Chapter 5: Some Discrete Probability Distributions:

5.2: Discrete Uniform Distribution:

If the discrete random variable X assumes the values $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots$, x_{k} with equal probabilities, then X has the discrete uniform distribution given by:

$$
f(x)=P(X=x)=f(x ; k)=\left\{\begin{array}{l}
\frac{1}{k} ; x=x_{1}, x_{2}, \cdots, x_{k} \\
0 ; \text { elsewhere }
\end{array}\right.
$$

Note:

- $\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x} ; \mathrm{k})=\mathrm{P}(\mathrm{X}=\mathrm{x})$
- k is called the parameter of the distribution.

Example 5.2:

- Experiment: tossing a balanced die.
- Sample space: $S=\{1,2,3,4,5,6\}$
- Each sample point of S occurs with the same probability 1/6.
- Let $\mathrm{X}=$ the number observed when tossing a balanced die.
- The probability distribution of X is:

$$
f(x)=P(X=x)=f(x ; 6)=\left\{\begin{array}{l}
\frac{1}{6} ; x=1,2, \cdots, 6 \\
0 ; \text { elsewhere }
\end{array}\right.
$$

Theorem 5.1:

If the discrete random variable X has a discrete uniform distribution with parameter k , then the mean and the variance of X are:

$$
\begin{gathered}
\mathrm{E}(\mathrm{X})=\mu=\frac{\sum_{i=1}^{k} x_{i}}{k} \\
\operatorname{Var}(\mathrm{X})=\sigma^{2}=\frac{\sum_{i=1}^{k}\left(x_{i}-\mu\right)^{2}}{k}
\end{gathered}
$$

Example 5.3:

Find $E(X)$ and $\operatorname{Var}(X)$ in Example 5.2.

Solution:

$$
\begin{gathered}
\mathrm{E}(\mathrm{X})=\mu=\frac{\sum_{i=1}^{k} x_{i}}{k}=\frac{1+2+3+4+5+6}{6}=3.5 \\
\sum_{i=1}^{k}\left(x_{i}-\mu\right)^{2} \quad \sum_{i=1}^{k}\left(x_{i}-3.5\right)^{2}
\end{gathered}
$$

$$
\operatorname{Var}(\mathrm{X})=\sigma^{2}=\frac{i=1}{k}=\frac{i_{i=1}}{6}
$$

$$
=\frac{(1-3.5)^{2}+(2-3.5)^{2}+\cdots+(6-3.5)^{2}}{6}=\frac{35}{12}
$$

5.3 Binomial Distribution:

Bernoulli Trial:

- Bernoulli trial is an experiment with only two possible outcomes.
- The two possible outcomes are labeled:

$$
\text { success (} s \text {) and failure (} f \text {) }
$$

- The probability of success is $\mathrm{P}(s)=p$ and the probability of failure is $\mathrm{P}(f)=q=1-p$.
- Examples:

1. Tossing a coin (success $=\mathrm{H}$, failure $=\mathrm{T}$, and $p=\mathrm{P}(\mathrm{H})$)
2. Inspecting an item (success=defective, failure=nondefective, and $p=\mathrm{P}($ defective $)$)

Bernoulli Process:

Bernoulli process is an experiment that must satisfy the following properties:

1. The experiment consists of n repeated Bernoulli trials.
2. The probability of success, $\mathrm{P}(s)=p$, remains constant from trial to trial.
3. The repeated trials are independent; that is the outcome of one trial has no effect on the outcome of any other trial

Binomial Random Variable:

Consider the random variable :
$X=$ The number of successes in the n trials in a Bernoulli process

The random variable X has a binomial distribution with parameters n (number of trials) and p (probability of success), and we write:

$$
X \sim \operatorname{Binomial}(n, p) \text { or } X \sim \mathrm{~b}(\mathrm{x} ; n, p)
$$

The probability distribution of X is given by:

$$
f(x)=P(X=x)=b(x ; n, p)= \begin{cases}\binom{n}{x} p^{x}(1-p)^{n-x} ; x=0,1,2, \ldots, n \\ 0 ; & \text { otherwise }\end{cases}
$$

We can write the probability distribution of X as a table as follows.

