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Abstract: Breast cancer is the most prevalent form of cancer among women. The microenvironment
of a cancer tumor is surrounded by various cells, including the microbiota. An imbalance between
microbes and their host may contribute to the development and spread of breast cancer. Therefore, the
objective of this study is to investigate the influence of Enterococcus faecalis on a breast cancer cell line
(MCF-7) to mimic the luminal A subtype of breast cancer, using an untargeted proteomics approach
to analyze the proteomic profiles of breast cancer cells after their treatment with E. faecalis in order to
understand the microbiome and its role in the development of cancer. The breast cancer cell line MCF-
7 was cultured and then treated with a 10% bacterial supernatant at two time points (24 h and 48 h)
at 37 ◦C in a humidified incubator with 5% CO2. Proteins were then extracted and separated using
two-dimensional difference (2D-DIGE) gel electrophoresis, and the statistically significant proteins
(p-value < 0.05, fold change > 1.5) were identified via matrix-assisted laser desorption/ionization–
time-of-flight mass spectrometry (MALDI-TOF-MS). The protein fingerprints showed a differential
protein expression pattern in the cells treated with E. faecalis for 24 and 48 h compared with the
control. We found 58 statistically significant proteins changes in the MCF-7 breast cancer cells affected
by E. faecalis. Kilin and transgelin were upregulated after 24 h of treatment and could be used as
diagnostic and prognostic markers for breast cancer. In addition, another protein involved in the
inhibition of cell proliferation was coiled-coil domain-containing protein 154. The protein markers
identified in this study may serve as possible biomarkers for breast cancer progression. This promotes
their future uses as important therapeutic goals in the treatment and diagnosis of cancer and increases
our understanding of the breast microbiome and its role in the development of cancer.

Keywords: MCF-7 cell line; microbiota; proteomic profile; breast cancer; Enterococcus faecalis

1. Introduction

Cancer is a major health concern and the second leading cause of death worldwide; it
is a multifactorial disease caused by genetics or environmental factors that lead to uncon-
trollable cell division. Cancer affects multiple organs and tissues such as the liver, lung and
breast [1]. Breast cancer (BC) is the most frequent cancer among females worldwide, with
a high mortality rate [2]. Nearly one in eight women are diagnosed with breast cancer in
their lifetime, as reported by the American Cancer Society [3]. Breast cancer’s biological
and clinical behavior varies from patient to patient, making it difficult to predict disease
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evolution and patient outcomes. Therefore, biomarkers are required to assist clinicians in
selecting the best treatment for each patient. Various studies on breast cancer have also
determined that almost all cancers release their components into circulation. Cancer cells
can release microvesicles called extracellular vesicles (EVs) or exosomes into the extracellu-
lar environment. These vesicles play an important role in cell-to-cell communication by
transferring proteins, nucleic acids, and lipids from one cell to another [4].

The tumor microenvironment (TME) comprises various components, including cancer
cells and host stromal cells, all of which are embedded in the extracellular matrix. The
TME plays an influential role in tumor progression and invasion by affecting the biological
behaviors of cancer cells, such as cell-to-cell communication and evading the immune
response [1,5–9]. The microenvironment also contains a variety of microbiota. Microbiota
are defined as microorganisms that live symbiotically in different regions of the body
and play significant roles in human health. Dysbiosis of microbiota may lead to systemic
disease and inflammation. Changes in a distinct microbiome may contribute to the de-
velopment of cancer and affect tumor growth [10–14]. Breast tumors have demonstrated
the presence of unique bacterial populations compared to the microbiome surrounding
normal mammary gland tissue. Several studies have found a greater degree of bacterial col-
onization in women with breast cancer, including Bacillus, Enterobacteriaceae, Staphylococcus,
Fusobacterium, Atopobium, Gluconacetobacter, Hydrogenophaga and Lactobacillus [6,12,13].

Enterococcus faecalis is one of the most common Enterococcaceae species found in the
human gut and urogenital tract. Conversely, a few studies found that the metabolites
produced by E. faecalis have an apoptotic effect against different cancer cell lines and
could be used as alternative pharmaceutical substances. The functional properties of
potent anticancer chemicals (protein compounds) and the mechanisms through which
E. faecalis promotes the initiation and progression of cancer remain unknown. They should
be properly researched [15,16].

A proteomics analysis is the study of proteins and represents one of the most impor-
tant disciplines that provides high-throughput insight into the mechanisms of biological
processes. Mass spectrometry (MS)-based proteomics technology is currently used for the
identification of disease-specific biomarkers by profiling protein signatures over a wide
dynamic range [17]. Differential analyses of cancerous and non-cancerous breast cell line
proteomes may provide valuable proof of new proteins related to the progression of breast
cancer. They also contribute to a better understanding of microbes and their molecular
effects. Ultimately, the investigation of cancer and the outcomes of bacterial biomarkers
may assist in disease diagnosis and could be used in the future as promising therapeutic
targets [18–21]. A recent study hypothesized that the normal microbiome of the breast
influences breast cancer metabolism. The study tested the Escherichia coli secretome to
profile the most significant bacterial metabolites in the MDA-MB-231 breast cancer cell line,
using liquid chromatography–mass spectrometry. The findings were the first to reveal that
the E. coli secretome modulates the energy metabolism of BC cells and that the secretion of
metabolic molecules could alter the metabolism of BC cells to maintain their survival [22].

