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Abstract We present the theoretical framework and the approximations needed
to numerically simulate the response of alkali metal atoms under multi-photon
excitation. By applying the semi-classical approximation, we obtain a system of
coupled ordinary and partial differential equations accounting both for the nonlinear
dynamics of the atomic medium and the spatiotemporal evolution of the emitted
fields. The case of two-photon excitation by a laser field with an additional one-
photon coupling field is investigated by numerically solving the set of differential
equations employing a self-consistent computational scheme. The computation
of the emission intensities and atomic level populations and coherences is then
possible.

1 Introduction

Systems of ordinary and partial differential equations have been extensively used
in quantum physics and are considered fundamental in order to theoretically
understand laser radiation—matter interaction and nonlinear optics. Nonlinear
optics is the branch of physics that describes the behavior of light in nonlinear
media, that is, media that respond nonlinearly to an applied electromagnetic field
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[1]. The nonlinearity is typically observed only at very high light intensities, such as
those provided by lasers. In nonlinear optics, the superposition principle no longer
holds. Alkali metal atoms have been extensively used as model systems due to their
low-lying energy levels. Consequently, the excitation and experimental study of the
nonlinear response of alkali metal atom systems using two-photon schemes is easily
feasible using laser systems in the visible range of the spectrum. The theoretical
description and computation of the nonlinear processes observed in experiments
can be implemented using systems of differential equations and by applying either
semi-classical approximations, where the atom is treated quantum mechanically but
the participating fields classically, or fully quantum descriptions (quantum optics).

Resonant or near resonant multi-photon interaction of laser pulses with atomic
systems and the induced nonlinear response in terms of generated radiation have
been important research topics. Two-photon excitation, whereby nanosecond (ns)
or femtosecond (fs) laser pulses are tuned near a two-photon resonance, has been
extensively used to study the atomic system dynamics in a vapor cell. Well known
nonlinear phenomena can be easily observed under two-photon excitation, such
as the partially coherent amplified spontaneous emission (ASE), stimulated hyper
Raman scattering (SHRS) and four-wave mixing emissions (FWM) [2–11]. Forward
and backward propagating fields that are emitted axially or conically have also
been recorded depending on the laser field detuning and propagation characteristics
of the laser beam [12–14]. Excitation of alkali metal vapors have been proven
a convenient methodology for the study of phase matching mechanisms, wave
mixing emissions, multi-photon mechanisms, energy transfer between atomic states,
efficient generation of laser radiation and ultrafast processes [15–27].

Internally generated radiations resulting from the two-photon excitation of alkali
metal atoms have been shown to compete with the laser pulse to nonlinearly
modify the response of the atomic system, specifically the emitted pulse shapes,
the temporal evolution of the emitted pulses and the population distribution in
atomic levels. In addition, destructive quantum interference (QI) can take place
between laser photons and internally generated photons connecting the same levels
modifying the nonlinear response of the system [3, 6, 12, 14, 28]. In addition,
several different approaches for the realization of atomic memories in closed
systems had been proposed over the past decades [29–32]. Atomic coherence and
electromagnetically induced transparency (EIT) [3, 33–37], slow light propagation
[38] and lasing without inversion (LWI) [39–43] have been also extensively studied.
The theoretical study and experimental demonstration of the manipulation of
quantum states between fields and atoms have made feasible the production of
quantum memory devices that can efficiently delay or store the quantum states of
light fields in order to write, store and “read-out” faithfully these states and the
information they carry.

Optical free induction decay (OFID) [44] can become a useful method for
studying light-matter interactions, in particular for probing dipole dephasing times
in gases and solids. The interaction of an atom with two laser pulses, a pump and
a coupling one, in a temporally counterintuitive order (the coupling precedes the
pump) have also been considered as an effective method to enhance the nonlin-
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earities of an atomic system [45–49]. In general, enhancement of the internally
generated fields occurs if the arrival of a pump pulse follows the coherent coupling
pulse or if they partially overlap. In the case of a three-level system, the coupling
laser, either between the ground and the low excited state (V-type system) or
between the two excited states (!-type system), creates a coherent superposition
of the two states, resulting in enhancement of the parametric emissions driven by
the pump laser connecting the ground state to the high excited one [48]. In addition,
enhancing the nonlinearities via the use of resonant atomic transitions, has led to the
investigation of FWM processes in a counterintuitive pulse sequence [50, 51], which
results in the enhancement of the parametric emissions and additional flexibility in
their temporal control. It was shown, by using a single pump field, that the response
of the system is affected mainly by the pump intensity, the atomic density, and the
elastic dephasing collision rates [52]. Finally, observed suppression of emissions
due to QI effects, and ionization losses to the continuum (open atomic systems) in
the case of focused laser pulses should also be taken into account in computations
for a more complete description of the atomic system response [4, 53–60].