x	$\mathrm{f}(\mathrm{x})=\mathrm{P}(\mathrm{X}=\mathrm{x})=\mathrm{b}(\mathrm{x} ; n, p)$
0	$\binom{n}{0} p^{0}(1-p)^{n-0}=(1-p)^{n}$
1	$\binom{n}{1} p^{1}(1-p)^{n-1}$
2	$\binom{n}{2} p^{2}(1-p)^{n-2}$
\vdots	\vdots
$n-1$	$\binom{n}{n-1} p^{n-1}(1-p)^{1}$
n	$\binom{n}{n} p^{n}(1-p)^{0}=p^{n}$
Total	1.00

Example:

Suppose that 25% of the products of a manufacturing process are defective. Three items are selected at random, inspected, and classified as defective (D) or non-defective (N). Find the probability distribution of the number of defective items.

Solution:

- Experiment: selecting 3 items at random, inspected, and classified as (D) or (N).
- The sample space is $S=\{D D D, D D N, D N D, D N N, N D D, N D N, N N D, N N N\}$
- Let $X=$ the number of defective items in the sample
- We need to find the probability distribution of X.
(1) First Solution:

Outcome	Probability	
x		
NNN	$\frac{3}{4} \times \frac{3}{4} \times \frac{3}{4}=\frac{27}{64}$	0
NND	$\frac{3}{4} \times \frac{3}{4} \times \frac{1}{4}=\frac{9}{64}$	1
NDN	$\frac{3}{4} \times \frac{1}{4} \times \frac{3}{4}=\frac{9}{64}$	1
NDD	$\frac{3}{4} \times \frac{1}{4} \times \frac{1}{4}=\frac{3}{64}$	2
DNN	$\frac{1}{4} \times \frac{3}{4} \times \frac{3}{4}=\frac{9}{64}$	1
DND	$\frac{1}{4} \times \frac{3}{4} \times \frac{1}{4}=\frac{3}{64}$	2
DDN	$\frac{1}{4} \times \frac{1}{4} \times \frac{3}{4}=\frac{3}{64}$	2
DDD	$\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}=\frac{1}{64}$	3

The probability distribution

.of X is	
.x	. $\mathrm{f}(\mathrm{x})=\mathrm{P}(\mathrm{X}=\mathrm{x})$
0	$\frac{27}{64}$
1	$\frac{9}{64}+\frac{9}{64}+\frac{9}{64}=\frac{27}{64}$
2	$\frac{3}{64}+\frac{3}{64}+\frac{3}{64}=\frac{9}{64}$
3	$\frac{1}{64}$

(2) Second Solution:

Bernoulli trial is the process of inspecting the item. The results are success $=\mathrm{D}$ or failure $=\mathrm{N}$, with probability of success $P(s)=25 / 100=1 / 4=0.25$.
The experiments is a Bernoulli process with:

- number of trials: $n=3$
- Probability of success: $p=1 / 4=0.25$
- $X \sim \operatorname{Binomial}(n, p)=\operatorname{Binomial}(3,1 / 4)$
- The probability distribution of X is given by:

$X \sim$ Binomial $(3,0.25)$

Theorem 5.2:

The mean and the variance of the binomial distribution $\mathrm{b}(\mathrm{x} ; n, p)$ are:

$$
\begin{gathered}
\mu=n p \\
\sigma^{2}=n p(1-p)
\end{gathered}
$$

Example:

In the previous example, find the expected value (mean) and the variance of the number of defective items.

Solution:

- $X=$ number of defective items
- We need to find $E(X)=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$
- We found that $X \sim \operatorname{Binomial}(n, p)=\operatorname{Binomial}(3,1 / 4)$
- . $n=3$ and $p=1 / 4$

The expected number of defective items is

$$
\mathrm{E}(\mathrm{X})=\mu=n p=(3)(1 / 4)=3 / 4=0.75
$$

The variance of the number of defective items is

$$
\operatorname{Var}(\mathrm{X})=\sigma^{2}=n p(1-p)=(3)(1 / 4)(3 / 4)=9 / 16=0.5625
$$

Example:

In the previous example, find the following probabilities:
(1) The probability of getting at least two defective items.
(2) The probability of getting at most two defective items.

