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A B S T R A C T   

This study assessed the effects of fluoride (FLO) on neurobehavioral function, brain oxidative status and in
flammatory response, acetylcholinesterase activity, and histopathological picture in Nile tilapia (Oreochromis 
niloticus) with a mitigative trial using Artichoke (Cynara scolymus) leaf extract (AE). To achieve this, 240 
O. niloticus fish (30 ± 1.5 g average initial weight) were distributed into four groups, each with four replicates in 
a 60-day feeding trial. A basal diet without supplements was given to the control group. A 300 mg/kg AE 
supplement was included in the 2nd group’s basal diet (AE). A sub-lethal concentration of FLO (6.1 mg/L) was 
administered to the 3rd group of tilapias. Meanwhile, the last group was fed an AE-containing diet and exposed 
to FLO. The findings exhibited that supplementing AE to the O. niloticus diets significantly resolved the FLO- 
induced decrease in the frequency of middle swimming, feeding, and middle crossing. Additionally, AE food 
supplementation significantly (P < 0.05) attenuated the FLO-induced-aggression. The significant exhaustion in 
enzymatic and non-enzymatic antioxidant brain content documented in FLO-exposed fish was significantly 
reverted by AE incorporation into their diets. Also, cortisol, glucose, cholesterol, triglycerides, 8-OHdG, and MDA 
displayed detectable increases in FLO-exposed groups, but the level of brain acetylcholinesterase was signifi
cantly reduced. Pro-inflammatory cytokines (il-1β and tnf-α), apoptotic (caspase-3 and p53), and stress-related 
(hsp70) genes were noticeably elevated in the brains of fish treated with FLO, whereas the expression of anti- 
oxidative (sod and cat) genes was dramatically downregulated. Yet, incorporating AE in the diet repaired the 
alterations that FLO elicited in most of the indicators mentioned above. Further, AE dietary supplementation 
significantly minimized the FLO-induced histopathological alterations in the fish brain tissue. These findings 
suggested that AE would be an effective dietary supplement to lessen the harmful effects of FLO on the Nile 
tilapia’s behavior and brain health.  
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1. Introduction 

The aquatic ecosystem is a sump for numerous environmental pol
lutants (El-Bouhy et al., 2023). One of the most prevalent substances in 
the environment is fluorine (Davison and Weinstein, 2006). In soil and 
rock minerals, organic and inorganic fluorine compounds prevail. 
Fluoride (FLO) is crucial for the growth and development of living things 
(Mahmoud et al., 2020). Freshwater FLO values in unpolluted areas 
range from 0.01 to 0.3 mg/L (Camargo, 2003). Nevertheless, both 
human and natural activities like FLO-containing agro-pesticides and 
fertilizers use, swift industrialization, the release of fluoridated munic
ipal water, FLO-mineral weathering, and volcanic eruptions assist in the 
increment in FLO burdens in groundwater and surface water. According 
to an investigation of industrial effluent, the FLO level ranged from 0.1 
g/L to 3–5 g/L (Wu et al., 2006). Fish are the primary targets of FLO 
pollution in aquatic ecosystems as they can get FLO from the water (Cao 
et al., 2015). 

Fluorosis is a significant clinical and public health issue worldwide 
(Kaur et al., 2017). Enzymatic poisons like FLO ions hinder metabolic 
processes, including glycolysis and protein synthesis, by interfering with 
enzyme activity (Camargo, 2003). Excessive FLO in fish may have a 
range of detrimental consequences. The hematoencephalic barrier is 
permeable to FLO, which can settle in different brain parts (Ottappi
lakkil et al., 2023), leading to aberrant behavior (Bajpai et al., 2009). 
Exposure to FLO induces a delay in the maturation of sensorimotor re
sponses, a decline in the nociceptive reflex reaction, a spike in locomotor 
activity, and inhibition of acetylcholinesterase (AChE) activity (Domi
nguez et al., 2021). Moreover, FLO has been linked to several health 
risks, including alteration to the key biochemical pathways (Guo et al., 
2018), triggering oxidative stress (Gupta and Poddar, 2014), damaging 
the head kidney structure, and impaired immune defenses (Ling et al., 
2017), hindering the expression of pro-inflammatory cytokines and 
destroying the host’s resistance against bacteria (Singh et al., 2017). 

There is currently no method to avert fluorosis; phytochemical-based 
remediation of the condition’s identifying symptoms has been postu
lated as a potential cure. Oxidative stress is viewed as FLO’s main action 
(El-Houseiny et al., 2022a; Miranda et al., 2021). The well-known 
Fenton reaction, which leads to radical production, may be triggered 
by FLO (Agalakova and Gusev, 2012). Consequently, natural supple
mentation with antioxidants might effectively alleviate the detrimental 
impacts of FLO on fish (Cao et al., 2015). The artichoke, Cynara scolymus 
L., is a mediterranean native plant and a member of the Asteraceae 
family. It is grown worldwide due to its beneficial nutritional and 
therapeutic characteristics (Cavini et al., 2022). Officially, items made 
from therapeutic artichoke are just dried leaves. In addition to the 
polysaccharide inulin, fibers, and minerals, it is an excellent source of 
polyphenolic chemicals, primarily caffeoylquinic acids, and flavonoids, 
which were extracted from the plant’s polar extracts (Ibrahim et al., 
2022). The phenolic compounds in artichokes protect against oxidative 
harm to biological components like proteins, lipids, and DNA by scav
enging reactive oxygen species (ROS) and free radicals (Ceccarelli et al., 
2010). According to Gebhardt (2001), flavonoids and 1,3-dicaffeoyl
quinic acid were thought to be choleretic, anti-cholestatic, and 
diuretic, lowering cholesterol. The plant and its derivatives are 
frequently used to treat dyspepsia, but they are also traditionally used to 
avert and cure atherosclerosis and renal malfunction (diuretic) 
(Mahady, 2009). It has a neuroprotective effect against aflatoxin in rats 
(Ibrahim et al., 2022). Unfortunately, little is known regarding the 
impact of AE as a supplement in the fish diet. To demonstrate the effects 
of chronic FLO exposure, we selected the common and economically 
significant freshwater fish Nile tilapia (Oreochromis niloticus) in the 
current study. Due to it being affordable, a good source of protein and 
micronutrients, fast-growing, and tolerant to a wide range of environ
mental factors, tilapia farming has gained the attention of fish farmers 
(Mounes et al., 2024; Surachetpong et al., 2020). Also, it has been 
employed effectively in numerous xenobiotic ecotoxicological 

experiments and is capable of withstanding extreme environmental 
stress (Abd El-Hakim et al., 2020; El-Houseiny et al., 2022b; El-Houseiny 
et al., 2023; El Basuini et al., 2020; Mohamed et al., 2019). 

