King Saud University

College of Science - Dept Of Stat \& Or STAT 106 Second Mid term Exam

First Semester 1427-1428

الزمن سـاعة ونصف فقط

 الرقـم الحـامعي للطـالب:

ضع في المربع المخصص حرف الإجابة الصحيحة:

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25					

If X has the binomial distribution with parameters $n=4, p=0.7$, then

1. the set of all possible values of X is
(A) 0,1,2,3
(B) 4
(C) 5
(D) $0,1,2,3,4$
2. $P(X \geq 1)=$
(A) 0.0081
(B) 0.0837
(C) 0.9919
(D) 0.9163
3. The variance of $X=$
(A) 0.7
(B) 4
(C) 2.8
(D) 0.84

If $f(x)=P(X=x)=k x ; \quad x=1,2,3$ is the probability distribution function of X, then
4. the value of $k=$
(A) 1.0
(B) $1 / 6$
(C) 6
(D) 2
5. $P(2 \leq X \leq 4)=$
(A) $1 / 6$
(B) $5 / 6$
(C) 1
(D) $3 / 6$

Suppose that the mean (average) number of patients which leave a given hospital every day is 4 patients, then:
6. The probability that two patients will leave the hospital this day is:
(A) 0.5
(B) 0.564
(C) 0.1465
(D) 0.3
7. The probability that at least one patient will leave the hospital this day is:
(A) 0.9817
(B) 0.0183
(C) 0.0733
(D) 0.9267
8. The probability that 6 patients will leave the hospital in the next two days is:
(A) 0.67
(B) 0.1042
(C) 0.1221
(D) 0.333
9. The mean number of patients which will leave the hospital in the next two days is:
(A) 4
(B) 3
(C) 2
(D) 8
10. The variance number of patients which will leave the hospital in the next two days is
(A) 64
(B) 8
(C) 16
(D) 4

In a large population, the probability is 0.6 that an individual is infected by a certain disease. 5 persons are selected at random from this population. Then, for the 5 persons, find:
11. The probability that at most 1 person is infected by the disease
(A) 0.98976
(B) 0.08704
(C)0.0768
(D) 0.91296
12. The mean number of infected individuals is
(A) 2.5
(B) 5
(C) 0.6
(D) 3

Let X be the number of car accidents per year in a certain city. Suppose X has the following probability distribution:

X	0	1	2	3
$P(X=x)$	0.5	0.3	0.15	0.05

13. The variable X is
(A) continuous
(B) qualitative
(C) discrete
(D)Non of them
14. $P(X \leq 1.5)=$
(A) 0.8
(B) 0.3
(C) 0.5
(D) 0
15. The mean of X
(A) 1.5
(B) 0.75
(C) 1
(D) 0.25
16. The variance of X
(A) 0.8874
(B) 1.35
(C) 1.1619
(D) 0.7875
17. The probability that at least two accidents will happen for a car on a given year is:
(A) 0.2
(B) 0.1
(C) 0.8
(D) 0.3

In a study on the use of emergency services in some Riyadh Hospitals, 1316 patients were classified by their level of education and whether the doctor believed the case to be a true emergency or not:
Education level Emergency (E1) Not Emergency (E2) Total

Low	(L)	28	68	96
Moderate	(M)	$\mathbf{1 6 1}$	$\mathbf{3 4 4}$	$\mathbf{5 0 5}$
High	(H)	$\mathbf{5 1}$	$\mathbf{1 0 7}$	$\mathbf{1 5 8}$
Below School age (B)	$\mathbf{1 5 2}$	$\mathbf{4 0 5}$	$\mathbf{5 5 7}$	
	Total	$\mathbf{3 9 2}$	$\mathbf{9 2 4}$	$\mathbf{1 3 1 6}$

If we choose one person at random from this group, then
18. The event of moderate level or emergency is described by:
(A) $M \cup E 1$
(B) $M \cap E 1$
$(C)(M-E 1) \cup(E 1-M)$
(D) Φ
19. The event of not Low level given that it is not emergency:
(A) $\bar{L} \mid E 2$
(B) $\bar{L} \mid \bar{E} 2$
(C) $E 2 \mid \bar{L}$
(D) $\bar{E} 2 \mid \bar{L}$
20. The probability $P(H \cup E 2)$ is:
(A) $975 / 1316$
(B) $1082 / 1316$
(C) 0.7379
(D) $107 / 1316$
21. The probability $P(\bar{H} \cup E 2)$ is:
(A) $519 / 1316$
(B) $341 / 1316$
(C) $1265 / 1316$
(D) $240 / 1316$
22. The probability $P[(L \cup H) \cap E 1]$ is:
(A) $79 / 1316$
(B) $254 / 1316$
(C) $663 / 1316$
(D) $212 / 1316$
23. The probability $P(B \mid E 1)$ is:
(A) $152 / 557$
(B) $392 / 1316$
(C) $392 / 557$
(D) $152 / 392$
24. The probability $P(\bar{B} \mid E 1)$ is:
(A) $405 / 557$
(B) $240 / 392$
(C) $165 / 557$
(D) $924 / 1316$
25. The events $E 1$ and B are:
(A) Independent
(B) Not Independent
(C) $E 1=\bar{B}$
(D) Disjoint