In this work, we review the theoretical framework and the approximations needed
to simulate the atomic response of alkali metal atoms under two-photon excitation
by a laser field. By applying the semi-classical approximation, where the atoms
are treated quantum mechanically and the fields classically, we obtain a system
of coupled ordinary and partial differential equations for the propagation of the
emission fields in the nonlinear atomic medium. The calculation of the emission
intensities and the atomic level populations and coherences is then possible after
certain additional justifiable approximations are introduced.

2 Theoretical Modeling and Approximations

Two-photon excitation of alkali metal atoms is possible when the orbital angular
momentum and parity of the initial |1⟩ and final |2⟩ atomic states satisfy certain
selection rules. A typical configuration for the two-photon excitation should include
many energy levels having lower energy than |2⟩ (closed system) and possibly the
continuum if ionization is taken into account due to absorption of an additional
photon (open system). In order to simplify the model and the calculations, the most
intense emissions and the associated energy levels are typically included. In this
work, the four-level model for the simulation of the atomic system is similar to that
presented in [59], where the transition |1⟩ − |2⟩ is excited by two photons, while
the de-excitation of atomic state |2⟩ is possible through the lower energy atomic
states |3⟩ and |4⟩. The external laser pulse waveform (pump field) used to provide
the two photons for the excitation has an intensity which varies with time t . This is
simulated in the model either as a secant hyperbolic function F(t) = sech2(t/tc) for
t < 0 and Gaussian function F(t) = exp(−t2/t2c ) for t > 0 or as a single Gaussian
function, depending on the waveform characteristics of the experimental laser used
to excite the two-photon transition (tc is the temporal Full Width at Half Maximum
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(FWHM) or pulse duration). In order to apply the model and compute the nonlinear
response with realistic atomic parameters, potassium atoms are used and levels |1⟩,
|2⟩, |3⟩, |4⟩ correspond to the potassium atomic levels 4S1/2, 6S1/2, 4P3/2 and 5P3/2,
respectively. Emissions are generated at one photon allowed transitions (electric
dipole selection rules [61]) at frequencies ω24, ω41, ω23 and ω31 that correspond to
the dipole allowed atomic transitions |2⟩ ↔ |4⟩, |4⟩ ↔ |1⟩, |2⟩ ↔ |3⟩ and |3⟩ ↔ |1⟩.

The semi-classical approximation is used for the interaction of the atom with the
electromagnetic field of the laser pulse. This is adequate to simulate experimental
results in the case of intense excitation laser fields, where the photon creation and
annihilation operators used in a quantum mechanical description of the field can be
replaced with the amplitude of the time-dependent classical field. In this case, the
Hamiltonian for the interaction of the atomwith the electromagnetic field is given by

HI = 1
2m

[p⃗ − eA⃗(r⃗, t)]2 + eφ(r⃗, t) (1)

where A⃗(r⃗, t) and φ(r⃗, t) are the vector and scalar potentials of the field. In the
Coulomb gauge, φ(r⃗, t) = 0, and in the dipole approximation, where A⃗(r⃗, t) ≈
A⃗(r⃗0, t), we can ignore the spatial derivatives of the vector potential, and using the

unitary transformation |ψ(t)⟩ = exp
[
ier⃗

h̄
· A⃗(r⃗, t)

]
|χ(t)⟩ for the state vector and

the Schrödinger equation

ih̄
∂

∂t
|ψ(t)⟩ = H |ψ(t)⟩ (2)

we can finally write the total Hamiltonian as H = H0 + HI , where HI =
−er⃗ · E⃗(r⃗0, t) is the electric dipole interaction Hamiltonian and H0 the atomic
Hamiltonian.