Solution:

$X \sim \operatorname{Binomial}(3,1 / 4)$

$$
\begin{gathered}
f(x)=P(X=x)=b\left(x ; 3, \frac{1}{4}\right)=\left\{\begin{array}{l}
\binom{3}{x}\left(\frac{1}{4}\right)^{x}\left(\frac{3}{4}\right)^{3-x} \text { for } x=0,1,2,3 \\
0
\end{array}\right. \\
\qquad \begin{array}{|c|c|}
\hline . \mathrm{x} & . \mathrm{f}(\mathrm{x})=\mathrm{P}(\mathrm{X}=\mathrm{x})=\mathrm{b}(\mathrm{x} ; 3,1 / 4) \\
\hline 0 & 27 / 64 \\
\hline 1 & 27 / 64 \\
\hline 2 & 9 / 64 \\
\hline 3 & 1 / 64 \\
\hline
\end{array}
\end{gathered}
$$

(1) The probability of getting at least two defective items:

$$
\mathrm{P}(\mathrm{X} \geq 2)=\mathrm{P}(\mathrm{X}=2)+\mathrm{P}(\mathrm{X}=3)=\mathrm{f}(2)+\mathrm{f}(3)=\frac{9}{64}+\frac{1}{64}=\frac{10}{64}
$$

(2) The probability of getting at most two defective item:

$$
\begin{aligned}
\mathrm{P}(\mathrm{X} \leq 2) & =\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2) \\
& =\mathrm{f}(0)+\mathrm{f}(1)+\mathrm{f}(2)=\frac{27}{64}+\frac{27}{64}+\frac{9}{64}=\frac{63}{64}
\end{aligned}
$$

or

$$
\mathrm{P}(\mathrm{X} \leq 2)=1-\mathrm{P}(\mathrm{X}>2)=1-\mathrm{P}(\mathrm{X}=3)=1-\mathrm{f}(3)=1-\frac{1}{64}=\frac{63}{64}
$$

Example 5.4: Reading assignment
Example 5.5: Reading assignment
Example 5.6: Reading assignment

5.4 Hypergeometric Distribution :

Population $=\mathrm{N}$

- Suppose there is a population with 2 types of elements:

$$
\begin{aligned}
& \text { 1-st Type = success } \\
& \text { 2-nd Type = failure }
\end{aligned}
$$

- $N=$ population size
- $K=$ number of elements of the 1 -st type
- $N-K=$ number of elements of the 2-nd type
- We select a sample of n elements at random from the population
- Let $X=$ number of elements of 1-st type (number of successes) in the sample
- We need to find the probability distribution of X.

There are to two methods of selection:

1. selection with replacement
2. selection without replacement
(1) If we select the elements of the sample at random and with replacement, then

$$
X \sim \operatorname{Binomial}(n, p) \text {; where } p=\frac{K}{N}
$$

(2) Now, suppose we select the elements of the sample at random and without replacement. When the selection is made without replacement, the random variable X has a hypergeometric distribution with parameters N, n, and K. and we write $\mathrm{X} \sim \mathrm{h}(\mathrm{x} ; N, n, K)$.
The probability distribution of X is given by:

$$
\begin{aligned}
& f(x)=P(X=x)=h(x ; N, n, K) \\
&=\left\{\begin{array}{l}
\binom{K}{x} \times\binom{ N-K}{n-x} \\
\binom{N}{n}
\end{array} x=0,1,2, \cdots, n\right. \\
& 0 ; \text { otherwise }
\end{aligned}
$$

Note that the values of X must satisfy:

$$
\begin{gathered}
0 \leq x \leq K \text { and } 0 \leq n-x \leq N-K \\
\quad \Leftrightarrow \\
0 \leq x \leq K \text { and } n-N+K \leq x \leq n
\end{gathered}
$$

Example 5.8: Reading assignment

Example 5.9:

Lots of 40 components each are called acceptable if they contain no more than 3 defectives. The procedure for sampling the lot is to select 5 components at random (without replacement) and to reject the lot if a defective is found. What is the probability that exactly one defective is found in the sample if there are 3 defectives in the entire lot.

