# GE 403 Engineering Economy

## First Semester 1444 H

**Eng. Howaidi Alotaibi** Civil Engineering Department E-mail <u>halshaibani@ksu.edu.sa</u>

#### Simple interest VS Compound interest

• <u>Simple interest</u> calculation:

$$F_n = P + P \cdot i \cdot n$$
  $\longrightarrow$   $F_n = P(1 + i \cdot n)$ 

• <u>Compound Interest</u> Calculation:

$$F_n = F_{n-1}(1+i)$$

$$F_n = P(1+i)^n$$

Where

- *P* = present value of single sum of money
- $F_n$  = accumulated value of P over n periods
- *i* = interest rate per period
- n = number of periods

A friend approaches you and asks to borrow \$6,000 at 5 percent simple interest per month. The friend agrees to repay the loan with a single payment after 1 year. How much should you expect to receive?

#### **Solution**

Using simple interest formula

 $F_n = P(1 + i \cdot n)$ 

F = 6000[1 + 0.05(12)] = \$9600

You should expect to receive \$9600 after 1 year.

# Resolve the previous exercise using 5 percent compound interest per month.

**Solution** 

Using compound interest formula

$$F = P(1+i)^n$$

 $F = 6000(1 + 0.05)^{12} = \$10775.14$ 



• *Using compound interest tables* in Appendix A for 5 percent and 12 periods, the value of the single sum, future worth factor (F/P 5%,12) is shown to be 1.79586. Thus,

$$F = P(F/P 5\%, 12)$$

F = P(F/P 5%, 12)F = 6000(1.79586)F = \$10775.16

|                                                                                        | TABLE A-a-11                                                                                                                                                      |                                                                                                                                                                   |                                                                                                                                                                                  |                                                                                                                                                                   |                                                                                                                                                                               |                                                                                                                                                                   |                                                                                                                                                                                        |                                                                                                                                                                   |  |  |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                        | Single Sums                                                                                                                                                       |                                                                                                                                                                   | Uniform Series                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                               |                                                                                                                                                                   | Gradient Series                                                                                                                                                                        |                                                                                                                                                                   |  |  |
| n                                                                                      | To Find F<br>Given P<br>(F P i%,n)                                                                                                                                | To Find P<br>Given F<br>(P F i%,n)                                                                                                                                | To Find F<br>Given A<br>(F A i%,n)                                                                                                                                               | To Find A<br>Given F<br>(A   F i%,n)                                                                                                                              | To Find P<br>Given A<br>(P A i%,n)                                                                                                                                            | To Find A<br>Given P<br>(A P  i%,n)                                                                                                                               | To Find P<br>Given G<br>(P G i%,n)                                                                                                                                                     | To Find A<br>Given G<br>(A  G i%,n)                                                                                                                               |  |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                                  | 1.05000<br>1.10250<br>1.15763<br>1.21551<br>1.27628<br>1.34010<br>1.40710<br>1.47746<br>1.55133<br>1.62889<br>1.71034                                             | 0.95238<br>0.90703<br>0.86384<br>0.82270<br>0.78353<br>0.74622<br>0.71068<br>0.67684<br>0.64461<br>0.61391<br>0.58468                                             | 1.00000<br>2.05000<br>3.15250<br>4.31013<br>5.52563<br>6.80191<br>8.14201<br>9.54911<br>11.02656<br>12.57789<br>14.20679                                                         | 1.00000<br>0.48780<br>0.31721<br>0.23201<br>0.18097<br>0.14702<br>0.12282<br>0.10472<br>0.09069<br>0.07950<br>0.07039                                             | 0.95238<br>1.85941<br>2.72325<br>3.54595<br>4.32948<br>5.07569<br>5.78637<br>6.46321<br>7.10782<br>7.72173<br>8.30641<br>0.96225                                              | 1.05000<br>0.53780<br>0.36721<br>0.28201<br>0.23097<br>0.19702<br>0.17282<br>0.17282<br>0.15472<br>0.14069<br>0.12950<br>0.12039                                  | 0.00000<br>0.90703<br>2.63470<br>5.10281<br>8.23692<br>11.96799<br>16.23208<br>20.96996<br>26.12683<br>31.65205<br>37.49884                                                            | 0.00000<br>0.48780<br>0.96749<br>1.43905<br>1.90252<br>2.35790<br>2.80523<br>3.24451<br>3.67579<br>4.09909<br>4.51444                                             |  |  |
| 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26 | 1.79586<br>1.88505<br>1.97993<br>2.07893<br>2.18287<br>2.29202<br>2.40662<br>2.52695<br>2.65330<br>2.78596<br>2.92526<br>3.07152<br>3.22510<br>3.38635<br>3.55567 | 0.55684<br>0.53032<br>0.50507<br>0.48102<br>0.45811<br>0.43630<br>0.41552<br>0.39573<br>0.37689<br>0.35894<br>0.34185<br>0.32557<br>0.31007<br>0.29530<br>0.28124 | 15.91713<br>17.71298<br>19.59863<br>21.57856<br>23.65749<br>25.84037<br>28.13238<br>30.53900<br>33.06595<br>35.71925<br>38.50521<br>41.43048<br>44.50200<br>47.72710<br>51.11345 | 0.06283<br>0.05646<br>0.05102<br>0.04634<br>0.04227<br>0.03870<br>0.03555<br>0.03275<br>0.03024<br>0.02800<br>0.02597<br>0.02414<br>0.02247<br>0.02095<br>0.01956 | 8.86325<br>9.39357<br>9.89864<br>10.37966<br>10.83777<br>11.27407<br>11.68959<br>12.08532<br>12.46221<br>12.82115<br>13.16300<br>13.48857<br>13.79864<br>14.09394<br>14.37519 | 0.11283<br>0.10646<br>0.10102<br>0.09634<br>0.09227<br>0.08870<br>0.08555<br>0.08275<br>0.08024<br>0.07800<br>0.07597<br>0.07414<br>0.07247<br>0.07095<br>0.06956 | 43.62405<br>49.98791<br>56.55379<br>63.28803<br>70.15970<br>77.14045<br>84.20430<br>91.32751<br>98.48841<br>105.66726<br>112.84611<br>120.00868<br>127.14024<br>134.22751<br>141.25852 | 4.92190<br>5.32150<br>5.71329<br>6.09731<br>6.47363<br>6.84229<br>7.20336<br>7.55690<br>7.90297<br>8.24164<br>8.57298<br>8.89706<br>9.21397<br>9.52377<br>9.82655 |  |  |

