[Solution Key] MATH-244 (Linear Algebra); Mid-term Exam; Semester 432

Question 1:

a) Find the values of
$$\lambda$$
 for which the matrix $\begin{vmatrix} 1 & 0 & \lambda \\ 2 & 1 & 2+\lambda \\ 2 & 3 & \lambda^2 \end{vmatrix}$ is invertible.
Solution: $\begin{vmatrix} 1 & 0 & \lambda \\ 2 & 1 & 2+\lambda \\ 2 & 3 & \lambda^2 \end{vmatrix}^{-1}$ exists $\Leftrightarrow \begin{vmatrix} 1 & 0 & \lambda \\ 2 & 1 & 2+\lambda \\ 2 & 3 & \lambda^2 \end{vmatrix} = \lambda^2 + \lambda - 6 \neq 0 \Leftrightarrow \lambda \in \mathbb{R} - \{-3, 2\}.$
b) By using properties of the determinants, show that:
 $\begin{vmatrix} a+b+c & b & a \\ d+e+f & e & d \\ g+h+i & h & g \end{vmatrix} = \begin{vmatrix} c & b & a \\ d & e + f & e & d \\ g+h+i & h & g \end{vmatrix} = \begin{vmatrix} c & b & a \\ b & e & h \\ a & d & g \end{vmatrix}$ (by taking transpose)
 $= \begin{vmatrix} c & b & a \\ f & e & d \\ i & h & g \end{vmatrix}$ (by the row operations $R_1 + (-1)R_2, R_1 + (-1)R_3$).
c) Let $A = \begin{bmatrix} 2 & -1 & 0 \\ 1 & -2 & 1 \\ 1 & -1 & 0 \end{bmatrix}$. Find $adj(A)$ and A^{-1} .
Solution: $adj(A) = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{bmatrix}^T = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -2 \\ 1 & 1 & -3 \end{bmatrix}$.

Question 2:

a) Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 3 \\ 2 & 1 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$. Show that the *linear system* AX = B has a *unique solution* for any fixed $\alpha, \beta, \gamma \in \mathbb{R}$. Solution: Since $|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 3 \\ 2 & 1 & 3 \end{vmatrix} = 5 \neq 0$, A^{-1} exists. So, the linear system has the unique solution $X = A^{-1}B = A^{-1} \begin{bmatrix} \alpha \\ \beta \\ \nu \end{bmatrix}$

for any fixed α , β , $\gamma \in \mathbb{R}$.

b) Solve the following system of linear equations by using the Cramer's rule:

$$x - y + z = 0$$

$$x + y + z = 2$$

$$x + 2y + 4z = 3$$

Solution: |A| = 6, $|A_x| = 6$, $|A_y| = 6$ and $|A_z| = 0$. Hence, $x = \frac{|A_x|}{|A|} = \frac{6}{6} = 1$, $y = \frac{|A_y|}{|A|} = \frac{6}{6} = 1$ and $z = \frac{|A_z|}{|A|} = \frac{0}{6} = 0$.

c) Use any of the elimination methods to show that the following system of linear equations is inconsistent: -x + 2y - 5z = 3

$$x - 3y + z = 4$$
$$5x - 13y + 13z = 8$$

Solution: Since $\begin{bmatrix} -1 & 2 & -5 & 3\\ 1 & -3 & 1 & 4\\ 5 & -13 & 13 & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 1 & 4\\ 0 & 1 & 4 & -7\\ 0 & 0 & 0 & 2 \end{bmatrix}$, the given linear system is inconsistent.

Question 3:

a) Let $\{v_1, v_2, v_3\}$ be a linearly independent subset of vector space V. Show that the subset $\{w_1, w_2, w_3\}$ is linearly independent in V, where $w_1 = v_1 + 2v_3$, $w_2 = v_1 + v_2 + v_3$ and $w_3 = v_2 + v_3$.

Solution: If $0 = \alpha_1 w_1 + \alpha_2 w_2 + \alpha_3 w_3 = \alpha_1 (v_1 + 2v_3) + \alpha_2 (v_1 + v_2 + v_3) + \alpha_3 (v_2 + v_3)$

$$= (\alpha_1 + \alpha_2)v_1 + (\alpha_2 + \alpha_3)v_2 + (2\alpha_1 + \alpha_2 + \alpha_3)v_3$$
,

then, by the linear independence of $\{v_1, v_2, v_3\}$, we get $\alpha_1 + \alpha_2 = 0$, $\alpha_2 + \alpha_3 = 0$ and $2\alpha_1 + \alpha_2 + \alpha_3 = 0$;

which gives $\alpha_1 = \alpha_2 = \alpha_3 = 0$. Hence, $\{w_1, w_2, w_3\}$ is linearly independent in V.

b) Show that $F := \{(x, y, z) \in \mathbb{R}^3 | y - z = 0, y + z = 0\}$ is a vector subspace of Euclidean space \mathbb{R}^3 . Then find a basis and dimension of F.

Solution: $(x, y, z) \in F \Leftrightarrow (x, y, z) = (0, 0, z) = z(0, 0, 1)$. So, $F = span(\{(0, 0, 1)\})$; which is a vector subspace of \mathbb{R}^3 .

Hence, $\{(0,0,1)\}$ is a basis of *F* and so dim(F) = 1.

c) Show that $B := \{t^2 + 2, -t + 1, 2t - 1\}$ is a basis of the real vector space $P_2(t)$ of all polynomials in real variable t having degree ≤ 2 . Then find the coordinate vector of the polynomial $t^2 + 3t + 3$ with respect to the basis B.

Solution: If $0 = \alpha(t^2 + 2) + \beta(-t + 1) + \gamma(2t - 1) = \alpha t^2 + (2\gamma - \beta)t + 2\alpha + \beta - \gamma$ then $\alpha = \beta = \gamma = 0$. So, the

set *B* is linearly independent in the vector space $P_2(t)$. However, dim $(P_2(t)) = 3$. So, *B* is a basis

of
$$P_2(t)$$
.

Now, if $t^2 + 3t + 3 = \alpha(t^2 + 2) + \beta(-t + 1) + \gamma(2t - 1) = \alpha t^2 + (2\gamma - \beta)t + 2\alpha + \beta - \gamma$, then

$$\alpha = 1, \ \beta = 5 \text{ and } \gamma = 4.$$
 Hence, $[t^2 + 3t + 3]_B = \begin{bmatrix} 1 \\ 5 \\ 4 \end{bmatrix}$

***!