The unitary transformation of the Hamiltonian from the Schrödinger picture
to the interaction picture is effected by applying the unitary operator U0(t) =
exp[− i

h̄H0t]:

H(I) = U†
0H

(S)U0(t) (3)

The free atom Hamiltonian H0 can be written in the form H0 = ∑
h̄ωi |i⟩⟨i|

where h̄ωi is the energy of the |i⟩ state. Finally, the unitary transformation leads to
a Hamiltonian H(I) in the interaction picture [5, 59, 62] that has the form:

H(I) =− h̄(Ω
(2)
12 |1⟩⟨2|e−i∆12t +Ω14|1⟩⟨4|e−i∆14t +Ω13|1⟩⟨3|e−i∆13t+

+Ω23|2⟩⟨3|e−i∆23t +Ω24|2⟩⟨4|e−i∆24t )+H.c. (4)

The two-photon Rabi frequency Ω(2)
12 is expressed as a linear function of the

maximum laser intensity Imax [63]:
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Ω
(2)
12 (t) =

µ
(2)
12

cϵ0h̄
ImaxF(t) (5)

The two-photon matrix element µ(2)
12 is calculated using an effective Green’s

function approach in the context of the single-channel quantum defect theory [64–
67], a technique well established for the calculation of multi-photon matrix elements
in alkali metal atoms. The contribution of all non-resonant virtual intermediate
states, including the continuum as well, should be included in the calculations.
However, taking into account only the contributions of states |3⟩ and |4⟩ is a good
approximation in the proposed model. In deriving the density operator equations of
motion, the non-resonant virtual atomic levels effectively contributing to the two-
photon excitation are adiabatically eliminated. The internally generated radiations,
with electric fields

Eij (z, t) = ϵij (z, t) exp[−i(νij t − kij z)]/2+ c.c. (6)

are included in the model in the form of the single-photon Rabi frequencies Ωij ,
which are proportional to the complex amplitudes ϵij (ζ, t) of the emitted fields at
transition |i⟩ ↔ |j ⟩. The detuning from the transition |i⟩ ↔ |j ⟩, is denoted as
∆ij = νij − ωij , where νij is the frequency of the generated field, with indices ij
taking values from the set 1, 2, 3, 4 as appropriate. In the computations below, it is
assumed that ∆12 = 0 (two-photon detuning of the pump) and ∆ij = 0 (single-
photon detunings).

In order to derive the equations for the atom, we apply the density operator
formulation, where the density operator is defined as ρ̂ = ∑

i ai |i⟩⟨i| with ai being
the probability of the system to be in the |i⟩ state. Knowing the density operator
matrix elements we can extract any information for the atomic system as it can be
shown that for an observable A and its corresponding operator Â, the expectation
value is ⟨Â⟩ = Tr(ρ̂Â). The time evolution of the density matrix is governed by the
Schrödinger–von Neumann equation: ih̄ ∂∂t ρ̂ = [Ĥ , ρ̂], where [Ĥ , ρ̂] = Ĥ ρ̂ − ρ̂Ĥ
is the commutator. By applying the rotating wave approximation (RWA) with
the transformation ρij = σij exp(−iωij t), the following set of coupled ordinary
differential equations is obtained:

σ̇11 = i
(
Ω

(2)
12 σ21 −Ω

(2)
21 σ12 +Ω14σ41 −Ω41σ14+

+Ω13σ31 −Ω31σ13
)
+ Γ2Rσ22 + Γ31σ33 + Γ41σ44 (7)

σ̇22 = i(Ω
(2)
21 σ12 −Ω

(2)
12 σ21 +Ω24σ42 −Ω42σ24 +Ω23σ32 −Ω32σ23)

− (Γ2R + Γ23 + Γ24)σ22 (8)

σ̇33 = i(Ω32σ23 −Ω23σ32 +Ω31σ13 −Ω13σ31)− Γ31σ33 + Γ23σ22 (9)

σ̇44 = i
(
Ω41σ14 −Ω14σ41 +Ω42σ24 −Ω24σ42

)
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− Γ41σ44 + Γ24σ22 (10)

σ̇12 = i (∆12 + i (γ12 + γcol)) σ12 + iΩ
(2)
12 (σ22 − σ11)+

+ i
(
Ω14σ42 +Ω13σ32 −Ω32σ13 −Ω42σ14

)
(11)

σ̇13 = i
(
∆13 + i(γ13 + γcol)

)
σ13 + iΩ13(σ33 − σ11)

+ i
(
Ω41σ43 +Ω12σ23 −Ω23σ12

)
(12)

σ̇14 = i (∆14 + i (γ14 + γcol)) σ14 + iΩ14(σ44 − σ11)+

+ i(Ω
(2)
12 σ24 +Ω13σ34 −Ω24σ12) (13)