Using 2D-DIGE and MALDI-TOF-MS, this study focused on proteomics changes
in the breast cancer cell line MCF-7 which were influenced by the signaling crosstalk of
Enterococcus faecalis. In addition, the identification of biomarkers of the Enterococcus faecalis
secretome may provide a new line of investigation for gaining further insights into disease
diagnosis, and these biomarkers could be used in the future as promising therapeutic
targets that are significant in the treatment and diagnosis of cancer, using Enterococcus
faecalis as a conventional method for cancer therapy.

2. Results
2.1. E. faecalis Supernatant Effects the Expression of MCF-7 Cell Line Proteins

To study the role of bacterial microbiota in the protein profile of MCF-7 cells, an
E. faecalis supernatant was used as a part of the breast microbiome to test the indirect effect
on the MCF-7 breast cell line. To perform a proteomic analysis using 2D-DIGE and MALDI-
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TOF-MS for fluorescent protein profiling, the samples were labeled with Cy3 (Ctrl), treated
with E. faecalis for 24 h and 48 h, and labeled with Cy5, and the pooled internal control
was labeled with Cy2 (Figure 1A, Figure 1B, Figure 1C, Figure 1D respectively). Figure 2
shows the merged 2D-DIGE gels of the 24 h, 48 h, and Ctrl samples. Therefore, using an
ANOVA (p ≤ 0.05; fold-change ≥ 1.5), Figure 3 shows that the expression of 58 out of 66
proteins was significantly dysregulated in the 24 h and 48 h treated cells when compared
to the control. Across five proteomic gels, the normalization and quantitative differential
analysis of protein levels were attained using the internal standard Cy2 labeling.
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Figure 1. Representative fluorescent proteins of two-dimensional difference in gel electrophoresis
(2D-DIGE). (A) Control, consisting of non-treated MCF-7 cells labeled with Cy3, (B) MCF-7 cells
treated with E. faecalis for 24 h and labeled with Cy5, (C) MCF-7 cells treated for 48 h and labeled
with Cy5, and (D) pooled internal control labeled with Cy2.
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24 or 48 h compared to the control, identified via matrix-assisted laser desorption/ionization–time-of-
flight mass spectrometry (MALDI-TOF-MS). MW—protein molecular weight; pI—isoelectric point.

Therefore, PMFs successfully identified 66 of the total protein spots excised from
the preparative gel via MALDI-TOF mass spectrometry, which expressed 58 spots as
unique protein sequences which were matched to entries in the SWISS-PROT database
with high confidence scores via Mascot (Table 1). the sequence coverage of the proteins
identified via PMFs ranged from 11% to 83%. Figure 3 shows that some variants of the
same protein were found at different locations in the preparative gel. Table 1 shows that
among the 24 h treated samples, 33 protein spots were significantly upregulated, 12 were
downregulated, and 13 were non-significant when compared to the experimental control.
Moreover, 16 protein spots were significantly upregulated, 15 were downregulated, and
27 were non-significant in the samples treated for 48 h compared to the control subjects.
Among the 33 functional proteins upregulated after 24 h, nitric oxide synthase (upregulated
1.5-fold; p = 0.003) and transgelin (upregulated 1.5-fol;, p = 0.004) may have important
roles in the progression of BC. In addition, within 48 h, the dysregulation of several
proteins such as ATP-dependent RNA helicase DDX3X (downregulated −1.5-fold; p = 0.06),
ATP synthase subunit alpha mitochondrial (downregulated −1.5-fold; p = 0.06), and ATP
synthase subunit beta mitochondrial (up 1.5-fold; p = 0.02) may play roles as biomarkers
of cancer progression and metastasis. Among the identified proteins, Actin, cytoplasmic
2, 60 kDa heat shock protein, mitochondrial, and AN1-type zinc finger protein 3 were
found in more than one spot on the gels, which could be associated with post-translational
modifications, cleavage via enzymes, or the presence of different protein species. Thus,
the MCF-7 cell line was indirectly affected by the E. faecalis supernatant, as shown via the
dysregulation of protein expression.

Table 1. Proteins identified to show changes in abundance after the treatment with E. faecalis for 24 h
and 48 h compared to the control. Different values for the average ratio between the two states, with
their corresponding levels of fold change and one-way ANOVA (p ≤ 0.05) using 2D-DIGE (analysis
type: MALDI-TOF; database: SwissProt; taxonomy: homospines).

# Spot No a Protein Name MASCOT ID Ratio 24/C b Exp c Ratio 48/C b Exp c p Value d

1 309 Zinc finger protein 616 ZN616_HUMAN −1.5 DOWN −2.7 DOWN 0.003

2 641 Nitric oxide synthase,
inducible NOS2_HUMAN 1.5 UP −1 NS 0.003

3 652 Transgelin TAGL_HUMAN 1.5 UP −1.1 NS 0.004

4 644 Tektin-2 TEKT2_HUMAN −1.5 DOWN −1.9 DOWN 0.004

5 827 Egl nine homolog 1 EGLN1_HUMAN 1.2 NS 1.2 NS 0.01

6 682 Dynein axonemal
heavy chain 10 DYH10_HUMAN 1.7 UP 1.2 NS 0.01

7 828 Twinfilin-2 TWF2_HUMAN 3.2 UP −1.1 NS 0.01

8 899 Spectrin beta chain,
non-erythrocytic 5 SPTN5_HUMAN 1.2 NS −1.2 NS 0.01

9 655 Keratin, type I
cytoskeletal 18 K1C18_HUMAN 1.5 UP 1.2 NS 0.01

10 896
Cytochrome c oxidase

subunit 5A,
mitochondrial

COX5A_HUMAN −1 NS −1.9 DOWN 0.01

11 365 MICOS complex
subunit MIC60 MIC60_HUMAN −2.1 DOWN −2.4 DOWN 0.01
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Table 1. Cont.