In the early phases of growth and development, the central nervous 
system is far more vulnerable to FLO intoxications (Dominguez et al., 
2021). Considering the rising demand for FLO on a global scale and the 
possibility of expanding anthropogenic supplies, it is crucial to create a 
nutritional plan to counteract its adverse impacts on fish. Furthermore, 
the addition of AE to the diets of cultured fish may be beneficial 
depending on their biological processes. Hence, behavioral, biochem
ical, molecular, and histological studies were used in the current 
investigation to evaluate the hazards of FLO exposure as a neurotoxic 
agent and the ameliorative impact of AE in Nile tilapia (O. niloticus). 

2. Material and methods 

2.1. Reagents 

As a white crystalline powder, sodium fluoride (99% purity) was 
procured from Thomas Baker Chemical Industries Pvt. Ltd. (Mumbai, 
India). Commercial AE (super artichoke) capsules were manufactured by 
Western Pharmaceutical Industries in Cairo, Egypt, and used in this 
investigation. HPLC was employed to define the biologically active 
components of the AE in the earlier study of Ibrahim et al. (2022). 
Seventeen elements were found in the artichoke capsule during analysis. 
The chlorogenic acid (28.00 mg/g) in the artichoke has the highest 
component content, followed by several substances, including pyrocat
echol (1.86 mg/g), gallic acid (1.24 mg/g), catechin (1.39 mg/g), nar
ingenin (1.29 mg/g), and ferulic acid (1.07 mg/g). 

2.2. Fish and experimental circumstances 

The male Nile tilapia fingerlings, which had an average body weight 
of 30 ± 1.5 g, were acquired from the Fish Research Centre, Zagazig 
University, Egypt. Before the experiment began, the fish were raised and 
maintained in a lab environment on a basal diet in glass aquariums with 
70 L of dechlorinated tap water to minimize the influence of other 
detrimental factors. The following values were recorded across the 
course of the study: 27.3 ± 0.05 ◦C, 6.5 ± 0.5 pH, 0.03 ± 0.01 mg 
ammonia/L, and 6.80 ± 0.5 mg dissolved oxygen /L. The water pa
rameters were within the varieties required for fish growth during the 
trial (Boyd and Tucker, 2012). In the laboratory, the photoperiod was 
adjusted to 12 h of light and 12 h of darkness. Under the supervision of 
Zagazig University’s Animal Use in Research Committee, the experiment 
was conducted per the National Institutes of Health’s (NIH) ethical 
standards for the Use and Care of Laboratory Animals in Scientific In
vestigations (ZU-IACUC/2/F/274/2023). 

2.3. Diet formulation and experiment layout 

Consistent with Nutrient Requirements of Fish and Shrimp (Jobling, 
2012), the experimental diet ingredients displayed in Table 1 were 
created to meet the fish’s nutritional demands to the greatest extent 
possible. The components of the diet were well combined before being 
mechanically pelletized, dried in the air at room temperature for 24 h, 
and then put into storage at 4 ◦C until use. Following the guidelines of 
AOAC (2006), the moisture, crude protein, crude fiber, crude fat, and 
total ash contents of each studied diet were examined by the forced-air 
oven, macro-Kjeldahl, ether extraction method, and muffle furnace, 
respectively. Fish were fed at a rate of 5% of their live weight three times 
per day, at 9:00, 12:00, and 16:00 and any extra feed and feces were 
siphoned out. Post acclimation, 240 fish were allocated into four groups, 
each consisting of four replicates (15 fish per replica, a total of 60 fish in 
each group). A basic meal without any supplementation was supplied to 
the normal control group (CON), and the 2nd group (AE) received a 
basal diet with 300 mg AE /kg diet. The AE dose was chosen based on a 
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preliminary analysis in which the effect of various AE doses (100, 300, 
and 500 mg/Kg diet) on growth performance indices (final body weight, 
body weight gain, and specific growth rate), fish survival, and physio
logical parameters of Nile tilapia including hepatic and kidney function 
were assessed. The results revealed that adding 300 and 500 mg/Kg diet 
of AE to the Nile tilapia diet significantly improved their survival and 
growth without adversely affecting hepatic and renal function. No sig
nificant difference was detected between the effects of the two doses, 
300 and 500 mg/Kg diet. Hence, the medium dose of 300 mg/Kg diet of 
AE was chosen to be tested. In the third group of tilapias (FLO), 1/10 of 
the calculated c-LC50 (6.1 mg/L) of FLO was administered (Ahmed et al., 
2020). The water was entirely changed every 48 h by evolving the fish to 
freshly made FLO solutions. The last group (AE + FLO) received AE 
while also being exposed to FLO, as previously discussed. FLO exposure 
and AE supplementation were maintained for two months. Mortality 
rate (MR, %) = 100- (Fish number at the end of feeding trial/ Initial fish 
number) × 100. 

2.4. Behavioral assays 

As described by Altmann (1974), behavior metrics were executed 
across the investigation between (09:00 AM) and (04:00 PM) through 
the approach of direct observation with a stopwatch and a video camera. 
Throughout the testing time, all behavior attitudes were observed and 
documented every (15) minutes for six hours. These were the behavior 
patterns that were observed: 

Feeding behavior refers to the actual fish meal consumption during 
feeding time following Bond (1979) methodology. 

Surfacing behavior: documented as the frequency of fish air piping 
near the water’s surface due to insufficient dissolved oxygen in aquar
iums (El-Hawarry et al., 2018). 

Swimming behavior implies monitoring fish swimming in a fast or 
slow manner without engaging in any behavioral activity at the top, 
middle, or bottom of the aquarium, according to the procedure set by 

Chen et al. (2001). 
Body shaking is described as a quick series of two or three lateral 

shakes of the entire fish body (Myrberg Jr, 1972). 
Aggressive behavior: In compliance with the protocols of De Boer 

(1980); Frey and Miller (1972), various patterns were tracked to eval
uate fish aggression (the movement of one fish in the direction of 
another), fin tugging (one fish biting another fish), chasing (the fre
quency with which a fish swims vigorously after another), fleeing (fish 
escaping the enemy), and mouth pushing (the number of times two fish 
stand face to face, mouths wide against each other). 

Laterality refers to the quantity of fish observed at the bottom of an 
aquarium moving side to side for more than three minutes each day 
(Ismail et al., 2009). 

Crossing test: a midline externally divided the aquarium, and the 
number of fish that crossed it within three minutes for each aquarium 
was recorded (Scott et al., 2003). 

