[Solution Key] MATH-244 (Linear Algebra); Mid-term Exam; Semester 432

Question 1:

a) Find the values of λ for which the matrix $\left[\begin{array}{rrr}\mathbf{1} & \mathbf{0} & \boldsymbol{\lambda} \\ 2 & 1 & 2+\lambda \\ 2 & 3 & \lambda^{2}\end{array}\right]$ is invertible.

Solution: $\left[\begin{array}{rrr}1 & 0 & \lambda \\ 2 & 1 & 2+\lambda \\ 2 & 3 & \lambda^{2}\end{array}\right]^{-1}$ exists $\Leftrightarrow\left|\begin{array}{rrr}1 & 0 & \lambda \\ 2 & 1 & 2+\lambda \\ 2 & 3 & \lambda^{2}\end{array}\right|=\lambda^{2}+\lambda-6 \neq 0 \Leftrightarrow \lambda \in \mathbb{R}-\{-3,2\}$.
b) By using properties of the determinants, show that:

$$
\left|\begin{array}{ccc}
a+b+c & b & a \\
d+e+f & e & d \\
g+h+i & h & g
\end{array}\right|=\left|\begin{array}{ccc}
c & b & a \\
f & e & d \\
i & h & g
\end{array}\right|
$$

Solution: $\left|\begin{array}{ccc}a+b+c & b & a \\ d+e+f & e & d \\ g+h+i & h & g\end{array}\right|=\left|\begin{array}{ccc}a+b+c & d+e+f & g+h+i \\ b & e & h \\ a & d & g\end{array}\right|$ (by taking transpose)

$$
\left.=\left|\begin{array}{lll}
c & b & a \\
f & e & d \\
i & h & g
\end{array}\right| \text { (by the row operations } R_{1}+(-1) R_{2}, R_{1}+(-1) R_{3}\right)
$$

c) Let $\boldsymbol{A}=\left[\begin{array}{lll}2 & -1 & 0 \\ \mathbf{1} & -2 & \mathbf{1} \\ \mathbf{1} & -1 & \mathbf{0}\end{array}\right]$. Find $\operatorname{adj}(\boldsymbol{A})$ and $\boldsymbol{A}^{-\mathbf{1}}$.

Solution: $\operatorname{adj}(A)=\left[\begin{array}{rrr}1 & 1 & 1 \\ 0 & 0 & 1 \\ -1 & -2 & -3\end{array}\right]^{T}=\left[\begin{array}{lll}1 & 0 & -1 \\ 1 & 0 & -2 \\ 1 & 1 & -3\end{array}\right]$.
Since $|A|=1$, we get $A^{-1}=|\boldsymbol{A}|^{-1} \operatorname{adj}(\boldsymbol{A})=\operatorname{adj}(\boldsymbol{A})=\left[\begin{array}{lll}\mathbf{1} & \mathbf{0} & -\mathbf{1} \\ \mathbf{1} & \mathbf{0} & -\mathbf{2} \\ \mathbf{1} & \mathbf{1} & -\mathbf{3}\end{array}\right]$.

Question 2:

a) Let $\boldsymbol{A}=\left[\begin{array}{lll}1 & 1 & 1 \\ \mathbf{1} & 0 & 3 \\ 2 & 1 & 3\end{array}\right]$ and $\boldsymbol{B}=\left[\begin{array}{l}\boldsymbol{\alpha} \\ \boldsymbol{\beta} \\ \boldsymbol{\gamma}\end{array}\right]$. Show that the linear system $\mathbf{A X}=\mathbf{B}$ has a unique solution for any fixed $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma} \in \mathbb{R}$.

Solution: Since $|A|=\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 3 \\ 2 & 1 & 3\end{array}\right|=5 \neq 0, A^{-1}$ exists. So, the linear system has the unique solution $\mathrm{X}=A^{-1} B=A^{-1}\left[\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right]$ for any fixed $\alpha, \beta, \nu \in \mathbb{R}$.
b) Solve the following system of linear equations by using the Cramer's rule:

$$
\begin{aligned}
& x-y+z=0 \\
& x+y+z=2 \\
& x+2 y+4 z=3
\end{aligned}
$$

Solution: $|A|=6,\left|A_{x}\right|=6,\left|A_{y}\right|=6$ and $\left|A_{z}\right|=0$. Hence, $x=\frac{\left|A_{x}\right|}{|A|}=\frac{6}{6}=1, y=\frac{\left|A_{y}\right|}{|A|}=\frac{6}{6}=1$ and $z=\frac{\left|A_{z}\right|}{|A|}=\frac{0}{6}=0$.
c) Use any of the elimination methods to show that the following system of linear equations is inconsistent:

$$
\begin{gathered}
-x+2 y-5 z=3 \\
x-3 y+z=4 \\
5 x-13 y+13 z=8
\end{gathered}
$$

Solution: Since $\left[\begin{array}{rrr|r}-1 & 2 & -5 & 3 \\ 1 & -3 & 1 & 4 \\ 5 & -13 & 13 & 8\end{array}\right] \sim\left[\begin{array}{rrr|r}1 & -3 & 1 & 4 \\ 0 & 1 & 4 & -7 \\ 0 & 0 & 0 & 2\end{array}\right]$, the given linear system is inconsistent.