# Spot No a Protein Name MASCOT ID Ratio 24/C b Exp c Ratio 48/C b Exp c p Value d

12 428
Coiled-coil

domain-containing
protein 154

CC154_HUMAN 2 UP 1.4 NS 0.01

13 606 Plectin PLEC1_HUMAN 1.5 UP 1.5 UP 0.02

14 686 Zinc finger protein 600 ZN600_HUMAN 1.8 UP 1.2 NS 0.02

15 692

Putative
uncharacterized

protein encoded by
LINC02694

CO053_HUMAN 1.6 UP 1.2 NS 0.02

16 674
Centriole and

centriolar satellite
protein OFD1

OFD1_HUMAN 1.5 UP 1.5 UP 0.02

17 696 Protein maelstrom
homolog MAEL_HUMAN 1.6 UP 1.1 NS 0.02

18 786 Prohibitin 1 PHB_HUMAN 1.6 UP 1.6 UP 0.02

19 603
Microtubule-

associated protein
6

MAP6_HUMAN 1.5 UP −1.1 NS 0.02

20 767 Cartilage matrix
protein MATN1_HUMAN 1.5 UP 1.2 NS 0.02

21 581 ATP synthase subunit
beta, mitochondrial ATPB_HUMAN 1.5 UP 1.5 UP 0.02

22 779 Keratin, type I
cytoskeletal 10 K1C10_HUMAN 1.1 NS 1.5 UP 0.03

23 465 Tubulin beta chain TBB5_HUMAN −1.5 DOWN −1.5 DOWN 0.03

24 605
Poly [ADP-ribose]

polymerase
tankyrase-2

TNKS2_HUMAN 1.6 UP −1 DOWN 0.03

25 409 Replication factor C
subunit 1 RFC1_HUMAN −1.5 DOWN −1 NS 0.03

26 419 60 kDa heat shock
protein, mitochondrial CH60_HUMAN −1.5 DOWN −1.2 NS 0.03

27 453
Ankyrin repeat

domain-containing
protein 6

ANKR6_HUMAN −1.5 DOWN −1.9 DOWN 0.03

28 695 AN1-type zinc finger
protein 3 ZFAN3_HUMAN 1.7 UP 1.2 NS 0.04

29 362 AN1-type zinc finger
protein 3 ZFAN3_HUMAN −1.1 NS −1.7 DOWN 0.04

30 637 Actin, cytoplasmic 2 ACTG_HUMAN 1.5 UP 1.2 NS 0.04

31 791 14-3-3 protein
zeta/delta 1433Z_HUMAN 1.8 UP 1.6 UP 0.04

32 678

N-acyl-aromatic-L-
amino acid

amidohydrolase
(carboxylate-forming)

ACY3_HUMAN 1.7 UP 1.1 NS 0.04

33 386 Dynein axonemal
heavy chain 9 DYH9_HUMAN −1.5 DOWN −1.7 DOWN 0.04
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Table 1. Cont.

# Spot No a Protein Name MASCOT ID Ratio 24/C b Exp c Ratio 48/C b Exp c p Value d

34 677
Forkhead-associated
domain-containing

protein 1
FHAD1_HUMAN 1.2 NS 2.3 UP 0.05

35 847 Keratin, type I
cytoskeletal 27 K1C27_HUMAN −1.2 NS −1.5 DOWN 0.05

36 680 Plakophilin-2 PKP2_HUMAN −1 NS 1.5 UP 0.05

37 601 Methyl-CpG-binding
domain protein 4 MBD4_HUMAN −1.5 DOWN 1.5 UP 0.05

38 665 Ribosomal protein S6
kinase alpha-6 KS6A6_HUMAN 1.5 UP 1.1 NS 0.05

39 642
Glycerol-3-phosphate

dehydrogenase,
mitochondrial

GPDM_HUMAN 1.5 UP −1.1 NS 0.05

40 814 Heat shock protein
beta-1 HSPB1_HUMAN 1.5 UP 1.8 UP 0.05

41 612 Actin, cytoplasmic 2 ACTG_HUMAN 1.5 UP 1.2 NS 0.05

42 691 Killin KILIN_HUMAN 1.5 UP 1.1 NS 0.05

43 799
NCK-interacting
protein with SH3

domain
SPN90_HUMAN 1.1 NS 1.5 UP 0.05

44 449

Protein tyrosine
phosphatase

domain-containing
protein 1

PTPC1_HUMAN 1.5 UP 1.1 NS 0.05

45 707 Retinol
dehydrogenase 13 RDH13_HUMAN 1.8 UP 1.2 NS 0.05

46 414 Pericentrin PCNT_HUMAN −1.5 DOWN −1.2 NS 0.05

47 334 Sciellin SCEL_HUMAN −1.2 NS −2.3 DOWN 0.05

48 423 Protein
disulfide-isomerase PDIA1_HUMAN 2.3 UP 4 UP 0.05

49 460 Myosin-7 MYH7_HUMAN −1.6 DOWN −1.8 DOWN 0.05

50 804 28S ribosomal protein
S18c, mitochondrial RT18C_HUMAN 2 UP 1.5 UP 0.05

51 393 ATP synthase subunit
alpha, mitochondrial ATPA_HUMAN −1.6 DOWN −1.5 DOWN 0.05