σ̇23 = −i (∆12 −∆13 − i (γ23 + γcol)) σ23 + i
(
Ω23(σ33 − σ22)+

+Ω(2)
21 σ13 +Ω24σ43 −Ω13σ21

)
(14)

σ̇24 = −i (∆12 −∆14 − i (γ24 + γcol)) σ24+

+ i
(
Ω24(σ44 − σ22)+Ω(2)

21 σ14 +Ω23σ34 −Ω14σ21

)
(15)

σ̇34 = −i (∆14 −∆13 − i (γ34 + γcol)) σ34 + i (Ω31σ14 +Ω32σ24−
− Ω14σ31 −Ω24σ32) (16)

+ c. c.

The coherence decay rates of the four-level model system of potassium atom
are phenomenologically added as γ12, γ24, γ41, γ23, γ31 and they are calculated by
the formula γij = ∑

Γij /2, (i ̸= j ), where the decay constant Γij is the inverse
lifetime (ns−1) of transition |i⟩ ↔ |j ⟩ [5, 62, 68–71]. In addition, the contribution
of collision dephasing rate γcol is considered in the non-diagonal density matrix
elements, simulating the elastic collisions of potassium atom with the buffer gas
used in the experiments. The effective decay Γ2R in (7), is obtained from the
contribution of the states |4⟩, |3⟩ and the intermediate ones |3D3/2⟩ and |5S1/2⟩,
through which the atom decays from the state |2⟩ to |1⟩ [3, 5, 31].

In order to account for the generation of the internally generated fields and their
propagation along the z axis, theMaxwell equations are used for the field amplitudes
(or Rabi frequencies) within the slowly varying envelope approximation (SVEA).
Transformed in the retarded time frame by the transformation τ = t − z/c and
z = ζ , they read as:

∂

∂ζ
Ωij (ζ, τ ) = i

kij

4ϵ0h̄
µijpij (ζ, τ )

where pij (ζ, τ ) = NTr(µ̂ρ̂) is the quantum mechanical atomic polarization, N the
atomic density of potassium, ϵ0 the permittivity of free space, kij the wave-number
for each transition and µij the matrix element of the electric dipole operator for the
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corresponding single-photon transition [63]. The matrix elements of the transitions
of interest are taken from [61]: µ24 = 10.7 a.u., µ41 = −0.453 a.u., µ23 = 1.07 a.u.
and µ31 = −5.13 a.u., respectively. The two-photon matrix element of the pumping
transition is calculated to be µ(2)

12 = −950 a.u., where a.u. denotes atomic units [63].
Finally, the propagation equations for the internally generated Rabi frequencies in a
co-propagating reference frame assumed the following form:

∂

∂ζ
Ω24(ζ, τ ) = iN

k24

2ϵ0h̄
µ2
24σ24 (17)

∂

∂ζ
Ω41(ζ, τ ) = iN

k41

2ϵ0h̄
µ2
14σ41 (18)

∂

∂ζ
Ω23(ζ, τ ) = iN

k23

2ϵ0h̄
µ2
23σ23 (19)

∂

∂ζ
Ω31(ζ, τ ) = iN

k31

2ϵ0h̄
µ2
13σ31 (20)

The set of coupled equations (7)–(20) are the Maxwell-Bloch equations of our
system and can be numerically solved self-consistently obtaining the spatiotemporal
dependence for the unknown quantities Ωij and σij . The intensity Iij of the

generated emissions is calculated as Iij = 2h̄2ϵ0c
µ2
ij

Ω2
ij .

In addition, transition |4⟩ ↔ |1⟩ or |3⟩ ↔ |1⟩ can be excited in our model by
an external field in order to compute the characteristics of the system under a V-
type coupling scheme (laser pump field excites the two-photon transition while an
external coupling field is applied on the one-photon transition). The tunable external
coupling field is considered to have maximum intensity I c14 and the same waveform
and duration as the pump laser field, in a pump-coupling excitation scheme. In the
case of |4⟩ ↔ |1⟩ coupling (V14 coupling scheme), the new coupling Rabi frequency

denoted as Ωc
14 = µ14

2h̄

√
2
cϵ0

√
|I c14|F(τ ) is added in every term containing Ω14

replacingΩ14 with (Ω14+Ωc
14) andΩ41 with (Ω41+Ωc

14) in the set of Eqs. (7), (10),
(11), (12), (13), (15), and (16), while the system interaction Hamiltonian describing
the V-type coupling scheme takes the following form:

H(I) =− h̄(Ω
(2)
12 |1⟩⟨2|e−i∆12t + (Ω14 +Ωc

14)|1⟩⟨4|e−i∆14t +Ω13|1⟩⟨3|e−i∆13t+
+Ω23|2⟩⟨3|e−i∆23t +Ω24|2⟩⟨4|e−i∆24t )+H.c. (21)

We assume that both external fields resonantly excite the transitions of interest
and as a consequence ∆12 = 0 and ∆c

14 = 0 (the latter is the coupling field
detuning). The |3⟩ ↔ |1⟩ external excitation (V13 coupling scheme) can be
investigated in a similar way.

Furthermore, an external coupling laser field with maximum intensity I c23 and
the same waveform and duration can be used to excite the upper single-photon
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transition |2⟩ ↔ |3⟩, in a !-type pump-coupling scheme. In this case, the Rabi

frequency of the coupling field is defined as Ωc
23 = µ23

2h̄

√
2
cϵ0

√|I c23|F(τ ), and both
pump and coupling fields are assumed to resonantly excite the transitions of interest,
so ∆12 = 0 and ∆c

23 = 0 (single-photon detuning of the coupling). The coupling
Rabi frequency is also added in every term containing Ω23 and Ω32 in the set of
Eqs. (8), (9), (11), (12), (14), (15) and (16) with the new Hamiltonian describing the
!-type coupling scheme being:

H(I) =− h̄(Ω
(2)
12 |1⟩⟨2|e−i∆12t +Ω14|1⟩⟨4|e−i∆14t +Ω13|1⟩⟨3|e−i∆13t+

+ (Ω23 +Ωc
23)|2⟩⟨3|e−i∆23t +Ω24|2⟩⟨4|e−i∆24t )+H.c. (22)

The enhancements observed for the internally generated emissions in the case of
a V-type or a !-type coupling scheme are discussed in [69–71].

An important phenomenon that can interfere with the model described is the
ionization process. In the previous discussion, the atomic system is presented as
a closed system, meaning that the atoms are excited and participate in several
processes due to the interaction with the electromagnetic fields, but they remain
unaltered (no electrons are absorbed or lost) and finally, after a certain period of
time, the atoms return to their original state |1⟩. This means that the number of
participating atoms in the model remains constant. However, ionization processes
are possible due to the strong intensities of the electromagnetic fields used, for
example, three pump laser photons can cause the extraction of an electron and
the subsequent ionization of the atom. Since ionized atoms are different than the
neutral atoms and the model becomes extremely complicated if ions are also taken
into account, a different approach is needed. In order to take into consideration the
ionization process, we assume that ions generated are extracted from the system and
do not participate in the model. Consequently, we discuss the atomic model as an
open system in which neutral atoms population decreases with time. The effect of
the ionization process (transition to the continuum) was presented in [59] in the case
of the potassium atom.

In order to include the transition to the continuum through the two-photon
resonant, three-photon ionization mechanism [62], the Maxwell-Bloch equations
have to be transformed. At first, the sum of the population derivatives is non-zero,
in contrast to a closed four-level system, so Eq. (8) has to be modified by the addition
of the term −ΓionImaxF (τ )σ22.

Imax is the pump laser peak intensity and Γion is the ionization width (more
information about the ionization rate in an open atomic system can be found in
[59]). In addition, the term −ΓionImaxF (τ )σmn/2 must be added in Eqs. (11), (14),
and (15), since all transitions connected with state |2⟩ are affected by the transition
from the state to the continuum (quantified by the factor Γion) due to the two-
photon resonant, three-photon ionization process. Furthermore, in order to take into
account ionization from state |4⟩ (system loses from state |4⟩ to the continuum) by
the absorption of one laser photon, the term −Γ ′ionImaxF (τ )σ44 is also added in
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Eq. (10), and the term −Γ ′ionImaxF (τ )σmn/2 is also added in Eqs. (13), (15), and
(16), which are related to the off-diagonal matrix elements.