2.5. Blood and brain collection 

The fish were anesthetized at the end of the experimental period with 
tricaine methanesulfonate (MS-222, Argent Chemical Labs, Redmond, 
Washington, USA) to collect blood and reduce handling stress. Twelve 
blood samples from each group (3/replicate) were extracted from the 
caudal vessels without using an anticoagulant, left to cool at room 
temperature, and then centrifuged for 15 min at 3000 ×g to separate the 
serum, which was stored at − 20 ◦C until a physiological profile evalu
ation. After blood samples were gathered, specimens of the brain from 
30 fish from each group were retrieved, freed of adherent fat and con
nective tissues, rinsed in cooled saline solution (0.9%), and dried on 
tissue paper. After that, brain samples were collected from twelve fish 
randomly taken from all tanks per group and then homogenized in 10 
volumes of phosphate-buffered saline (pH 7.4), centrifuged at 664 ×g at 
4 ◦C for 15 min, and the supernatant samples were maintained at − 80 ◦C 
for biochemical analysis. To evaluate the expression of apoptotic and 
antioxidant genes, some tissues (12/group) were treated with TRIzol 
(Thermo Scientific) reagent and deposited in a deep freezer (− 80 ◦C) for 
RNA separation. The remaining brain tissue samples were obtained and 
fixed in a 10% neutral formalin buffer for histopathological analysis. 

2.6. Biochemical assays and DNA damage indicator 

We measured serum cortisol levels using an ELISA commercial kit 
from MyBioSource Inc., San Diego, CA, USA (Cat. No. MBS704055). 
Glucose levels were assessed using MyBioSource colorimetric kit (Cat
alog No. MBS841763). 8-hydroxy-2-deoxyguanosine (8-OHdG) activity 
was assessed by an ELISA commercial kit from My-Biosource (San Diego, 
CA, USA, Catalog No. MBS1601729), complying with the manufac
turer’s guidelines, as recommended by Setyaningsih et al. (2015). 
Colorimetric diagnostic kits (Spectrum Diagnostics, Egyptian Company 
for Biotechnology, Cairo, Egypt) were utilized for assessing serum total 
cholesterol (Catalog No. 230002) and triglycerides (Catalog No. 
314002) using the approaches of Allain et al. (1974) and McGowan et al. 
(1983), respectively. 

2.7. Evaluation of brain homogenate oxidative stress and lipid 
peroxidation markers and acetylcholinesterase activity 

Following compliance with the instructions provided by the manu
facturer, the reduced glutathione (GSH), glutathione peroxidase (GPx), 
catalase (CAT), superoxide dismutase (SOD), glutathione S-transferases 
(GST), and malondialdehyde (MDA) concentrations in the brain ho
mogenate were identified by colorimetric commercial kits of Bio
diagnostic Co., Cairo, Egypt (Catalog No. GR 25 11, GP 2524, CA 25 17, 
SD 25 21, GT 2519, and MD 25 29). The level of AChE activity in brain 
tissue was determined using an ELISA commercial kit from MyBioSource 
Inc., San Diego, CA, USA (Cat. No. MBS705766). 

Table 1 
Ingredients and proximate chemical analysis of the experimental diets.  

Ingredients (g /kg) Experimental diets 

C Artichoke leaf extract 

Fish meal 66% 190 190 
Ground corn 250 249.7 
Soybean meal 44% 340 340 
Corn oil 30 30 
Wheat bran 100 100 
Cod liver oil 20 20 
starch 40 40 
Artichoke leaf extract 0 0.3 
Vitamin premixa 10 10 
Mineral premixb 20 20 
Total 1000 1000 
Chemical analysis 
Crude protein (N × 6.25) 310.1 312.1 
Crude lipids 74.5 73.3 
Crude fiber 54.5 53.3 
Ash 55.6 56.8 
Nitrogen free extractc 505.4 504.6 
Gross energy (kcal/kg)d 4533.1 4530.1  

a Vitamin premix (per kg of premix): vitamin A,8000000 IU; vitamin E, 7000 
mg; vitamin D3, 2,000,000 IU; vitamin K3,1500 mg; biotin, 50 mg; folic acid, 
700 mg; nicotinic, 20,000 mg; pantothenic acid,7000 mg; vitamin B1, 700 mg; 
vitamin B2, 3500 mg; vitamin B6, 1000 mg; vitamin B12, 7 mg. 

b Mineral premix (per kg of premix): zinc sulfate, 4.0 g; iron sulfate, 20 g; 
manganese sulfate,5.3 g; copper sulfate, 2.7 g; calcium iodine, 0.3 g; sodium 
selenite, 70 mg; cobalt sulfate, 70 mg, and CaHPO4⋅2H2O up to 1 kg. 

c Calculated by difference (1000 –protein% + lipids% + ash% + crude fiber 
%). 

d Gross energy (GE) was calculated as 5.65, 9.45, and 4.11 kcal/g for protein, 
lipid, and NFE, respectively (NRC, 1993). 
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2.8. Transcriptional study of genes linked to stress, apoptosis, and 
antioxidants 

To get the total RNA, the frozen brain samples were subjected to 
TRIzol treatment (easyREDTM, iNtRON Biotechnology, Korea). The 
first-strand cDNA was generated from the extracted RNA using a 
Quantitect® Reverse Transcription kit from Qiagen (Germany). The 
primer’s forward and reverse sequences are presented in Table 2. The 
Rotor-Gene Q instrument was applied for the qPCR analysis via the 
QuantiTect® SYBR® Green PCR kit (Qiagen, Germany) under the 
following thermocycler conditions: 95 ◦C for 10 min, followed by 40 
cycles of 95 ◦C for 15 s, 60 ◦C for 30 s, and 72 ◦C for 30 s. All RT-qPCR 
experiments were performed in accordance with the minimum infor
mation for the publication of quantitative real-time PCR experiments 
(MIQE) guidelines (Bustin et al., 2009). The Schmittgen and Livak 
(2008) comparative 2− ΔΔCT method determined each gene’s relative 
mRNA expression pattern. The expression of reference genes gapdh, 
β-actin, and EF1α were studied for gene normalization. 