You want to withdraw a single sum of \$8,000 from an account at the end of 7 years. This withdrawal will deplete the account. What single sum of money must you deposit today if the account earns 10 percent compound interest?

#### **Solution**

Using compound interest formula

$$P = F(1+i)^{-n}$$

 $P = 8000(1 + 0.1)^{-7} = $4105.27$ 

*Using compound interest tables* in Appendix A for 10 percent and 7 periods, the value of the single sum, present worth factor (P/F 10%, 7) is shown to be 0.51316. Thus,

$$P = F(P/F \ 10\%,7)$$

 $P = F(P/F \ 10\%,7)$ 

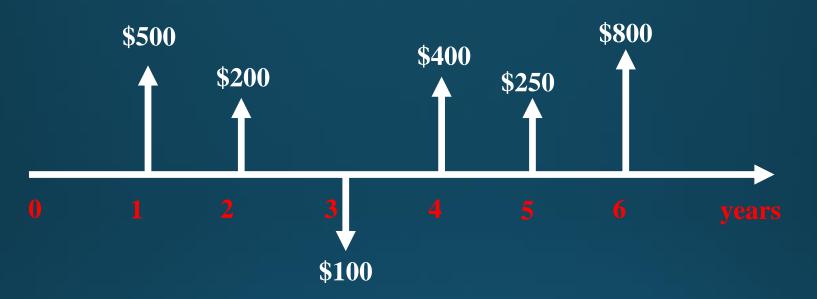
P = 8000(0.51316)