52 438 AN1-type zinc finger
protein 3 ZFAN3_HUMAN 1.5 UP 1.2 NS 0.05

53 912 ATP-dependent RNA
helicase DDX3X DDX3X_HUMAN 1.1 NS −1.5 DOWN 0.05

54 547 60 kDa heat shock
protein, mitochondrial CH60_HUMAN 1.1 NS 1.5 UP 0.05

55 790
Probable

ATP-dependent RNA
helicase DDX60

DDX60_HUMAN 1.5 UP 1.6 UP 0.05

56 792 Myosin-13 MYH13_HUMAN 1.5 UP 1.8 UP 0.05
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Table 1. Cont.

# Spot No a Protein Name MASCOT ID Ratio 24/C b Exp c Ratio 48/C b Exp c p Value d

57 487 60 kDa heat shock
protein, mitochondrial CH60_HUMAN −1.3 DOWN −1.3 DOWN 0.05

58 635 Myosin-4 MYH4_HUMAN 1.5 UP 1.2 NS 0.05
a Protein accession number for the SWISSPROT Database. b Ratio between the groups, UP = upregulation;
Down = downregulation; NS = non-significant. c Protein expression between the groups. d p-Value (ANOVA).

2.2. Principal Component, Cluster Analysis, and Heatmap of Significant Proteins

Subsequently, a multivariate analysis of the protein abundance data was performed using
the Progenesis Same Spots software. The gel images were grouped such that nine samples
from the control and the groups treated for 24 h and for 48 h formed three groups. The data
were filtered so that only the 58 spot features exhibiting statistically significant (ANOVA, p
≤ 0.05) changes in abundance which were present on all gel images and identified via MS
were considered. Figure 4 shows that the samples were colored according to their group, and
score plots were obtained for all three study groups, taking 50.30% as the cut-off score. A
principal component analysis (PCA) revealed that the three groups clustered distinctly from
one another based on different time points. The PCA model demonstrated that the Ctrl group,
the group treated for 24 h, and the group treated for 48 h clustered in a two-dimensional score
plot, indicating that the proteomics profiles were significantly different between these three
groups. Simultaneously, a hierarchical clustering analysis of abundant spots showed clusters
of different expression patterns (Figure S1A,C). The clustering pattern demonstrates that the
changes in the protein intensity of selected spots treated for 24 h and 48 h compared to the
control samples were significantly different (Figure S1B,D). Moreover, Figure 5 displays all
the significant proteins identified via MALDI- TOF-MS which were used to create a heatmap
using the average of normalized values. Shades of red indicate high levels of expression and
shades of green indicate low levels of expression. When comparing the experimental control to
the samples treated for 24 h and 48 h, the heatmap revealed that the most recognized proteins
had upregulated expression patterns. Therefore, the proteomic profiles of the significant
proteins were significantly different among the three groups.
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48 h. This explained 50.30% of the selected spot variability values. Colored dots and numbers indicate
the gels and spots, respectively.
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Figure 5. Heatmap representation of the differentially expressed protein spots. Interactive protein
expression in treated MCF-7 cells (24 h and 48 h) and their relative control.

2.3. Bioinformatics Analysis
2.3.1. Interactions of Identified Proteins and Network Connectivity Mapping Using
Ingenuity Pathway Analysis (IPA)