2.9. Histopathological study 

The whole brain of twelve arbitrarily chosen fish per group was 
sampled and trimmed as specified by Meyers (2009) and fixed in a 10% 
neutral buffered formalin solution for 48 h. After fixation, the brain 
tissue specimens were dehydrated in ethyl alcohol. They were cleared in 
Histo-Choice® (Sigma-Aldrich, St. Louis, USA), infiltrated and blocked 
in paraffin-beeswax mixture (90% paraffin and 10% beeswax), sectioned 
by Leica RM2125 RTS manual rotary microtome at sections five μm 
thick, stained with Harris hematoxylin and eosin Y solutions as specified 
by Suvarna et al. (2018) and examined by light microscope. The histo
logical alterations in the brain tissue were evaluated and quantitatively 
scored following the protocol suggested by Bernet et al. (1999) for 
assessing aquatic pollution with few modifications. Briefly, for each fish 
snapshots of ten randomly chosen non-duplicated high-power micro
scopic fields (×40) were made using the AmScope CMOS C-Mount mi
croscope camera (100 images per group) attached to a Nikon light 
microscope (Nikon Inc., New York, USA). Next, these images were 
interpreted where the encountered encephalopathic changes were 
classified into three reaction patterns (1) circulatory; congestion, 
edema, and hemorrhages, (2) inflammatory; intracerebral, and menin
geal inflammatory cell infiltration, gliosis, and perivascular leukocytic 

cuffing, and (3) regressive; neuronal pyknosis, and necrosis, peri
neuronal vacuolation and neuropil microcavitation. The frequency of a 
specific encephalopathic alteration within a group was calculated by 
dividing the number of images displayed by this alteration (lesion) by 
the total number of images in the group (100). Next, the brain index (the 
greater the index, the worse the pathological condition of the brains 
within a group) was calculated from the formula: 

Brain index = Σrp Σalt
(
aorg rp alt ×worg rp alt

)

where: rp (reaction pattern), alt (histopathological alteration), a is a 
score value signifies the degree of the alteration and its value ranged 
between zero (absence of the changes) and six (diffuse lesion), and w is 
an importance factor denotes the alteration seriousness and its value 
ranged between 1 (least importance) and 3 (great importance). 

2.10. Statistical analysis 

The data’s normality and variance homogeneity were assessed by the 
Kolmogorov-Smirnov and Levene’s tests. Once the normality assump
tions were satisfied, one-way Analysis of Variance (ANOVA) was used to 
statistically analyze the data by SPSS (version 16.0, SPSS Inc., USA). The 
Tukey’s multiple comparisons post hoc test was used to compare the 
means of the various groups. Statistical significance was considered at P 
< 0.05. The analysis’s findings were presented as means and standard 
error (±SE). Furthermore, GraphPad Prism version 8 (GraphPad Soft
ware, San Diego, CA, USA) was used for constructing the graph repre
senting the study findings. 

3. Results 

3.1. Fish mortalities and behavioral changes 

As displayed in Table 3, no significant differences in the mortality 
rate was detected among the different experimental fish groups. The 
impact of AE food supplementation on O. niloticus neurobehavioral 
performance parameters after 60 days of FLO exposure was summarized 
in Table 3. Compared to fish raised in unpolluted water, there were 
significant (P < 0.05) deficits in the frequency of eating, middle swim
ming behavior, and middle crossings in the FLO-exposed fish. Relative to 
control fish, FLO-exposed fish had considerably (P < 0.05) more body 
shaking frequency, surface and bottom swimming behavior, surfacing 

Table 2 
Oligonucleotide primer sequences and real-time PCR conditions.  

Gene name Primer sequences NCBI 
accession no. 

PRODUCT SIZE (BP.) 

hsp70 
F TTCAAGGTGATTTCAGACGGAG 

NM_001311332.1 111 R CTTCATCTTCACCAGGACCATG 

caspase-3 
F GGCTCTTCGTCTGCTTCTGT 

NM_001282894.1 80 R GGGAAATCGAGGCGGTATCT 

p53 
F TTTTCTCCTCCCTGTTCGTGG 

XM_025905405.1 125 R CGGGAACCTCATGCTTCACT 

cat 
F CCCAGCTCTTCATCCAGAAAC 

XM_019361816.2 103 R GCCTCCGCATTGTACTTCTT 

sod 
F GGTGCCCTGGAGCCCTA 

XM_003449940.5 99 R ATGCGAAGTCTTCCACTGTC 

tnf-α 
F CCAGAAGCACTAAAGGCGAAGA 

NM_001279533.1 82 R CCTTGGCTTTGCTGCTGATC 

il-1β 
F TGGTGACTCTCCTGGTCTGA 

XM_005457887.3 86 R GCACAACTTTATCGGCTTCCA 

gapdh 
F CCGATGTGTCAGTGGTGGAT 

NM_001279552.1 82 R GCCTTCTTGACGGCTTCCTT 

EF-1α 
F GCTTCAACGCTCAGGTCATC 

NM_001279647.1 87 R TGTGGGCAGTGTGGCAATC 

β-actin 
F TGACCTCACAGACTACCTCATG 

XM_003443127.5 89 R TGATGTCACGCACGATTTCC 

hsp70: Heat shock protein 70, p53: Tumor protein P53, cat: catalase, sod: superoxide dismutase, tnf-α: tumor necrosis factor alpha, il1-β: interleukin 1 beta, gapdh: 
Glyceraldehyde-3-phosphate dehydrogenase, EF-1α: Elongation factor-1 alpha. 
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frequency, laterality, and aggression signs (approach, fleeing, fin 
tugging, chasing, and mouth pushing). Instead, compared to fish-fed 
non-fortified diets, adding AE to O. niloticus diets significantly (P <
0.05) enhanced all neurobehavioral signs. Likewise, AE supplementa
tion to the FLO-exposed group positively impacts all behavioral vari
ables (P < 0.05). 

3.2. Lipid profile, stress, and DNA damage indicator 

Regarding lipid profile, a significant (P < 0.05) decline in cholesterol 
and triglycerides was noticed in the fish after receiving AE treatment for 
60 days (Table 4). Meanwhile, FLO exposure significantly raised the 
lipid profile’s variables compared to other groups. Surprisingly, FLO 
exposure and AE medication (AE + FLO group) decreased cholesterol 
and triglyceride levels near the levels of the CON group. Regarding 
glucose and cortisol levels, different reactions were induced by exposure 
to either AE or FLO alone. Fish in the FLO group had considerably higher 
blood glucose and cortisol levels than fish in any other group. Addi
tionally, fish exposed to FLO had a much higher 8-OHdG than the other 
groups. On the contrary, compared to fish-fed basal diets without any 
supplements, diets with AE supplements added resulted in considerably 
(P < 0.05) reduced glucose, cortisol, and 8-OHdG levels. The treatment 
of FLO-exposed groups with AE restored glucose, cortisol, and DNA 

damage indices (Table 4). 

