GE 403
 Engineering Economy

Eng. Howaidi Alotaibi
Civil Engineering Department
E-mail halshaibani@ksu.edu.sa

Ex.
Two alternatives have the following net cash flow (NCF) and salvage value (SV) profiles:

EOY	Alternative 1		Alternative 2	
	NCF (SR)	SV (SR)	NCF (SR)	SV (SR)
0	$-50,000$	50,000	$-80,000$	80,000
1	25,000	25,000	15,000	50,000
2	30,000	10,000	25,000	30,000
3	35,000	5,000	35,000	20,000
4			45,000	10,000
5			55,000	5,000

Ex. 1 (Cont.)

Specify the planning horizon and complete set of cash flows for each alternative using each of the following:

1) Longest life among alternatives. 2) Shortest life among alternatives. 3) Least common multiple (LCM) of lives 4) A standard planning horizon of 4 years. 5) Assuming the two alternatives are one-shot investment.

Longest life among alternatives

EOY	0	1	2	3	4	5
Cash Flow	$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & \text { in } \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \text { ni } \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \text { ein } \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & \hline \end{aligned}$	8 ¢ in	8 8 8 7

Longest life among alternatives

EOY	0	1	2	3	4	5
Cash Flow	8	8	8	8	8	8
	8	8	8	8	8	8
	∞	n		\cdots	\cdots	8

Shortest life among alternatives

EOY	0	1	2	3
Cash Flow	8 8 0 i	8 8 n	8.	8 8 \%

Shortest life among alternatives

$L C M$

ory	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ow	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \text { n } \end{aligned}$	$$	$\begin{aligned} & 8 \\ & 8 \\ & \text { n } \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \text { in } \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & \text { in } \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 1 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \text { ni } \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \text { m } \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \text { in } \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \text { on } \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & n \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \text { ni } \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & n \\ & n \end{aligned}$	8 8 8	8 8 8

A standard planning horizon of 4 years

A standard planning horizon of 4 years

EOY	0	1	2	3	4
Cash Flow	$\begin{aligned} & 8 \\ & 8 \\ & \text { o } \end{aligned}$	8 8 n n	8 0 \sim	8	8 8 n n

Two alternatives are one shot investment

Two alternatives are one shot investment

EOY	0	1	2	3	4	5
Cash Flow	8	8	8	8	8	8
	8	8	8	8	8	8
	∞	n		\cdots	\cdots	8

The End