A bioinformatics analysis using IPA was performed for all 58 proteins that were
differentially dysregulated between the cells treated with E. faecalis for 24 h and 48 h
compared to the Ctrl. The analysis revealed that the proteins interacted directly or indirectly
via protein networks following treatment with E. faecalis for 24 h/control (Figure 6A) and
69 proteins following treatment with E. faecalis for 48 h/control (Figure 6B). To construct
a protein–protein interaction network, the software computes a score based on the best
fit from the input dataset and the biological functions database. The resulting network is
enriched for proteins with interactions in which the interacting proteins are represented by
nodes and a line denotes their biological relationships. Protein interaction networks were
identified for the proteins exhibiting differential expression profiles in the cells treated with
E. faecalis for 24 h/control. The proposed highest interaction network pathway (score = 37)
was related to cancer, organismal injury and abnormalities, and reproductive system disease
(Figure 6A). As shown in Figure S2A, the canonical pathways were sorted by decreasing
(p-value) enrichment. Death Receptor Signaling (p-value: 4.33 × 10−4; overlap: 3.2%), the
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MSP-RON signaling pathway (p-value: 3.67 × 10−3; overlap: 3.4%), ILK signaling (p-value:
3.58 × 10−3; overlap: 1.5%), the Glycerol-3-phosphate shuttle (p-value: 3.15 × 10−3; overlap:
50%), and Base Excision Repair (BER) (p-value: 2.18 × 10−3; overlap: 4.5%) pathway the
five most interesting enriched canonical pathways. Moreover, In Figure 6B, 69 interaction
networks were identified for proteins exhibiting differential expression profiles. The
network pathway with the highest score (score = 34) was related to cell death and survival,
cellular developmental, and cellular growth and proliferation. the canonical pathways were
sorted by decreasing the log (p-value) of enrichment, such as 14-3-3-mediated signaling
(p-value: 6.35 × 10−3; overlap: 1.6%), oxidative phosphorylation (p-value: 4.54 × 10−3;
overlap: 1.9%), ERK/MAPK signaling (p-value: 1.76 × 10−2; overlap: 0.9%), glucocorticoid
receptor signaling (p-value: 1.41 × 10−2; overlap: 0.6%), and mitochondrial dysfunction
(p-value: 1.07 × 10−2; overlap: 1.2%), as shown in Figure S2B. A network pathway analysis
was conducted to gain insight into the molecular mechanisms of the differentially expressed
proteins through biological function annotations, protein–protein interaction networks,
and the discovery of potential biomarkers (Figure 7).
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Figure 6. Protein interaction analysis and biological pathways related to significantly identified
proteins. The most enriched interaction network of differentially expressed proteins between different
groups. (A) Interaction network of differentially expressed proteins in cells treated with E. faecalis for
24 h compared with the control. The central nodes of the pathway related to TP53, HDAC 1, and BAD
signaling were found to be dysregulated between the two states. The highest interaction network
pathway (score = 37). Red nodes indicate upregulated proteins; green nodes indicate downregulated
proteins; uncolored nodes were proposed via an IPA. Solid lines indicate direct molecular interactions,
and dashed lines represent indirect interactions. (B) Interaction network of differentially expressed
proteins in cells treated with E. faecalis for 48 h compared to the control. The central nodes of the
pathway related to HSPB1, RELA, and P glycoprotein signaling were found to be upregulated
between the two states. The highest interaction network pathway (score = 34).
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Figure 7. Comparative depiction of the differentially abundant proteins, categorized into groups
according to their molecular function (A), biological process (B), and (C) proteins, according to their
cellular components in the groups treated for 24 h and 48 h compared to the control.

2.3.2. Classification of Key Proteins Based on Function

For the classification of the identified proteins according to their molecular function
(Figure 4) and biological function, the Protein Analysis Through Evolutionary Relationships
(PANTHER) system was used (Figure 7). The functional categories showed most of the
differentially expressed proteins among the up- and downregulated proteins between
those treated with E. faecalis for 24 h compared to the control group and those treated with
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E. faecalis for 48 h compared to the control groups. The molecular function determination
showed multiple protein activities, including molecular and structural activities, binding
activity, ATP-dependent activity, catalytic activity, cytoskeletal activity, and transporter
activity (Figure 7A). Additionally, most of the identified proteins were involved in biological
processes such as cellular and reproductive processes, localization, and reproduction,
interspecies interactions between organisms, biological regulation and adhesion, response
to stimulus, and signaling. This was followed by developmental processes, locomotion,
multicellular organismal processes, biological adhesion and growth, and metabolic and
immune system processes (Figure 7B). In terms of biological activities, most of the proteins
were found to be involved in cellular components, for instance, the cellular anatomical
entity and protein-containing complex (Figure 7C).

3. Materials and Methods
3.1. Cell and Bacterial Culture
3.1.1. Cells and Cell Culture

The cell line was obtained from the King Faisal Specialist Hospital & Research Centre.
The epithelial breast cancer cell line (MCF-7) is characterized as estrogen/progesterone-
positive and human epidermal growth factor receptor 2 (HER2)-negative. The cell line was
cultured (1 × 106 cells/mL) in plates (100 × 20 mm) using Dulbecco’s Modified Eagle’s
Medium/Nutrient Mixture F-12 Ham (DMEM/F-12) as a complete medium mixed with
10% Fetal Bovine Serum (FBS), 1% L-glutamine, and 1% penicillin/streptomycin, following
the manufacturer’s instructions. The cells were then incubated at 37 ◦C in a humidified
incubator with 5% CO2 until they reached 80% confluency. The cells were then washed
with Phosphate-Buffered Saline (PBS) and treated with an Enterococcus faecalis supernatant
(explained below) [23,24].

3.1.2. Bacterial Culture and Preparation

Enterococcus faecalis (ATCC 29212) were grown in a Luria–Bertani (LB) broth medium
and incubated at 37 ◦C for 24 h. The optical density (OD) of the bacterial culture was
measured using a spectrophotometer (Libra S22, Biochrom Ltd., Cambridge, UK) after
24 h at a wavelength of 600 nm. The supernatant was collected after centrifugation,
filtered through a 0.2 µm filter, and stored at −80 ◦C for further use [25–27]. The collected
media were evaluated using the re-culture protocol to prevent potential live bacteria in the
supernatant from contaminating the cell lines.

3.1.3. Indirect Bacterial Effect Using SF-CM Media on MCF-7 Cells

To investigate the indirect bacterial effect on MCF-7 cells, the cells were cultured in
serum-free conditioned medium (SF-CM) (DMEM/F-12, supplemented with 0.5% FBS, 1%
L-glutamine and 1% penicillin/streptomycin) for 24 h at 37 ◦C in 5% CO2. Next, 10% of the
bacterial supernatant was mixed with each cell culture (1 × 106), and non-treated cells were
used as controls. The cells were incubated at 37 ◦C in 5% CO2 for different time periods
(24 h and 48 h). Following incubation, the cells were collected using ice-cold PBS and a
cell scraper (280 mm), centrifuged, and stored at −80 ◦C for further use, as previously
described [28,29].