3.3. Indicators of oxidative stress and lipid peroxidation in brain tissue 

As apparent in Table 4, fish exposed to FLO had significantly lower 
levels of enzymatic (GPx, CAT, SOD, and GST) and non-enzymatic (GSH) 
antioxidants than control fish, but significantly higher levels of MDA, a 
byproduct of lipid peroxidative destruction. Interestingly, when 
compared to fish fed a diet not supplemented with AE, brain tissues from 
the fish-fed supplemented diet displayed a significant improvement in 
CAT content but a significant decrease in MDA level. Compared to the 
FLO-exposed group, the variables mentioned above were better in the 
AE co-supplemented groups but remained considerably lower than those 
reported in the control group. 

3.4. Alterations to AChE levels in brain tissue 

Table 4 shows a significant (P < 0.05) decline in the brain AChE 
content in O. niloticus grown in FLO-polluted water compared to those 
produced in non-polluted water. Contrarily, fish fed an AE-enriched diet 
concomitant with FLO exposure significantly (P < 0.05) augmented 
AChE activity in their brain tissue. 

Table 3 
Effect of artichoke (Cynara scolymus) leaf extract (AE) supplementation on mortality rate and the behavioral responses of O. niloticus exposed to fluoride (FLO) for 60 
days.  

Items   Experimental groups   

CON AE FLO AE + FLO 

Mortality rate 2.22 ± 2.22 2.22 ± 0.00 6.66 ± 3.85 2.22 ± 2.22 
Behavioral patterns  
Feeding frequency 0.850a ± 0.028 0.923a ± 0.014 0.280c ± 0.015 0.486b ± 0.020 
Surfacing frequency 0.123bc ± 0.017 0.086c ± 0.014 0.450a ± 0.028 0.200b ± 0.011 

Swimming 
Surface 0.410c ± 0.032 0.416c ± 0.024 1.700a ± 0.057 0.816b ± 0.044 
Middle 3.466a ± 0.176 3.683a ± 0.130 1.533c ± 0.202 2.300b ± 0.115 
Bottom 0.926c ± 0.053 0.856c ± 0.048 1.356a ± 0.023 1.103b ± 0.014 

Body shaking frequency 0.040bc ± 0.005 0.016c ± 0.008 0.120a ± 0.011 0.060b ± 0.005 

Aggressive 

Approach 0.150b ± 0.011 0.113b ± 0.008 0.416a ± 0.060 0.226b ± 0.017 
Chasing 0.183c ± 0.012 0.140c ± 0.005 0.870a ± 0.017 0.340b ± 0.023 
Fin tugging 0.050bc ± 0.005 0.016c ± 0.008 0.306a ± 0.023 0.090b ± 0.005 
Fleeing 0.103c ± 0.008 0.086c ± 0.012 0.533a ± 0.044 0.226b ± 0.014 
Mouth Pushing 0.030c ± 0.005 0.010c ± 0.005 0.346a ± 0.14 0.173b ± 0.014 

Laterality 0.010c ± 0.005 0.000c ± 0.000 1.133a ± 0.088 0.350b ± 0.028 
No. of midline crossing 2.316ab ± 0.116 2.433a ± 0.076 1.106c ± 0.023 2.000b ± 0.057 

Values are represented as the mean ± SE. The means within the same row carrying different superscripts are significant at P < 0.05. (N = 12/group) CON: Fish fed a 
basal diet without any supplementation. Artichoke leaf extract (AE) group: Fish fed a basal diet supplemented with 300 mg AE /kg diet. Fluoride group (FLO): Fish fed 
on a basal diet and exposed to 6.1 mg/l. AE + FLO group: Fish fed a basal diet containing 300 mg AE and exposed to 6.1 mg/L FLO. 

Table 4 
Effect of artichoke (Cynara scolymus) leaf extract (AE) supplementation on the biochemical parameters and brain AChE of O. niloticus exposed to fluoride (FLO) for 60 
days.  

Items Experimental groups 

CON AE FLO AE + FLO 

Serum 

Cholesterol (mg/dl) 91.50b ± 2.565 72.66c ± 1.201 125.83a ± 0.927 96.00b ± 1.154 
Triglycerides (mg/dl) 82.33c ± 1.452 75.33d ± 0.881 111.66a ± 2.027 91.66b ± 0.881 
Cortisol (ng/mL) 5.73bc ± 2.603 5.03c ± 0.881 8.25a ± 2.557 6.44b ± 1.097 
Glucose (mg/dl) 72.83c ± 0.927 60.16d ± 1.166 106.33a ± 1.452 81.00b ± 1.154 
8-OHdG (ng/mL) 22.63c ± 1.329 22.58c ± 1.087 75.33a ± 1.452 33.00b ± 1.154 

Brain homogenate 

AChE (ng/mg) 8.58a ± 0.495 8.50a ± 0.519 3.10c ± 0.152 6.36b ± 0.277 
SOD (U/g tissue) 4.07a ± 0.050 4.23a ± 0.037 1.99c ± 0.037 3.35b ± 0.104 
CAT (U/g tissue) 1.86b ± 0.051 2.40a ± 0.056 1.00d ± 0.063 1.52c ± 0.043 
GPX (U/g tissue) 142.83a ± 1.481 148.00a ± 2.081 92.73c ± 1.545 123.00b ± 2.309 
GSH (mmol/g tissue) 2.37a ± 0.014 2.40a ± 0.011 1.07c ± 0.050 2.08b ± 0.046 
GST (U/ g tissue) 2.21a ± 0.011 2.30a ± 0.017 1.07c ± 0.038 2.02b ± 0.037 
MDA (nmol/g tissue) 11.23bc ± 0.260 10.26c ± 0.2407 36.35a ± 3.336 18.16b ± 0.726 

Values are represented as the mean ± SE. The means within the same row carrying different superscripts are significant at P < 0.05. (N = 12 / group) CON: Fish fed a 
basal diet without any supplementation. Artichoke leaf extract (AE) group: Fish fed a basal diet supplemented with 300 mg AE / kg diet. Fluoride group (FLO): Fish fed 
on a basal diet and exposed to 6.1 mg/l. AE + FLO group: Fish fed a basal diet containing 300 mg AE and exposed to 6.1 mg FLO /L. 
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3.5. Gene expression profile 

The expression of genes implicated in antioxidants (cat, sod) was 
significantly (P < 0.05) up-regulated but the apoptotic casp-3 gene was 
significantly (P < 0.05) down regulated in the brain of tilapias fed the 
AE-enriched diet than those in the CON group (Figs. 1 and 3). In 
contrast, the expression of genes correlated to inflammation (tnf-α and il- 
1β), stress (hsp70), and apoptosis (p53) showed a trend toward down- 

regulation, but non-significant (Figs. 2 and 3). Yet, in fish exposed to 
FLO, the inflammatory and apoptotic genes were significantly (P < 0.05) 
upregulated compared to the control group. Furthermore, (cat and sod) 
genes were diminished in the FLO-exposed group. Meanwhile, the AE +
FLO group showed improvements in the previously stated criteria to the 
FLO-exposed group. 