P = \$4105.28

|    |                      |                      | Т                    | ABLE A-a             | -16                         |                      |                      |                      |
|----|----------------------|----------------------|----------------------|----------------------|-----------------------------|----------------------|----------------------|----------------------|
|    | Single Sums          |                      | Uniform Series       |                      |                             |                      | Gradient Series      |                      |
|    | To Find F<br>Given P | To Find P<br>Given F | To Find F<br>Given A | To Find A<br>Given F | To Find P<br>Given A        | To Find A<br>Given P | To Find P<br>Given G | To Find /<br>Given G |
| n  | (F P i%,n)           | (P Fi‰,n)            | (F A i%,n)           | (A F i%,n)           | ( <i>P</i>   <i>A</i> i%,n) | (A Pi%,n)            | (P G i%,n)           | (A G i%,n            |
| 1  | 1.10000              | 0.90909              | 1.00000              | 1.00000              | 0.90909                     | 1.10000              | 0.00000              | 0.00000              |
| 2  | 1.21000              | 0.82645              | 2.10000              | 0.47619              | 1.73554                     | 0.57619              | 0.82645              | 0.47619              |
| 3  | 1.33100              | 0.75131              | 3.31000              | 0.30211              | 2.48685                     | 0.40211              | 2.32908              | 0.93656              |
| 4  | 1.46410              | 0.68301              | 4.64100              | 0.21547              | 3.16987                     | 0.31547              | 4.37812              | 1.38117              |
| 5  | 1.61051              | 0.62092              | 6.10510              | 0.16380              | 3.79079                     | 0.26380              | 6.86180              | 1.81013              |
| 6  | 1 77156              | 0.56447              | 7 71561              | 0.12961              | 4 35526                     | 0.22961              | 9 68417              | 2 22356              |
| 7  | 1.94872              | 0.51316              | 9.48717              | 0.10541              | 4.86842                     | 0.20541              | 12.76312             | 2.62162              |
| 8  | 2.14359              | 0.40051              | 11.43589             | 0.08744              | 5.33493                     | 0.18744              | 10.02807             | 3.00448              |
| 9  | 2.35795              | 0.42410              | 13.57948             | 0.07364              | 5.75902                     | 0.17364              | 19.42145             | 3.37235              |
| 10 | 2.59374              | 0.38554              | 15.93742             | 0.06275              | 6.14457                     | 0.16275              | 22.89134             | 3.72546              |
| 11 | 2.85312              | 0.35049              | 18.53117             | 0.05396              | 6.49506                     | 0.15396              | 26.39628             | 4.06405              |
| 12 | 3.13843              | 0.31863              | 21.38428             | 0.04676              | 6.81369                     | 0.14676              | 29.90122             | 4.38840              |
| 13 | 3.45227              | 0.28966              | 24.52271             | 0.04078              | 7.10336                     | 0.14078              | 33.37719             | 4.69879              |
| 14 | 3.79750              | 0.26333              | 27.97498             | 0.03575              | 7.36669                     | 0.13575              | 36.80050             | 4.99553              |
| 15 | 4.17725              | 0.23939              | 31.77248             | 0.03147              | 7.60608                     | 0.13147              | 40.15199             | 5.27893              |
| 16 | 4.59497              | 0.21763              | 35.94973             | 0.02782              | 7.82371                     | 0.12782              | 43.41642             | 5.54934              |
| 17 | 5.05447              | 0.19784              | 40.54470             | 0.02466              | 8.02155                     | 0.12466              | 46.58194             | 5.80710              |
| 18 | 5.55992              | 0.17986              | 45.59917             | 0.02193              | 8.20141                     | 0.12193              | 49.63954             | 6.05256              |
| 19 | 6.11591              | 0.16351              | 51.15909             | 0.01955              | 8.36492                     | 0.11955              | 52.58268             | 6.28610              |
| 20 | 6.72750              | 0.14864              | 57.27500             | 0.01746              | 8.51356                     | 0.11746              | 55.40691             | 6.50808              |
| 21 | 7.40025              | 0.13513              | 64.00250             | 0.01562              | 8.64869                     | 0.11562              | 58.10952             | 6.71888              |
| 22 | 8.14027              | 0.12285              | 71.40275             | 0.01401              | 8.77154                     | 0.11401              | 60.68929             | 6.91889              |
| 23 | 8.95430              | 0.11168              | 79.54302             | 0.01257              | 8.88322                     | 0.11257              | 63.14621             | 7.10848              |
| 24 | 9.84973              | 0.10153              | 88.49733             | 0.01130              | 8.98474                     | 0.11130              | 65.48130             | 7.28805              |
| 25 | 10.83471             | 0.09230              | 98.34706             | 0.01017              | 9.07704                     | 0.11017              | 67.69640             | 7.45798              |
| 26 | 11.91818             | 0.08391              | 109.18177            | 9.1590E-03           | 9.16095                     | 0.10916              | 69.79404             | 7.61865              |
| 27 | 13.10999             | 0.07628              | 121.09994            | 8.2576E-03           | 9.23722                     | 0.10826              | 71.77726             | 7.77044              |
| 28 | 14.42099             | 0.06934              | 134.20994            | 7.4510E-03           | 9.30657                     | 0.10745              | 73.64953             | 7.9137               |