3.2. Proteomic Analysis
3.2.1. Protein Extraction

To perform a proteomic analysis of our samples, 50 µg of protein was extracted
as previously described [19,20]. Briefly, the cells (5 million cells) were resuspended in
lysis buffer (1.5 mL of a 30 mM Tris buffer with a pH of 8.8 containing 7 M urea, 2 M
thiourea, 2% 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS),
and 1× protease inhibitor mix). The samples were gently rocked (20 min; room temperature)
and then sonicated (30% pulse; two intervals of 1 min each separated by a 1 min gap).
Then, 50 mM of dithiothreitol (DTT) was added, and the protein extracts were centrifuged
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(20,000× g; 40 min, 4 ◦C). Contaminants were removed, and the supernatants were cleaned
via precipitation, using a 2D clean-up kit according to the manufacturer’s protocol (GE
Healthcare, Danderyd, Sweden) [17,30].

3.2.2. Protein Labeling with Cyanine Dyes

The protein pellets were solubilized in a labeling buffer (7 M urea, 2 M thiourea,
30 mM Tris (hydroxymethyl) aminomethane hydrochloride (Tris–HCl), and 4% CHAPS at
a pH of 8.5). Using centrifugation, the insoluble material was pelleted at 12,000× g at room
temperature for 5 min, after which the protein concentrations were determined in triplicate
using the 2D-Quana kit (GE Healthcare, Danderyd, Sweden), and the pH was adjusted to
8.5 using NaOH (100 mM). The proteins were labeled using 400 pmol of CyDye™ DIGE
Fluor dyes (GE Healthcare, Danderyd, Sweden) in 1 µL of N,N-dimethylformamide (DMF)
and mixed with samples containing 50 µg of protein. The samples were then incubated on
ice for 30 min in the dark. The labeling reaction was terminated by adding 1 µL of 10 mM
lysine. Each sample was labeled with a fluorophore, either Cy3 or Cy5. A pool containing
equal amounts of protein from each sample in the experiment was labeled with Cy2 and
served as an internal standard [17,30].

3.2.3. Two-Dimensional (2D) Electrophoresis, Image Scanning, and Preparative Gel

For the first dimension of separation, nine dry strips of Immobiline strips (measuring
24 cm and at a pH of 3–11; GE Healthcare, Danderyd, Sweden) were passively rehydrated
(30 V; 12 h), followed by isoelectric focusing using an Ettan IPGphor IEF unit (GE Healthcare,
Danderyd, Sweden). The focusing was performed at 20 ◦C, with 50 µA per strip. After
the first dimension, the strips were equilibrated and separated on 12.5% SDS-PAGE gels
using an Ettan Dalt Six device (GE Healthcare, Danderyd, Sweden). The gels were then
scanned using a Sapphire Biomolecular Imager (Azure Bio systems, Dublin, OH, USA),
and digitalization was performed using the image analysis software Sapphire Capture
system (Azure Biosystems, Dublin, OH, USA). Preparative gels were prepared using the
total protein (1 mg) obtained from a pool of equal protein amounts. The gels were then
stained using Colloidal Coomassie Blue, as described previously [17,30,31].

3.2.4. Statistical Analysis

Progenesis SameSpots software (version 3.3, Nonlinear Dynamics Ltd., Newcastle,
UK) was used to analyze the 2D-DIGE gel images via an automated spot-detection method.
The analysis included a comparison of the samples. Moreover, to detect all spots across
all gels, an automatic analysis was performed, and each selected spot was verified and
manually edited wherever necessary. Normalized volumes were used to identify differen-
tially expressed spots. Statistical significance was set at a cut-off ratio of ≥1.5-fold. Each
experiment was performed in triplicate.

3.2.5. Protein Identification via Matrix-Assisted Laser
Desorption/Ionization–Time-of-Flight Mass Spectrometry (MALDI-TOF-MS)

The Coomassie-Blue-stained gel spots were excised manually, washed, and digested
according to a previously described protocol [17,30]. Finally, 0.8 µL of a mixture of tryptic
peptides derived from each protein was spotted onto a MALDI target (384 MTP Anchorchip;
800 µm Anchorchip; Bruker Daltonics, Bremen, Germany). Spectra were acquired using
a MALDI-TOF MS (UltraFlexTrem, Bruker Daltonics, Germany) device in the positive
mode (target voltage—25 kV; pulsed ion extraction voltage—20 kV). The reflector voltage
was set to 21 kV, and the detector voltage was set to 17 kV. The peptide mass fingerprints
(PMFs) were calibrated against a standard mixture by assigning appropriate mono-isotopic
masses to the peaks as follows: bradykinin (1–7), m/z 757.399; angiotensin I, m/z 1296.685;
angiotensin II, m/z 1046.54; rennin-substrate, m/z 1758.93; ACTH clip (1–17), m/z 2093.086;
and somatostatin, m/z 3147.471 (peptide calibration standard II, Bruker Daltonics, Ger-
many). The MS spectra were recorded automatically across the mass range of m/z 700–3000,
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and the spectra were typically the sum of 400 laser shots. The PMFs were processed using
Flex AnalysisTM software (version 2.4, Bruker Daltonics, Germany), and sophisticated
numerical annotation procedure (SNAP) algorithms were used for peak detection (S/N—
3; maximum number of peaks— 100; quality factor threshold—30). The MS data were
interpreted using BioTools v3.2 (Bruker Daltonics, Germany), together with the Mascot
search algorithm (version 2.0.04 updated 09/05/2020; Matrix Science Ltd., London, UK).
The Mascot parameters were as follows: fixed cysteine modification with propionamide,
variable modification due to methionine oxidation, one missed cleavage site (i.e., in the
case of incomplete trypsin hydrolysis), and a mass tolerance of 100 ppm. Identified pro-
teins were accepted as correct if they showed a Mascot score greater than 56 and p < 0.05,
sequence coverage of at least 20%, and a minimum of four matched peptides. Not all
spots of interest could be identified because some proteins were low in abundance and did
not yield sufficiently intense mass fingerprints, whereas others were mixtures of multiple
proteins [30,32,33].

