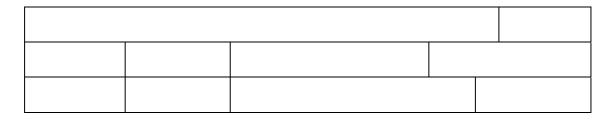


بسم الله الرحمن الرحيم Department of Statistics & Operations Research College of Science, King Saud Univer

STAT 324 Second Mid-term Examination First Semester 1429 – 1430 H



- Mobile Telephones are <u>not allowed</u> in the classrooms.
- Time allowed is <u>**90** minutes</u>.
- Answer all questions.
- Choose the nearest number to your answer.
- WARNING: Do not copy answers from your neighbors. <u>They have different</u> <u>questions forms.</u>
- For each question, put the code of the correct answer in the following table beneath the question number:

1	2	3	4	5	6	7	8	9	10

11	12	13	14	15	16	17	18	19	20

21	22	23	24	25	26	27	28	29	30

Answer the following questions

Question No. 1.

The cumulative distribution of a discrete random variable X, is given below:

$$F(x) = \begin{cases} 0 & \text{for } x < 1\\ \frac{1}{4} & \text{for } 1 \le x < 3\\ \frac{1}{2} & \text{for } 3 \le x < 5\\ \frac{3}{4} & \text{for } 5 \le x < 7\\ 1 & \text{for } x \ge 7 \end{cases}$$

(1) The P(X = 5) equals:

(A) 0.5(B)**0.25**(C) 0.75(D) 0.0

(2). P(X > 3) equals:

- (A) <u>0.5</u>
 (B) 0.25
 (C) 1
 (D) 0.75
- (3). P(1.4 < X < 6) equals:
 - $\begin{array}{c} (A) \ 0.25 \\ (B) \ \underline{0.50} \\ (C) \ 0.30 \\ (D) \ 0.0 \end{array}$

Question No. 2.

The life of a certain tire brand lives is a random variable X that follows the exponential distribution with a mean of 2 years.

- (4). For x > 0, the cumulative distribution function (CDF) for the random variable X is:
 - (A) e^{-2} (B) $1 - e^{-2}$ (C) e^{-x} (D) $1 - e^{-\frac{x}{2}}$
- (5). The probability that a tire of this brand will live less than 1.5 years is:
 - (A) 0.9534
 (B) 0.3935
 (C) 0.6065
 (D) 0.5276
- (6). The probability that a tire of this brand will live at least 3 years is:
 - (A) 0.6358
 (B) 0.2231
 (C) 0.4905
 (D) 0.3679

Question No. 3.

Let X represents the outcome when a balanced die is tossed.

- (7). The mean of $g(X) = 3X^2 + 4$ is
 - $\begin{array}{l} (A) \ 45.5 \\ (B) \ 14.5 \\ (C) \ \underline{49.5} \\ (D) \ 12.5. \end{array}$
- (8). The variance of X is:

(A) 3.641

- (B) <u>**2.916**</u>
- (C) 5.751
- $(D) \ 6.254$

(9). The variance of $g(X) = 3X^2 + 4$ is:

- $\begin{array}{l} (A) \ 36.64 \\ (B) \ \underline{1342.25} \\ (C) \ 2275 \\ (D) \ 254.3. \end{array}$
- (10). According to Chebyshev's theorem, for any random variable X with mean μ and variance σ^2 , a lower bound for $P(\mu 2\sigma < X < \mu + 2\sigma)$ is:
 - (A) 0.267(B) 0.3175(C) 0.750(D) 0.250

Question No. 4.

Let X be a continuous random variable with the probability density function

$$f(x) = \frac{3}{2}x^2$$
, for $-1 < x < 1$.

- (11). $P(0 < X < 1) = \dots$ (A) $\underline{0.5}$ (B) $\overline{0.3}$ (C) 0.7
 - (D) 0.2

(12). $E(X) = \dots$

 $\begin{array}{c} (A) \ 0.9 \\ (B) \ \underline{0.0} \\ (C) \ 0.8 \\ (D) \ 0.1 \end{array}$

- (13). Var(X) = ...
 - (A) 0.12(B)**0.60**(C) 0.40(D) 0.18

Question No. 5.