10.00%

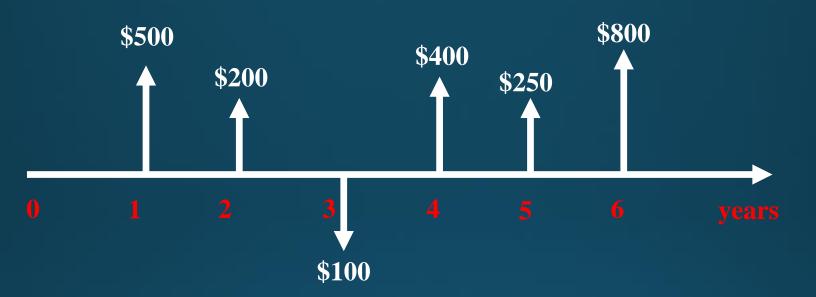
Time Value of Money Factors Discrete Compounding


The cash flow profile for an investment is given below, and the interest rate is 6 percent compounded annually.

| EOY       | 0          | 1     | 2     | 3      | 4     | 5     | 6     |
|-----------|------------|-------|-------|--------|-------|-------|-------|
| Cash Flow | <b>\$0</b> | \$500 | \$200 | -\$100 | \$400 | \$250 | \$800 |

i. Find the future worth of this cash flow series using the actual cash flows.

ii. Find the present worth of this series using the actual cash flows.

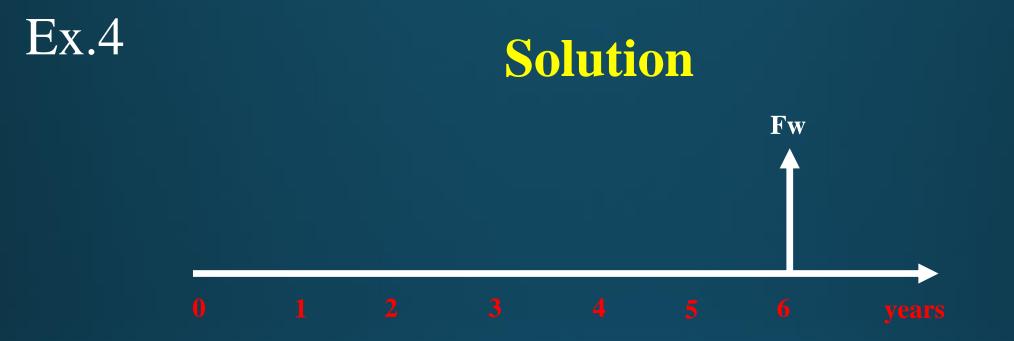

iii. Find the present worth using the future worth.



i- Fw = 500 (F/P 6%, 5) + 200 (F/P 6%, 4) - 100 (F/P 6%, 3) + 400 (F/P 6%, 2) + 250 (F/P 6%, 1) + 800 (F/P 6%, 0) Fw = 500 (1.33823) + 200 (1.26248) - 100 (1.19102) + 400 (1.12360) + 250 (1.06) + 800 (1) = \$2316.95 alue of Money Factors Discrete Compounding 6.00%