3.2.6. Principal Component Analysis, Cluster Analysis, and Heatmap

Progenesis SameSpots software (version 3.3, Nonlinear Dynamics, Newcastle upon
Tyne, UK) was used to analyze the principal components at (p ≤ 0.05 by ANOVA). The
software was also used to study the different hierarchical clustering and expression profiles
of the samples. A heatmap was created by taking the average of the values normalized to
each spot of significant proteins. The expression-based heat map tool is available on a web
server (http://heatmapper.ca/, accessed on 15 May 2023).

3.2.7. Bioinformatics Analysis

Analyses of protein interaction networks and the functions of the identified proteins were
performed using Ingenuity pathway analysis (IPA) version 9.0 (Ingenuity Systems, Redwood
City, CA, USA). The IPA software maps Uniport IDs into the ingenuity knowledge base, which
is the largest manually curated resource combining information from all published scientific
studies. This software assists in determining functions and pathways that are strongly
correlated with the MS-generated protein list by overlaying the experimental expression
data onto networks constructed from published interactions. Additionally, the identified
proteins were classified into different categories according to their molecular function and
biological function, using the PANTHER (protein analysis through evolutionary relationships)
classification system (http://www.pantherdb.org, accessed on 20 May 2023) [17,30].

4. Discussion

Enterococcus faecalis is one of the most common types of Enterococcaceae found in the
human microbiota. Several studies have shown that an imbalance in microbial collection
may lead to cancer and tumor growth. According to a recent study, E. faecalis has the
potential to suppress proliferation and induce the apoptosis of MCF-7 cells in vitro and
can be used as a target for the prevention and treatment of breast cancer [34]. However,
the functional analysis of and mechanism through which E. faecalis stimulates initiation
and progression remain unclear and should be investigated properly. Several proteomic
studies have been conducted to identify BC biomarkers and the stages of BC progression.
However, these studies were unable to clearly define the relationship between BC and the
role of microbiotic proteins in the progression or regression of BC. A deeper understanding
of the possible underlying molecular pathways is important for the development of reliable
diagnostic and prognostic biomarkers for BC. To the best of our knowledge, this study is
the first to investigate an untargeted proteomic approach using 2D-DIGE coupled with
MALDI-TOF mass spectrometry and a bioinformatics analysis to study the proteomic
profiles of BC after treatment with E. faecalis.

http://heatmapper.ca/
http://www.pantherdb.org
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4.1. Significant Upregulated and Downregulated Proteins in the Samples Treated for 24 and 48 h

The proteomics analysis yielded protein fingerprints displaying a pattern of differ-
entially expressed proteins in the cells treated with E. faecalis for 24 h and 48 h compared
to the experimental control. This study found 58 statistically significant proteins, 45 of
which proteins (33 upregulated and 12 downregulated) were differentially expressed in
the group treated for 24 h compared to the control group, whereas 31 proteins (16 upregu-
lated and 15 downregulated) were differentially expressed in the group treated for 48 h
compared to the control group. This illustrates the downregulation and non-significant
presence of pericentrin and keratin type I cytoskeletal 27 proteins, which are responsible
for cell cycle progression. Conversely, as previously demonstrated, there was an increase in
14-3-3 protein expression in the breast cancer epithelia compared to the adjacent normal
epithelia. This agrees with our results, which showed elevated levels of expression in both
groups compared to the control. This protein has been linked to a variety of biological
processes including cell cycle progression, proliferation, and apoptosis [35].

Furthermore, in this study, several proteins were found to be upregulated in the
cells treated with E. faecalis for 24 h compared to the control and then downregulated
after treatment for 48 h, which may have been due to protein degradation. Keratin type I
cytoskeletal 18 and nitric-oxide-synthase-inducible proteins were detected. Both proteins
are involved in inflammation, such as interleukin-6 (IL-6) and interleukin-8 (IL-8). These
inflammatory mediators have been shown to be associated with a high risk of the metastatic
progression of breast cancer, as reported in [5,9,23]. Killin is a DNA-binding protein which
is involved in cell-cycle arrest and is regulated via p53 oncogenes. A previous study
suggested that the killin gene could be used as a diagnostic marker for patients with an
increased lifetime risk of developing breast and thyroid cancers [36]. Likewise, transgelin
is an actin-binding protein that alters the shape and structure of the cytoskeleton. Hence,
the loss of transgelin gene expression might be an essential step in the development of
tumors and a diagnostic indicator for breast and colon cancer [37,38]. Moreover, poly [ADP-
ribose] polymerase tankyrase-2 (TNKS-2) belongs to a large family of structurally and
functionally diverse proteins. Wnt signaling and apoptosis are two of the many biological
activities regulated by TNKS-2. TNKS proteins are recognized by RNF146, which mediates
subsequent protein degradation [39]. In addition to another protein called small heat
shock protein (HSPB1), which functions as a molecular chaperone, it probably maintains
denatured proteins in a folding-competent state.

