the Galilean transformation equations

Acceleration in Different Frames of Reference

- The derivative of the velocity equation will give the acceleration equation
- The acceleration of the particle measured by an observer in one frame of reference is the same as that measured by any other observer moving at a constant velocity relative to the first frame.