Fig. 1. Effect of fluoride (FLO) exposure and/or artichoke leaf extract (AE) supplementation for 60 days on mRNA expression of (A) superoxide dismutase (sod) and 
(B) catalase (cat) in the brain of Oreochromis niloticus. Data expressed as mean ± SE, N = 12 for each group. Each bar carrying different letters (a, b, and c) 
significantly differed at P < 0.05. 

Fig. 2. Effect of fluoride (FLO) exposure and/or artichoke leaf extract (AE) supplementation for 60 days on mRNA expression of (A) tumor necrosis factor-alpha (tnf- 
α) and (B) interleukin 1 beta (il1- β) genes in the brain of Oreochromis niloticus. Data expressed as mean ± SE, N = 12 for each group. Each bar carrying different 
letters (a, b, and c) significantly differed at P < 0.05. 

Fig. 3. Effect of fluoride (FLO) exposure and/or artichoke leaf extract (AE) supplementation for 60 days on mRNA expression of (A) heat shock protein 70 (hsp70), 
(B) tumor suppressor gene (p53), and (C) caspase-3 in the brain of Oreochromis niloticus. Data expressed as mean ± SE, N = 12 for each group. Each bar carrying 
different letters (a, b, and c) significantly differed at P < 0.05. 
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3.6. Histopathological findings 

The light microscopic examination and the image analysis of the 
cerebral tissue sections declared normal histological pictures with nil 
encephalopathic alterations in the CON and AE groups (Fig. 4, A, and B). 
Fluoride exposure induced a vast array of encephalopathic morpholog
ical changes, including cerebral and meningeal vascular congestions, 
leukocytic infiltrations, neuronal pyknosis, necrosis with perineuronal 
vacuolations, and neuropil microcavitation (Fig. 4, C and D). Supple
mentation with artichoke leaf extract significantly lowered the fre
quency and lessened the severity of the fluorine-induced 
encephalopathic changes but did not normalize the brain tissue in the 

AE + FLO group. The basic alterations in this group were retrogressive, 
such as neuronal pyknosis, necrosis, and neuropil microcavitation, with 
almost the absence of FLO-induced meningeal changes (Fig. 4, E, and F). 
The encephalopathic alterations and brain index of all groups were 
summarized in Table 5. 

4. Discussion 

The abundance of substantial FLO concentrations in water seriously 
threatens fish health. Despite this, there is no conclusive proof of its 
neurotoxicity in tilapia fish. Over the past decade, scientific and public 
attention on the welfare of farmed tilapia has intensified (Ayyat et al., 

Fig. 4. Representative light micrographs of the H&E-stained cerebral tissue sections show a normal histological picture in the CON (A) and AE groups (B). The 
cerebral tissues of the FLO group show notable encephalopathic alterations: vascular congestion (red arrows), neuronal pyknosis (black arrow), neuronal necrosis 
(black arrowheads), neuropil microcavitation (blue arrowheads), and meningeal infiltration with mononuclear cells (yellow arrowhead) (C and D). The cerebral 
tissues of the AE + FLO group show significant reductions in the fluoride-induced cerebral and meningeal changes, with the persistence of capillary congestion (red 
arrowheads), neuronal pyknosis (black arrow), neuronal necrosis (black arrowheads), and neuropil microcavitation (blue arrowheads). The scale bar equals 20 μm. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 5 
Effect of fluoride exposure (FLO) and artichoke leaf extract (AE) supplementation for 60 days on the histology of the brain tissue of O. niloticus.  

Histopathological alteration (HA) CON AE FLO AE + FLO 

Reaction pattern Type W FQ (%) Index FQ (%) Index FQ (%) Index FQ (%) Index 
Inflammatory alterations Leukocytic infiltration 2 0.00 0.00a ± 0.00 0.00 0.00c ± 0.00 14 2.6a ± 0.30 7 1.4b ± 0.30 

Perivascular cuffing 2 0.00 0.00b ± 0.00 0.00 0.00b ± 0.00 6 1.2a ± 0.32 3 0.6ab ± 0.30 
Gliosis 2 0.00 0.00c ± 0.00 0.00 0.00c ± 0.00 16 3.2a ± 0.32 8 1.6b ± 0.26 

Circulatory alterations Congestion 1 0.00 0.00c ± 0.00 0.00 0.00c ± 0.00 63 6.2a ± 0.20 32 3.2b ± 0.32 
Hemorrhages 1 0.00 0.00a ± 0.00 0.00 0.00a ± 0.00 4 0.40a ± 0.26 0 0.00a ± 0.00 
Edema 1 0.00 0.00b ± 0.00 0.00 0.00b ± 0.00 6 1.2a ± 0.32 2 0.40b ± 0.16 

Regressive alterations Neuronal pyknosis 2 0.00 0.00c ± 0.00 0.00 0.00c ± 0.00 46 9.0a ± 0.68 19 3.4b ± 0.30 
Neuronal necrosis 3 0.00 0.00c ± 0.00 0.00 0.00c ± 0.00 21 6.40a ± 0.60 11 3.30b ± 0.30 
Perineuronal vacuolation 2 0.00 0.00c ± 0.00 0.00 0.00c ± 0.00 64 13.2a ± 0.80 31 6.00b ± 0.00 
Neuropil vacuolation 1 0.00 0.00c ± 0.00 0.00 0.00c ± 0.00 36 3.6a ± 0.40 19 1.9b ± 0.10 