Suppose that the percentage of females in a certain population is 50%. A random sample of 3 people is selected from this population. Let X be the number of females in the sample.

(14). The probability that no females are selected is:

- $\begin{array}{c} (A) \ 0.375 \\ (B) \ 0.112 \\ (C) \ 0.240 \\ (D) \ \underline{0.125} \end{array}$
- (15). The probability that at most two females are selected is:
 - (A) 0.624(B) 0.245(C)**0.875**(D) 0.821
- (16). The expected number of females in the sample is:
 - (A) <u>**1.5**</u>(B) 2.3(C) 5.8(D) 0.0
- (17). The variance of the number of females in the sample is:
 - $\begin{array}{c} (A) \ \underline{0.75} \\ (B) \ 0.30 \\ (C) \ 2.1 \\ (D) \ 3.25 \end{array}$

Question No. 6.

Lots of 40 components each are called acceptable if they contain no more than 3 defectives. The procedure for sampling the lot is to select 5 components at random (without replacement) and to reject the lot if a defective is found. If there are 3 defectives in the entire lot:

- (18). the probability that exactly one defective is found in the sample equals:
 - (A) 0.1103
 (B) 0.3011
 (C) 0.1013
 (D) 0.3110
- (19). the expected value (mean) of the number of defectives in the sample equals:
 - $\begin{array}{l} (A) \ \underline{0.375} \\ (B) \ 0.213 \\ (C) \ 0.821 \\ (D) \ 0.735 \end{array}$
- (20). the variance of the number of defectives in the sample equals:
 - $\begin{array}{l} (A) \ 0.113298 \\ (B) \ \underline{0.311298} \\ (C) \ 0.251471 \\ (D) \ 0.174251 \end{array}$

Question No. 7.

Suppose that the number of traffic violation tickets issued by a policeman has a Poisson distribution with an average of 2.5 tickets per day.

- (21). The average number of tickets issued by this policeman for a period of two days is:
 - (A) 2.00
 (B) 1.25
 (C) 2.50
 (D) 5.00
- (22). The probability that this policeman will issue 2 tickets in a period of two days is:

(A) 0.1404
(B) 0.2565
(C) 0.0842
(D) 0.1755

Question No. 8.

In a photographic process, the developing time of prints may be considered as a random variable having the normal distribution with a mean of 16.28 second and a standard deviation of 0.12 second. Then, the probability that the developing time to develop one of the prints will be:

(23). anywhere from 16 to 16.5 seconds equals:

- (A) 0.0435(B) 0.1762(C) 0.9565(D) 0.2018
- (24). at least 16.20 seconds equals:
 - $\begin{array}{l} (A) \ \underline{0.7454} \\ (B) \ 0.34221 \\ (C) \ 0.6502 \\ (D) \ 0.2514 \end{array}$

(25). at most 16.35 second equals:

(A) 0.3101
(B) 0.7190
(C) 0.2810
(D) 0.4053

Question No. 9.

The average life of a certain battery is 5 years, with a standard deviation of 1 year. Assume that the life of the battery approximately follows a normal distribution.

(26). The sample mean of a random sample of 5 batteries selected from this product has a mean [i.e $E(\overline{X})$], equal to:

- (A) 0.2
- $(B) \, \underline{\mathbf{5}}$
- (C) 3
- (D) 1
- (27). The variance of the sample mean [i.e $Var(\overline{X})$] of 5 batteries selected from this product is equal to:
 - (A) 0.2
 (B) 5
 (C) 3
 (D) 1
- (28). The probability that the average life of a random sample of size 16 of such batteries will be less than 5.5 years, is:
 - (A) 0.9223
 (B) 0.0228
 (C) 0.9772
 (D) 0.5321
- (29). The probability that the average life of a random sample of size 16 of such batteries will be more than 4.75 years is:
 - $\begin{array}{l} (A) \ 0.8103 \\ (B) \ 0.1587 \\ (C) \ 0.9452 \end{array}$
 - (D) **<u>0.8413</u>**
- (30). If $P(\overline{X} > a) = 0.1492$ where \overline{X} represents the sample mean for a random sample of size 9 of such batteries, then the numerical value of the constant a is:
 - (A) 4.6532
 - (B) 6.510
 - (C) <u>5.3466</u>
 - (D) 2.8713

Good Luck.