Another tumor suppressor protein, coiled-coil domain-containing protein 154 (CCDC154),
was found to be upregulated after 24 h of treatment with E. faecalis. The overexpression of
CCDC154 significantly inhibited cell proliferation and tumor cell growth. Instead of enhancing
apoptosis, CCDC154 can suppress cell growth by inducing G2/M arrest. The G2/M cell cycle
arrest is a checkpoint responsible for preventing any cells with damaged DNA from lasting.
These data suggest that CCDC154 is a novel cell-cycle modulator as well as a potential tumor
suppressor [40]. Furthermore, the ATP-dependent RNA helicase DDX3X is a member of the
DEAD-box family of RNA helicases. Several studies have shown that DDX3X is a biomarker
for good prognosis in cancers. In our study, it appeared poorly in BC after 48 h of treatment
with E. faecalis, and the aberrant expression of DDX3X has poor clinical outcomes in different
cancers, including breast cancer. DDX3X is also known to be involved in modulating tumor
proliferation, migration, invasion, and drug resistance in many types of cancer [41,42].

4.2. Functions and Interactions of Identified Proteins

Similarly, two significant proteins that could be used as cancer biomarkers were
mitochondrial ATP synthases. Similar to the results of the PANTHER analysis in this study,
the expressed proteins have 33% ATP-dependent molecular function activity. ATPase is a
multi-subunit enzyme complex (α, β) located in the inner mitochondrial membrane and is
essential for oxidative phosphorylation under physiological conditions. According to our
results, ATP subunit β was elevated in both groups when compared to the control, whereas
ATP subunit α was decreased in both groups. Overall, the down- or upregulation of the
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ATP synthase subunit appears to be part of cancer adaptation via the desensitization of cells
to permeability transition and cell death. In various cancer models, ATP synthase activity
is correlated with tumor growth, proliferation, and metastatic behavior [37]. However, it
may also stimulate apoptosis [43,44]. Various studies have highlighted this enzyme as a
novel target that needs to be further characterized for anti-cancer strategies [43–45]. At
the protein pathway level, this study observed that the incensement of the ATP synthase
catalytic subunit plays a role in promoting oxidative phosphorylation. According to our
IPA conical pathway results, oxidative phosphorylation (OXPHOS) was detected with a
p-value of 4.54 × 10−3. In cancer tumors and cells, the OXPHOS pathway can be recognized
as a target for the development of novel anticancer therapies. This pathway can be targeted
by small-molecule inhibitors that can inhibit metabolism and induce oxidative damage
and cancer cell death [43,46,47]. Interestingly, the ATP α synthase subunit can bind to the
bacterial siderophore enterobactin, which is found in human microbiota and promotes
the mitochondrial accumulation of enterobactin-derived iron ions. Enterobactin is almost
exclusively produced by enterobacteria to scavenge iron from the environment. The
scavenging role of enterobactin is expected to have a negative impact on certain cellular
processes in the host given that siderophores are key virulence mediators of pathogens [48].

Through biological function annotations, protein–protein interaction networks, and
the identification of novel biomarkers, an IPA was utilized for a network pathway analysis
to obtain insights into the molecular processes of differentially expressed proteins. A
conical pathway analysis showed that the cluster of proteins differentially expressed
between treatment with E. faecalis for 24 h versus the Ctrl identified the dysregulation
of the death receptor signaling pathway, MSP-RON signaling pathway, ILK signaling,
glycerol-3-phosphate shuttle, and BER pathway. In contrast, a network analysis of the group
treated for 48 h compared to the Ctrl showed the involvement of 14-3-3-mediated signaling,
oxidative phosphorylation, ERK/MAPK signaling, glucocorticoid receptor signaling, and
mitochondrial dysfunction. It has been reported that the over-activation of ERK/MAPK
plays an essential role in cell apoptosis and invasion; however, its activation may also
increase cell apoptosis or the pro-oncogenic entry of other signals in breast and pancreatic
cancers. The ERK/MAPK conical pathway signaling demonstrates both oncogene and
tumor suppressor effects depending on the TME [41,49,50]. Similarly, the overexpression of
ILK signaling has been observed to play an important role in biological processes associated
with tumorigenesis, including the cell proliferation and growth of cancer cells [51].

Treatment with E. faecalis could be considered in the future for the inhibition of
tumor cell growth and to induce apoptosis in patients with breast cancer similar what was
observed in the breast cancer cell line. Moreover, the results of this study can be used
clinically as potential biomarkers for disease prognosis.

5. Conclusions

In conclusion, the current study provides a new understanding of the molecular
function of the effects of E. faecalis on breast cancer. Treatment with E. faecalis may induce
apoptosis and inhibit tumor growth in a breast cancer cell line. The panels of protein
markers identified in this study could be considered potential biomarkers of interest for
the diagnosis of breast cancer. Further investigations are required into their utilization as
therapeutic targets and prognostic markers. In addition to the vast number of potential
connections between the microbiome and various breast diseases, we also sought to better
understand the microbiome in the context of the prognosis and treatment of breast disease.
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