Brain index 0.00c ± 0.00 0.00c ± 0.00 47.00a ± 0.96 21.80b ± 1.17 

FQ (lesion frequency), W (importance factor), The values are shown in means ± SE. The means within the same row carrying different superscripts are significant at P 
< 0.05. CON: Fish fed a basal diet without any supplementation. Artichoke leaf extract (AE) group: Fish fed a basal diet supplemented with 300 mg AE /kg diet. 
Fluoride group (FLO): Fish fed on a basal diet and exposed to 6.1 mg/l. AE + FLO group: Fish fed a basal diet containing 300 mg AE and exposed to 6.1 mg FLO /L. 
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2024; van de Vis et al., 2020). Behavior reflects the responses of fish to 
their surroundings and is thus a crucial aspect of fish welfare (Cooke, 
2016). Aquaculture stressors have been associated with deviations in 
foraging behavior, aggressiveness, and swimming behavior, which 
makes them potential indicators of poor welfare (Khalil et al., 2022; 
Martins et al., 2012). Fish exposed to FLO in the current experiment 
showed an abrupt decrease in feeding frequency and midline crossing, 
reflecting diminished food consumption and activity. As enzymatic 
poisons, the FLO ions hinder protein synthesis, enhance glycolysis, and 
produce a substantial loss of body weight (Shalini and Sharma, 2015). 
Behavioral modifications such as breathing abnormalities and rapid and 
aggressive movement, which could affect fish metabolism, may be 
associated with decreasing feeding habits and growth rates (Martins 
et al., 2012). Moreover, fish under stressful circumstances frequently 
demonstrate reduced appetite (Conde-Sieira et al., 2018). Also, FLO 
deposition in the exoskeleton or bones can negatively impact develop
ment or other physiological processes (Shi et al., 2009). It could 
considerably partake in their reduced activity and feeding behavior 
alongside the related oxidative stress. In this regard, the growth- 
retarding consequences of FLO on many fish species were validated by 
multiple earlier research (El-Houseiny et al., 2022a; Yoshitomi and 
Nagano, 2012). Likewise, Chen et al. (2013) demonstrated that carp fish 
developed anorexia and decreased the effectiveness of food assimilation 
if exposed to FLO. On the other hand, fish-fed diets, including artichoke 
leaf extract, exhibited elevated feeding frequency and midline crossings. 
Following these findings, adding AE to the Sea Bream diet showed a 
growth-promoting impact (Gökçe et al., 2015). Consuming AE can boost 
the activity of digestive enzymes and promote growth (Gökçe et al., 
2015). Besides, antioxidant, choleretic, hepatoprotective, bile- 
enhancing and lipid-lowering effects which may effectively improve 
fish performance (Moglia et al., 2008; Salem et al., 2015). 

The fish in the present investigation that had been exposed to FLO 
had a variety of neurobehavioral imperfections, such as increased body 
shaking, surfacing swimming, aggressive behavior, and laterality. A 
number of underlying biological mechanisms might drive FLO-induced 
neurobehavioral impairments. FLO exposure alters the circadian cycle, 
induces anxiety-like behaviors, and reduces melatonin and brain anti
oxidant enzyme levels (Karaman et al., 2023). Brain tissue is a target for 
FLO (Kalisinska et al., 2014), and the capacity of FLO to disrupt ion 
transport and alter the physiological and morphological characteristics 
of neurons across the blood-brain barrier has been identified (Dec et al., 
2017). It is known that FLO exposure reduces the amounts of norepi
nephrine and epinephrine in the hippocampus and neocortex of exposed 
animals, impairing their ability to become acclimated to new environ
ments, which is similar to fish exploration behavior (Vorhees et al., 
2021). Furthermore, the shift in oxygen consumption demonstrated a 
substantial negative connection with erratic swimming and loss of body 
balance, and the fish use several physiological methods to deal with 
hypoxia, including changes in respiration rate and activity (such as 
surfacing swimming) (Kishore et al., 2022). Another potential expla
nation for fish’s FLO-induced neurobehavioral performance is the 
decreased AChE activity in the brain. AChE is a crucial enzyme in the 
regulation of the neural action potential. Continuous nerve firing is 
inhibited by AChE activity, which is crucial for properly operating the 
sensory and neuromuscular systems (Payne et al., 1996). Additionally, 
AChE is vital for various physiological processes such as cell adhesion, 
synaptogenesis, neurogenesis, stimulation of thrombopoiesis, hemato
poiesis, actions of dopamine neurons, and amyloid fiber association 
(Aswani and Trabucco, 2019). Fish behavioral alterations might arise 
from interrupted AChE activity (Oliveira et al., 2015). In this regard, 
Oliveira et al. (2012) displayed that fish swimming performance 
declined when AChE activity was inhibited. AChE activity and swim
ming behavior are also closely connected, according to a recent study by 
Yang et al. (2017). Moreover, there has already been evidence linking 
cholinesterase inhibitors to aggression (Devinsky et al., 1992). Likewise, 
it has been noted that AChE inhibition alters fish perception, decreasing 

the probability of escaping (Kamrin, 1997). Similar neurobehavioral 
issues have been found in Clarias batrachus fish following FLO exposure 
(Kishore et al., 2022; Sahu and Kumar, 2021). Furthermore, rats exposed 
to FLO have been shown to develop neurobehavioral issues; such 
problems have been linked to lower AChE activity (Dominguez et al., 
2021; Shalini and Sharma, 2015). In the present study, AE food sup
plementation to FLO-exposed fish dramatically restored AChE activity, 
reducing the detrimental impacts of FLO. By influencing pro- 
inflammatory proteins, the phenolic acid-rich artichoke extract exerts 
neuroprotective benefits (Abd El-Aziz et al., 2021). Our findings support 
earlier research by Ibrahim et al. (2022), which revealed that AE 
restored AChE activity and antioxidant enzymes in mice brains treated 
with aflatoxin B1. Additionally, El-Nashar et al. (2022) showed that AE 
has the ability to protect the mouse brain from streptozotocin induced 
neurotoxicity, and inflammation due to flavonoid glycosides of apige
nin, luteolin, kaempferol, and quercetin, as well as caffeoylquinic acids 
in its phytochemical profiling. 

The current study concluded that fish exposed to FLO had higher 
blood glucose levels, which is a reliable indicator of environmental 
stress. By secreting excessive levels of glucocorticoids and catechol
amines in reaction to stress, it has been suggested that glycogenolysis 
will increase while the glycolytic pathway will drop (Uddin et al., 2018). 
Further, the observed hyperglycemia may be linked to the synthesis of 
glucose from protein and amino acids (Almeida et al., 2001). Fluoride 
can negatively affect insulin levels, deteriorate pancreatic health, and 
cause aberrant glucose tolerance (Skórka-Majewicz et al., 2020). 
Increased blood glucose was formerly noted in rats exposed to FLO 
(McGown and Suttie, 1977). Our results indicated that fish treated with 
FLO had significantly higher serum cortisol levels. To sustain disrupted 
homeostasis under stressful situations, the hypothalamus-pituitary- 
interrenal (HPI) axis is induced to produce cortisol and other cortico
steroids (Gagnon et al., 2006). Also, FLO-exposed fish revealed in
crements in the cholesterol and triglyceride levels, representing a 
stressful condition. With chronic FLO exposure, the plasma levels of 
cholesterol and triglycerides increased continuously and significantly in 
Channa punctatus fish (Guru and Behera, 2015). It is interesting to note 
that the fish exposed to FLO and supplemented with AE showed 
apparent regaining of their serum glucose, cortisol, cholesterol, and 
triglycerides levels, demonstrating AE’s capacity to lessen the stress 
caused by FLO. In line with our observations, supplementing with arti
choke extract was linked to a considerable drop in triglycerides and total 
and low-density lipoprotein cholesterol (Sahebkar et al., 2018). Also, it 
has the antihypercholesterolemic and anti-hyperglycemic effects (Fallah 
Huseini et al., 2012). By inhibiting the activity of 
hydroxymethylglutaryl-CoAreductase, the AE components, including 
cynaroside, luteolin, and chlorogenic acid, suppressed the synthesis of 
cholesterol in primary rat hepatocytes (Gebhardt and Therapeutics, 
1998). As antihyperlipidemic molecules, the sesquiterpenes cynar
opicrin, aguerin B, and grosheimin were discovered (Bhutani et al., 
2007). 

