بسم اله الرحمن الرحيم
Department of Statistics \& Operations Research College of Science, King Saud Univer

Second Mid-term Examination
 First Semester
 1429-1430 H

- Mobile Telephones are not allowed in the classrooms.
- Time allowed is $\mathbf{9 0}$ minutes.
- Answer all questions.
- Choose the nearest number to your answer.
- WARNING: Do not copy answers from your neighbors. They have different questions forms.
- For each question, put the code of the correct answer in the following table beneath the question number:

1	2	3	4	5	6	7	8	9	10

11	12	13	14	15	16	17	18	19	20

21	22	23	24	25	26	27	28	29	30

Answer the following questions

Question No. 1.

The cumulative distribution of a discrete random variable X, is given below:

$$
F(x)=\left\{\begin{array}{cc}
0 & \text { for } x<1 \\
\frac{1}{4} & \text { for } 1 \leq x<3 \\
\frac{1}{2} & \text { for } 3 \leq x<5 \\
\frac{3}{4} & \text { for } 5 \leq x<7 \\
1 & \text { for } x \geq 7
\end{array}\right.
$$

(1) The $P(X=5)$ equals:
(A) 0.5
(B) $\underline{\mathbf{0 . 2 5}}$
(C) 0.75
(D) 0.0
(2). $P(X>3)$ equals:
(A) $\underline{0.5}$
(B) 0.25
(C) 1
(D) 0.75
(3). $P(1.4<X<6)$ equals:
(A) 0.25
(B) $\underline{\mathbf{0 . 5 0}}$
(C) 0.30
(D) 0.0

Question No. 2.

The life of a certain tire brand lives is a random variable X that follows the exponential distribution with a mean of 2 years.
(4). For $x>0$, the cumulative distribution function ($C D F$) for the random variable X is:
(A) e^{-2}
(B) $1-e^{-2}$
(C) e^{-x}
(D) $1-e^{-\frac{x}{2}}$
(5). The probability that a tire of this brand will live less than 1.5 years is:
(A) 0.9534
(B) 0.3935
(C) 0.6065
(D) $\underline{\mathbf{0 . 5 2 7 6}}$
(6). The probability that a tire of this brand will live at least 3 years is:
(A) 0.6358
(B) $\underline{\mathbf{0 . 2 2 3 1}}$
(C) 0.4905
(D) 0.3679

Question No. 3.

Let X represents the outcome when a balanced die is tossed.
(7). The mean of $g(X)=3 X^{2}+4$ is
(A) 45.5
(B) 14.5
(C) $\underline{49.5}$
(D) 12.5 .
(8). The variance of X is:
(A) 3.641
(B) $\underline{\mathbf{2 . 9 1 6}}$
(C) 5.751
(D) 6.254
(9). The variance of $g(X)=3 X^{2}+4$ is:
(A) 36.64
(B) 1342.25
(C) 2275
(D) 254.3.
(10). According to Chebyshev's theorem, for any random variable X with mean μ and variance σ^{2}, a lower bound for $P(\mu-2 \sigma<X<\mu+2 \sigma)$ is:
(A) 0.267
(B) 0.3175
(C) $\underline{0.750}$
(D) 0.250

Question No. 4.

Let X be a continuous random variable with the probability density function

$$
f(x)=\frac{3}{2} x^{2}, \text { for }-1<x<1
$$

(11). $P(0<X<1)=\ldots$
(A) $\mathbf{0 . 5}$
(B) 0.3
(C) 0.7
(D) 0.2
(12). $E(X)=\ldots$
(A) 0.9
(B) $\underline{0.0}$
(C) 0.8
(D) 0.1
(13). $\operatorname{Var}(X)=\ldots$
(A) 0.12
(B) $\underline{\mathbf{0 . 6 0}}$
(C) 0.40
(D) 0.18

Question No. 5.