Question 3:

a) Let $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ be a linearly independent subset of vector space \boldsymbol{V}. Show that the subset $\left\{\boldsymbol{w}_{\mathbf{1}}, \boldsymbol{w}_{\mathbf{2}}, \boldsymbol{w}_{\mathbf{3}}\right\}$ is linearly independent in V, where $\boldsymbol{w}_{1}=v_{1}+2 v_{3}, \boldsymbol{w}_{2}=\boldsymbol{v}_{1}+v_{2}+v_{3}$ and $\boldsymbol{w}_{3}=v_{2}+v_{3}$.
Solution: If $0=\alpha_{1} w_{1}+\alpha_{2} w_{2}+\alpha_{3} w_{3}=\alpha_{1}\left(v_{1}+2 v_{3}\right)+\alpha_{2}\left(v_{1}+v_{2}+v_{3}\right)+\alpha_{3}\left(v_{2}+v_{3}\right)$

$$
=\left(\alpha_{1}+\alpha_{2}\right) v_{1}+\left(\alpha_{2}+\alpha_{3}\right) v_{2}+\left(2 \alpha_{1}+\alpha_{2}+\alpha_{3}\right) v_{3}
$$

then, by the linear independence of $\left\{v_{1}, v_{2}, v_{3}\right\}$, we get $\alpha_{1}+\alpha_{2}=0, \alpha_{2}+\alpha_{3}=0$ and $2 \alpha_{1}+\alpha_{2}+\alpha_{3}=0$;
which gives $\alpha_{1}=\alpha_{2}=\alpha_{3}=\mathbf{0}$. Hence, $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \boldsymbol{w}_{3}\right\}$ is linearly independent in V.
b) Show that $\boldsymbol{F}:=\left\{(\boldsymbol{x}, \boldsymbol{y}, \mathbf{z}) \in \mathbb{R}^{\mathbf{3}} \mid \boldsymbol{y}-\mathbf{z}=\mathbf{0}, \boldsymbol{y}+\mathbf{z}=\mathbf{0}\right\}$ is a vector subspace of Euclidean space \mathbb{R}^{3}. Then find a basis and dimension of \boldsymbol{F}.
Solution: $(x, y, z) \in F \Leftrightarrow(x, y, z)=(0,0, z)=z(0,0,1)$. So, $F=\boldsymbol{\operatorname { s p a n }}(\{(0,0,1)\})$; which is a vector subspace of \mathbb{R}^{3}. [: Hence, $\{(0,0,1)\}$ is a basis of F and so $\operatorname{dim}(F)=1$.
c) Show that $B:=\left\{\boldsymbol{t}^{\mathbf{2}}+\mathbf{2},-\boldsymbol{t}+\mathbf{1}, \mathbf{2 t}-\mathbf{1}\right\}$ is a basis of the real vector space $\boldsymbol{P}_{\mathbf{2}}(\boldsymbol{t})$ of all polynomials in real variable t having degree ≤ 2. Then find the coordinate vector of the polynomial $\boldsymbol{t}^{2}+3 \boldsymbol{t}+3$ with respect to the basis \boldsymbol{B}.

Solution: If $0=\alpha\left(t^{2}+2\right)+\beta(-t+1)+\gamma(2 t-1)=\alpha t^{2}+(2 \gamma-\beta) t+2 \alpha+\beta-\gamma$ then $\alpha=\beta=\gamma=0$. So, the
set B is linearly independent in the vector space $P_{2}(t)$. However, $\operatorname{dim}\left(P_{2}(t)\right.$. $)=3$. So, B is a basis of $P_{2}(t)$.

Now, if $t^{2}+3 t+3=\alpha\left(t^{2}+2\right)+\beta(-t+1)+\gamma(2 t-1)=\alpha t^{2}+(2 \gamma-\beta) t+2 \alpha+\beta-\gamma, \quad$ then
$\alpha=1, \beta=5$ and $\gamma=4$. Hence, $\quad\left[t^{2}+3 t+3\right]_{B}=\left[\begin{array}{l}1 \\ 5 \\ 4\end{array}\right]$.