FLO has been demonstrated to pass through the blood-brain barrier 
in zebrafish, causing detrimental effects on neural cells and triggering 
the production of ROS (Dondossola et al., 2022). Here, fish exposed to 
FLO showed a significant reduction in the antioxidant content of GST, 
SOD, GPx, CAT, and GSH but an extreme rise in MDA. The transcription 
of the brain antioxidant genes CAT and SOD was proved to be identical. 
Also, a vast array of encephalopathic morphological changes, including 
cerebral and meningeal vascular congestions, leukocytic infiltrations, 
neuronal pyknosis, necrosis with perineuronal vacuolations, and neu
ropil microcavitation were recorded in FLO-exposed fish’s brain. The 
evidence for FLO’s ability to create ROS and reduce the activity of 
antioxidant enzymes in fish tissues is evolving (Ahmed et al., 2020; El- 
Houseiny et al., 2022a). Fluoride can quickly enter cells and generate 
detrimental impacts on various tissues owing to its tiny ionic radius and 
potent biological activity (Devi and Piska, 2006). Additionally, some 
metals, including FLO, are renowned for their potent oxidizing effects 
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and can deplete the body’s primary antioxidants, especially enzymes 
that include thiols (Pinto et al., 2003). The direct competitive suppres
sion of enzyme activity by FLO may also be to blame for the observed 
decrease in SOD and CAT activity in fish exposed to FLO (Zhan et al., 
2006). Furthermore, fish exposed to FLO reported elevations in the 8- 
OHdG level. This biomarker suggests oxidative damage to DNA, which 
eventually leads to tissue damages; it is also indicated that oxidative 
stress is a major mechanism of FLO toxicity (Oliveira et al., 2010). 
Importantly, the concurrent use of AE significantly improved the anti
oxidative status and has a genoprotective effect on experimental fish. 
Similarly, Mehmetçik et al. (2008) demonstrated that using artichoke 
extract effectively prevented oxidative stress-induced hepatotoxicity in 
rats. Also, AE is used as a chelating agent for lead toxicity in rats by 
reduction of MDA level and increased ferric reducing/antioxidant power 
(FRAP) due to the impacts of the artichoke extract flavonoids (Heidarian 
and Rafieian-Kopaei, 2013). By boosting TAC levels, artichokes reduced 
the increase in MDA concentrations and enhanced the antioxidant de
fense mechanism (Cicek et al., 2022). Leaf extract from wild artichokes 
may function through various mechanisms to effectively counteract the 
oxidative stress triggered by free fatty acid (FFA)-induced lipotoxic liver 
damage. These include elevating RSH levels, decreasing ROS production 
and lipid peroxidation, and regulating cytoprotective Nrf2/ARE- 
regulated genes to minimize inflammatory response (Acquaviva et al., 
2023). Decrease of pro-inflammatory (tnf-α and il-1β) gene transcription 
here supports this theory. Other researchers have indicated that 
phenolic chemicals, particularly chlorogenic acid, have neuroprotective 
effects through boosting antioxidant defense as evidenced by increased 
activity of SOD, CAT, GPx, GST, and GR. This was confirmed for 
aluminum (Wang et al., 2018) or arsenic-induced neurotoxicity in mice 
(Metwally et al., 2020). 

The molecular approach implemented in this work demonstrated 
that FLO elevated tnf-α and il-1β gene expression. Likewise, the stress 
and apoptotic genes hsp70, caspase-3, and p53 are upregulated. FLO 
elicited similar upregulation of IL-1β and TNF-α, two pro-inflammatory 
cytokines in Clarias gariepinus (Singh et al., 2017) and in rats (Caglayan 
et al., 2021). Oxidative stress is a key variable in tissue inflammatory 
responses (Jadeja et al., 2017). Fluoride substantially boosted the 
expression of many genes associated with inflammation, mostly by 
activating the NF-κB signaling system (Li et al., 2021; Luo et al., 2017). 
Environmental pollution causes a rise in P53 activity, which is a warning 
indication of water contamination (Dong et al., 2009). The expression of 
p53 and Caspase-3 was significantly enhanced in C.gariepinus (Singh 
et al., 2017), Zebrafish (Mukhopadhyay and Chattopadhyay, 2014), and 
rats (Caglayan et al., 2021; Tu et al., 2018) treated with FLO due to 
apoptosis. During stressful situations, hsp70 becomes activated (Ara
mbašić et al., 2013). Environmental toxins that disrupt cellular integrity 
trigger the creation of Hsp70 (Hahn et al., 1985). HSP70 expression was 
elevated in the liver of female zebrafish (Mukhopadhyay and Chatto
padhyay, 2014) and kidneys of mice (Chattopadhyay et al., 2011) 
receiving FLO. In contrast to the FLO-treated group, administration of 
FLO + AE provoked a substantial drop in the expression of the genes 
mentioned above, indicating cytoprotective, anti-apoptotic, anti-in
flammatory, and antioxidant effects (Acquaviva et al., 2023; Bogavac- 
Stanojevic et al., 2018). In this regard, AE metabolites can protect 
chondrocytes from an IL-1β stimulus miming the inflammatory situation 
in osteoarthritis (Wauquier et al., 2021). Also, AE exerted neuro
protection against diethylnitrosamine-induced brain toxicity in rats by 
hampering caspase-3 and oxidant indicators (Cicek et al., 2022). 

5. Conclusion 

Based on the findings presented here, it can be deduced that chronic 
FLO levels in water cause neurological consequences in fish. Numerous 
biological processes, including gene expression, apoptosis/necrosis, 
inflammation, and oxidative status, can be disrupted by FLO. AE sup
plementation conveys a neuroprotective impact against FLO-induced 

neurobehavioral aberrations in Nile tilapia. The anticipated underly
ing mechanisms of AE could be its antioxidant activity and improvement 
in AChE. 
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