Solution:

- Let $\mathrm{X}=$ number of defectives in the sample
- $N=40, K=3$, and $n=5$
- X has a hypergeometric distribution with parameters $N=40, n=5$, and $K=3$.
- $\mathrm{X} \sim \mathrm{h}(\mathrm{x} ; N, n, K)=\mathrm{h}(\mathrm{x} ; 40,5,3)$.
- The probability distribution of X is given by:

$$
f(x)=P(X=x)=h(x ; 40,5,3)=\left\{\begin{array}{l}
\frac{\binom{3}{x} \times\binom{ 37}{5-x}}{\binom{40}{5}} ; x=0,1,2, \cdots, 5 \\
0 ; \text { otherwise }
\end{array}\right.
$$

But the values of X must satisfy:

$$
0 \leq x \leq K \text { and } n-N+K \leq x \leq n \Leftrightarrow 0 \leq x \leq 3 \text { and }-32 \leq x \leq 5
$$

Therefore, the probability distribution of X is given by:

$$
f(x)=P(X=x)=h(x ; 40,5,3)=\left\{\begin{array}{l}
\frac{\binom{3}{x} \times\binom{ 37}{5-x}}{\binom{40}{5}} ; x=0,1,2,3 \\
0 ; \text { otherwise }
\end{array}\right.
$$

Now, the probability that exactly one defective is found in the sample is

$$
f(1)=P(X=1)=h(1 ; 40,5,3)=\frac{\binom{3}{1} \times\binom{ 37}{5-1}}{\binom{40}{5}}=\frac{\binom{3}{1} \times\binom{ 37}{4}}{\binom{40}{5}}=0.3011
$$

Theorem 5.3:

The mean and the variance of the hypergeometric distribution $\mathrm{h}(\mathrm{x} ; N, n, K)$ are:

$$
\begin{gathered}
\mu=n \frac{K}{N} \\
\sigma^{2}=n \frac{K}{N}\left(1-\frac{K}{N}\right) \frac{N-n}{N-1}
\end{gathered}
$$

Example 5.10:

In Example 5.9, find the expected value (mean) and the variance of the number of defectives in the sample.

Solution:

- $X=$ number of defectives in the sample
- We need to find $E(X)=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$
- We found that $X \sim \mathrm{~h}(\mathrm{x} ; 40,5,3)$
- $N=40, n=5$, and $K=3$

The expected number of defective items is

$$
\mathrm{E}(\mathrm{X})=\mu=n \frac{K}{N}=5 \times \frac{3}{40}=0.375
$$

The variance of the number of defective items is

$$
\operatorname{Var}(\mathrm{X})=\sigma^{2}=n \frac{K}{N}\left(1-\frac{K}{N}\right) \frac{N-n}{N-1}=5 \times \frac{3}{40}\left(1-\frac{3}{40}\right) \frac{40-5}{40-1}=0.311298
$$

Relationship to the binomial distribution:

* Binomial distribution: $b(x ; n, p)=\binom{n}{x} p^{x}(1-p)^{n-x} ; x=0,1, \ldots, n$
* Hypergeometric distribution: $h(x ; N, n, K)=\frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{n}} ; x=0,1, \cdots, n$

If n is small compared to N and K, then the hypergeometric distribution $\mathrm{h}(\mathrm{x} ; N, n, K)$ can be approximated by the binomial distribution $\mathrm{b}(\mathrm{x} ; n, p)$, where $p=\frac{K}{N}$; i.e., for large N and K and small n, we have:

$$
\begin{gathered}
\mathrm{h}(\mathrm{x} ; N, n, K) \approx \mathrm{b}\left(\mathrm{x} ; n, \frac{K}{N}\right) \\
\frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{n}} \approx\binom{n}{x}\left(\frac{K}{N}\right)^{x}\left(1-\frac{K}{N}\right)^{n-x} ; x=0,1, \cdots, n
\end{gathered}
$$

Note:
If n is small compared to N and K, then there will be almost no difference between selection without replacement and selection with replacement $\left(\frac{K}{N} \approx \frac{K-1}{N-1} \approx \cdots \approx \frac{K-n+1}{N-n+1}\right)$.