Suppose that the percentage of females in a certain population is 50%. A random sample of 3 people is selected from this population. Let X be the number of females in the sample.
(14). The probability that no females are selected is:
(A) 0.375
(B) 0.112
(C) 0.240
(D) $\underline{0.125}$
(15). The probability that at most two females are selected is:
(A) 0.624
(B) 0.245
(C) $\underline{0.875}$
(D) 0.821
(16). The expected number of females in the sample is:
(A) 1.5
(B) 2.3
(C) 5.8
(D) 0.0
(17). The variance of the number of females in the sample is:
(A) $\underline{\mathbf{0 . 7 5}}$
(B) 0.30
(C) 2.1
(D) 3.25

Question No. 6.

Lots of 40 components each are called acceptable if they contain no more than 3 defectives. The procedure for sampling the lot is to select 5 components at random (without replacement) and to reject the lot if a defective is found. If there are 3 defectives in the entire lot:
(18). the probability that exactly one defective is found in the sample equals:
(A) 0.1103
(B) $\underline{0.3011}$
(C) 0.1013
(D) 0.3110
(19). the expected value (mean) of the number of defectives in the sample equals:
(A) $\underline{0.375}$
(B) 0.213
(C) 0.821
(D) 0.735
(20). the variance of the number of defectives in the sample equals:
(A) 0.113298
(B) $\underline{\mathbf{0 . 3 1 1 2 9 8}}$
(C) 0.251471
(D) 0.174251

Question No. 7.

Suppose that the number of traffic violation tickets issued by a policeman has a Poisson distribution with an average of 2.5 tickets per day.
(21). The average number of tickets issued by this policeman for a period of two days is:
(A) 2.00
(B) 1.25
(C) 2.50
(D) $\underline{\mathbf{5 . 0 0}}$
(22). The probability that this policeman will issue 2 tickets in a period of two days is:
(A) 0.1404
(B) 0.2565
(C) $\underline{\mathbf{0 . 0 8 4 2}}$
(D) 0.1755

Question No. 8.

In a photographic process, the developing time of prints may be considered as a random variable having the normal distribution with a mean of 16.28 second and a standard deviation of 0.12 second. Then, the probability that the developing time to develop one of the prints will be:
(23). anywhere from 16 to 16.5 seconds equals:
(A) 0.0435
(B) 0.1762
(C) $\underline{0.9565}$
(D) 0.2018
(24). at least 16.20 seconds equals:
(A) $\underline{\mathbf{0 . 7 4 5 4}}$
(B) 0.34221
(C) 0.6502
(D) 0.2514
(25). at most 16.35 second equals:
(A) 0.3101
(B) $\underline{0.7190}$
(C) 0.2810
(D) 0.4053

Question No. 9.

The average life of a certain battery is 5 years, with a standard deviation of 1 year. Assume that the life of the battery approximately follows a normal distribution.
(26). The sample mean of a random sample of 5 batteries selected from this product has a mean [i.e $E(\bar{X})$], equal to:
(A) 0.2
(B) $\underline{\mathbf{5}}$
(C) 3
(D) 1
(27). The variance of the sample mean [i.e $\operatorname{Var}(\bar{X})]$ of 5 batteries selected from this product is equal to:
(A) $\underline{0.2}$
(B) 5
(C) 3
(D) 1
(28). The probability that the average life of a random sample of size 16 of such batteries will be less than 5.5 years, is:
(A) 0.9223
(B) 0.0228
(C) $\underline{\mathbf{0 . 9 7 7 2}}$
(D) 0.5321
(29). The probability that the average life of a random sample of size 16 of such batteries will be more than 4.75 years is:
(A) 0.8103
(B) 0.1587
(C) 0.9452
(D) $\underline{\mathbf{0 . 8 4 1 3}}$
(30). If $P(\bar{X}>a)=0.1492$ where \bar{X} represents the sample mean for a random sample of size 9 of such batteries, then the numerical value of the constant a is:
(A) 4.6532
(B) 6.510
(C) $\underline{\mathbf{5 . 3 4 6 6}}$
(D) 2.8713

Good Luck.