| TABLE A-a-12 |
|--------------|
|--------------|

|    | Single Sums                        |                                    | Uniform Series                     |                                     |                                    |                                      | Gradient Series                    |                                      |
|----|------------------------------------|------------------------------------|------------------------------------|-------------------------------------|------------------------------------|--------------------------------------|------------------------------------|--------------------------------------|
| n  | To Find F<br>Given P<br>(F P i%,n) | To Find P<br>Given F<br>(P F i%,n) | To Find F<br>Given A<br>(F A i%,n) | To Find A<br>Given F<br>(A  F i%,n) | To Find P<br>Given A<br>(P A i%,n) | To Find A<br>Given P<br>(A   P i%,n) | To Find P<br>Given G<br>(P G i%,n) | To Find A<br>Given $G$<br>(A G i%,n) |
| 1  | 1.06000                            | 0.94340                            | 1.00000                            | 1.00000                             | 0.94340                            | 1.06000                              | 0.00000                            | 0.00000                              |
| 2  | 1.12360                            | 0.89000                            | 2.06000                            | 0.48544                             | 1.83339                            | 0.54544                              | 0.89000                            | 0.48544                              |
| 3  | 1.19102                            | 0.83962                            | 3.18360                            | 0.31411                             | 2.67301                            | 0.37411                              | 2.56924                            | 0.96118                              |
| 4  | 1.26248                            | 0.79209                            | 4.37462                            | 0.22859                             | 3.46511                            | 0.28859                              | 4.94552                            | 1.42723                              |
| 5  | 1.33823                            | 0.74726                            | 5.63709                            | 0.17740                             | 4.21236                            | 0.23740                              | 7.93455                            | 1.88363                              |
| 6  | 1.41852                            | 0.70496                            | 6.97532                            | 0.14336                             | 4.91732                            | 0.20336                              | 11.45935                           | 2.33040                              |
| 7  | 1.50363                            | 0.66506                            | 8.39384                            | 0.11914                             | 5.58238                            | 0.17914                              | 15.44969                           | 2.76758                              |
| 8  | 1.59385                            | 0.62741                            | 9.89747                            | 0.10104                             | 6.20979                            | 0.16104                              | 19.84158                           | 3.19521                              |
| 9  | 1.68948                            | 0.59190                            | 11.49132                           | 0.08702                             | 6.80169                            | 0.14702                              | 24.57677                           | 3.61333                              |
| 10 | 1.79085                            | 0.55839                            | 13.18079                           | 0.07587                             | 7.36009                            | 0.13587                              | 29.60232                           | 4.02201                              |
| 11 | 1.89830                            | 0.52679                            | 14.97164                           | 0.06679                             | 7.88687                            | 0.12679                              | 34.87020                           | 4.42129                              |
| 12 | 2.01220                            | 0.49697                            | 16.86994                           | 0.05928                             | 8.38384                            | 0.11928                              | 40.33686                           | 4.81126                              |
| 13 | 2.13293                            | 0.46884                            | 18.88214                           | 0.05296                             | 8.85268                            | 0.11296                              | 45.96293                           | 5.19198                              |
| 14 | 2.26090                            | 0.44230                            | 21.01507                           | 0.04758                             | 9.29498                            | 0.10758                              | 51.71284                           | 5.56352                              |
| 15 | 2.39656                            | 0.41727                            | 23.27597                           | 0.04296                             | 9.71225                            | 0.10296                              | 57.55455                           | 5.92598                              |
| 16 | 2.54035                            | 0.39365                            | 25.67253                           | 0.03895                             | 10.10590                           | 0.09895                              | 63.45925                           | 6.27943                              |
| 17 | 2.69277                            | 0.37136                            | 28.21288                           | 0.03544                             | 10.47726                           | 0.09544                              | 69.40108                           | 6.62397                              |
| 18 | 2.85434                            | 0.35034                            | 30.90565                           | 0.03236                             | 10.82760                           | 0.09236                              | 75.35692                           | 6.95970                              |
| 19 | 3.02560                            | 0.33051                            | 33.75999                           | 0.02962                             | 11.15812                           | 0.08962                              | 81.30615                           | 7.28673                              |
| 20 | 3.20714                            | 0.31180                            | 36.78559                           | 0.02718                             | 11.46992                           | 0.08718                              | 87.23044                           | 7.60515                              |
| 21 | 3.39956                            | 0.29416                            | 39.99273                           | 0.02500                             | 11.76408                           | 0.08500                              | 93.11355                           | 7.91508                              |
| 22 | 3.60354                            | 0.27751                            | 43.39229                           | 0.02305                             | 12.04158                           | 0.08305                              | 98.94116                           | 8.21662                              |
| 23 | 3 81975                            | 0.26180                            | 46 99583                           | 0.02128                             | 12 30338                           | 0.08128                              | 104 70070                          | 8 50991                              |




ii- Pw = 500 (P/F 6%, 1) + 200 (P/F 6%, 2) - 100 (P/F 6%, 3) + 400 (P/F 6%, 4)

+ 250 (P/F 6%, 5) + 800 (P/F 6%, 6)

Pw = 500 (0.94340) + 200 (0.8900) - 100 (0.83962) + 400 (0.79209)

+ 250(0.74726) + 800(0.70496) = \$1633.36



iii- Pw = Fw (P/F 6%, 6)

Pw = 2316.95 (P/F 6%, 6)

Pw = 2316.95 (0.70496) = \$1633.36