Example 5.11:

$\mathrm{N}=5000 \quad \mathrm{~K}=1000 \quad \mathrm{n}=10$
$\mathrm{X}=$ =Number of blemished tires in the Sample

X~h(x;5000,10,1000)
The exact probability is

$$
\begin{aligned}
\mathrm{P}(\mathrm{X}=3) & =\binom{1000}{3}\binom{4000}{7} /\binom{5000}{10} \\
& =\underline{0.201477715} \\
& \approx \underline{0.201}
\end{aligned}
$$

Since $\mathrm{n}=10$ is small relative to $\mathrm{N}=5000$ and $\mathrm{K}=4000$, we can approximate the hypergeometric probabilities using binomial probabilities as follows:
$. n=10 \quad$ (no. of trials)
$. \mathrm{p}=\mathrm{K} / \mathrm{N}=1000 / 5000=0.2 \quad$ (probability of success)
$\mathrm{X} \sim \mathrm{h}(\mathrm{x} ; 5000,10,1000) \approx \mathrm{b}(\mathrm{x} ; 10,0.2)$
$\mathrm{P}(\mathrm{X}=3) \approx\binom{10}{3}(0.2)^{3}(0.8)^{7}=\underline{0.201326592}$

$$
\approx \underline{0.201}
$$

5.6 Poisson Distribution:

- Poisson experiment is an experiment yielding numerical values of a random variable that count the number of outcomes occurring in a given time interval or a specified region denoted by t.
$\mathrm{X}=$ The number of outcomes occurring in a given time interval or a specified region denoted by t.
- Example:

1. $\mathrm{X}=$ number of field mice per acre ($t=1$ acre)
2. $\mathrm{X}=$ number of typing errors per page ($t=1$ page)
3. $X=$ number of telephone calls received every day $(t=1$ day)
4. $\mathrm{X}=$ number of telephone calls received every 5 days ($t=5$ days)

- Let λ be the average (mean) number of outcomes per unit time or unit region $(t=1)$.
- The average (mean) number of outcomes (mean of X) in the time interval or region t is:

$$
\mu=\lambda t
$$

- The random variable X is called a Poisson random variable with parameter $\mu \quad(\mu=\lambda t)$, and we write $\mathrm{X} \sim \operatorname{Poisson}(\mu)$, if its probability distribution is given by:

$$
f(x)=P(X=x)=p(x ; \mu)=\left\{\begin{array}{l}
\frac{e^{-\mu} \mu^{x}}{x!} ; \quad x=0,1,2,3, \ldots \\
0 ; \text { otherwise }
\end{array}\right.
$$

Theorem 5.5:

The mean and the variance of the Poisson distribution Poisson($x ; \mu$) are:

$$
\begin{gathered}
\mu=\lambda t \\
\sigma^{2}=\mu=\lambda t
\end{gathered}
$$

Note:

- λ is the average (mean) of the distribution in the unit time ($t=1$).
- If $\mathrm{X}=$ The number of calls received in a month (unit time $t=1$ month) and $X \sim \operatorname{Poisson}(\lambda)$, then:
(i) $\mathrm{Y}=$ number of calls received in a year.

$$
\mathrm{Y} \sim \operatorname{Poisson}(\mu) ; \quad \mu=12 \lambda \quad(t=12)
$$

(ii) $\mathrm{W}=$ number of calls received in a day.

$$
W \sim \operatorname{Poisson}(\mu) ; \quad \mu=\lambda / 30 \quad(t=1 / 30)
$$

Example 5.16: Reading Assignment
Example 5.17: Reading Assignment Example:
Suppose that the number of typing errors per page has a Poisson distribution with average 6 typing errors.
(1) What is the probability that in a given page:
(i) The number of typing errors will be 7?
(ii) The number of typing errors will be at least 2 ?
(2) What is the probability that in 2 pages there will be 10 typing errors?
(3) What is the probability that in a half page there will be no typing errors?

Solution:

(1) $\mathrm{X}=$ number of typing errors per page.

$$
X \sim \text { Poisson (6) } \quad(t=1, \lambda=6, \mu=\lambda t=6)
$$

$$
f(x)=P(X=x)=p(x ; 6)=\frac{e^{-6} 6^{x}}{x!} ; x=0,1,2, \ldots
$$

(i) $\quad f(7)=P(X=7)=p(7 ; 6)=\frac{e^{-6} 6^{7}}{7!}=0.13768$
(ii)

$$
\begin{aligned}
\mathrm{P}(\mathrm{X} \geq 2) & =\mathrm{P}(\mathrm{X}=2)+\mathrm{P}(\mathrm{X}=3)+\ldots=\sum_{x=2}^{\infty} P(X=x) \\
\mathrm{P}(\mathrm{X} \geq 2) & =1-\mathrm{P}(\mathrm{X}<2)=1-[\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)] \\
& =1-[\mathrm{f}(0)+\mathrm{f}(1)]=1-\left[\frac{e^{-6} 6^{0}}{0!}+\frac{e^{-6} 6^{1}}{1!}\right] \\
& =1-[0.00248+0.01487] \\
& =1-0.01735=0.982650
\end{aligned}
$$

(2) $X=$ number of typing errors in 2 pages

$$
\begin{aligned}
& X \sim \operatorname{Poisson}(12) \quad(t=2, \lambda=6, \mu=\lambda t=12) \\
& f(x)=P(X=x)=p(x ; 12)=\frac{e^{-12} 12^{x}}{x!}: \quad x=0,1,2 \ldots \\
& f(10)=P(X=10)=\frac{e^{-12} 12^{10}}{10!}=0.1048
\end{aligned}
$$

(3) $X=$ number of typing errors in a half page.

$$
\begin{aligned}
& X \sim \text { Poisson }(3) \quad(t=1 / 2, \lambda=6, \mu=\lambda t=6 / 2=3) \\
& f(x)=P(X=x)=p(x ; 3)=\frac{e^{-3} 3^{x}}{x!}: \quad x=0,1,2 \ldots \\
& P(X=0)=\frac{e^{-3}(3)^{0}}{0!}=0.0497871
\end{aligned}
$$

Theorem 5.6: (Poisson approximation for binomial distribution:

Let X be a binomial random variable with probability distribution $\mathrm{b}(\mathrm{x} ; n, p)$. If $n \rightarrow \infty, p \rightarrow 0$, and $\mu=n p$ remains constant, then the binomial distribution $\mathrm{b}(\mathrm{x} ; n, p)$ can approximated by Poisson distribution $\mathrm{p}(\mathrm{x} ; \mu)$.

- For large n and small p we have:

$$
\begin{gathered}
\mathrm{b}(\mathrm{x} ; n, p) \approx \operatorname{Poisson}(\mu) \quad(\mu=n p) \\
\binom{n}{x} p^{x}(1-p)^{n-x} \approx \frac{e^{-\mu} \mu^{x}}{x!} ; x=0,1, \cdots, n ; \quad(\mu=n p)
\end{gathered}
$$

Example 5.18:

$\mathrm{X}=$ number of items producing bubbles in a random sample of 8000 items
.n=8000 and $\mathrm{p}=1 / 1000=0.001$
X ~ b(x;8000, 0.001)
The exact probability is:
$\mathrm{P}(\mathrm{X}<7)=\mathrm{P}(\mathrm{X} \leq 6)=\sum_{x=0}^{6}\binom{8000}{x}(0.001)^{x}(0.999)^{8000-x}=\ldots=\underline{0.313252}$
The approximated probability using Poisson approximation:
$. n=8000(n$ is large, i.e., $n \rightarrow \infty)$
. $\mathrm{p}=0.001$ (p is small, i.e. $\mathrm{p} \rightarrow 0$)
$\mu=n \mathrm{p}=8000(0.001)=8$
$\mathrm{X} \approx$ Poisson (8)

$$
\begin{aligned}
& f(x)=P(X=x)=p(x ; 8)=\frac{e^{-8} 8^{x}}{x!}: \quad x=0,1,2 \ldots \\
& \mathrm{P}(\mathrm{X}<7)=\mathrm{P}(\mathrm{X} \leq 6)=\sum_{x=0}^{6} \frac{e^{-8} 8^{x}}{x!}=e^{-8} \sum_{x=0}^{6} \frac{8^{x}}{x!}=\ldots=\underline{0.313} 374
\end{aligned}
$$