For short laser pulses, such as in the femtosecond (fs) range, the propagation of
both the pump and coupling laser fields in the medium has to be taken into account.
For the coupling Rabi frequency we add another equation in the form of (17)–(20):

∂

∂ζ
Ωc(ζ, τ ) = iN

kc

2ϵ0h̄
µ2
cσc (23)

where c is to be replaced with the appropriate numbers of the coupled transitions.
The two-photon field propagation is governed [12] by the equation

∂

∂ζ
Ω

(2)
12 (ζ, τ ) = iN

k12

2ϵ0h̄
4K(2)

12 σ12Ω
(2)
12 (24)

where the second order coupling strength K
(2)
12 = 1

2h̄
∑

i
µ2iµi1
ω2i−ω1 is calculated over

all the virtual states between the states |1⟩ and |2⟩.

3 Results and Discussion

The set of differential equations (7)–(20) and (23), (24) is numerically solved
employing a FORTRAN code. We calculate both the field and atomic variables by
taking alternate steps in space and time along two grids of constant step size, one
spatial, along the propagation axis, and one temporal, starting from known initial
conditions for the atomic variables at each position and known boundary conditions
for the field variables at each time [72]. Initially, the atoms are considered to be
at the ground state for each ζ at τ = 0, while the boundary conditions for the
generated Rabi frequency Ωij at ζ0 = 0 correspond to the quantum noise level,
which induces single-photon transitions by quantum fluctuations, with a typical
value of Ωij (0, τ ) ∝ ϵ0(0, τ ) = 10−4 V/cm [73].

To solve the first-order coupled differential equations, either with respect to time
or with respect to position, we employ the fourth-order Runge–Kutta method of
constant step size. This method is simple but sufficiently accurate and allows for
explicit control of the step sizes to match the requirements of the physics problem
and provide the necessary detail in the representation of the evolution of both the
atomic and field variables. In our system both the duration of the pump pulse and the
total propagation length are fixed. We have chosen to advance the set of variables in
time at discrete positions and we typically study the outcome at the exit face of the
vapor cell that allows us to compare directly with experimental results.

However, for short, sub-ps pulsed excitation a very small time step is needed to
accurately describe the atomic and field evolution, even more so since the pump
pulse should be also propagated. In typical computing platforms, the execution time
of the code becomes prohibitively large, so the total propagation length was limited
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Fig. 1 Intensities versus time for the internally generated emissions at the |2⟩−|4⟩ and the |4⟩−|1⟩
transitions. The system parameters are: Laser intensity Imax = 45GW/cm2, coupling intensity
I c14 = 5W/cm2, pulses FWHM τc = 40 fs, pump-coupling temporal separation ∆t = −2 ps and
atomic density N = 4× 1015 cm−3

to 1 cm. This length corresponds to typical vapor cell sizes used in experimental
setups and, in principle, longer propagation lengths can be studied numerically given
sufficient computational resources.

In the following computations the atomic system is assumed to be open in order
to take into account ionization processes. Short pulse excitation (0.04 ps pulses)
and a V-coupling scheme are applied, with the coupling field having the same pulse
characteristics as the excitation pulse applied at the two-photon transition. In this
case, emissions at ω24 and ω41 partially overlap temporally within the excitation
pulse duration and are clearly synchronized as is evident in Fig. 1. Populations of
state |3⟩ and emissions at ω23 and ω31 remain in the noise regime for the parameters
used in our model, so they are not shown in the following figures and discussion.

In Fig. 2, the populations of the atomic states are shown. It is evident that state |3⟩
remains unpopulated at all times and that state |2⟩ builds its maximum population
during the short excitation pulse duration of 0.04 ps. The system assumes a steady
state driven by short pulses of internally generated emissions and subsequently
spontaneous decay that drives the population back to the ground state via a cascade
of emissions. The time scale of spontaneous emission is far longer than the one
depicted in the figures.

Further insight into the evolution of the internally generated emissions is
provided by the study of the coherences, i.e., the off-diagonal matrix elements of
the atomic density operator. In Fig. 3a and b the calculated time profiles of both
σ24 and σ41 are depicted. Their time evolution correlates well with the calculated
intensities for the corresponding emissions, shown in Fig. 1. In particular, the time
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Fig. 2 Populations of the states |1⟩ ↔ |4⟩ versus time. The system parameters are the same as in
Fig. 1
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Fig. 3 Coherences of the |2⟩ ↔ |4⟩ (a) and of the |4⟩ ↔ |1⟩ (b) transition versus time. The system
parameters are the same as in Fig. 1

evolution of the imaginary parts of both coherences provides an insight into the
multi-peaked emission profile at ω24 and the gradual build-up and broad emission
profile at ω41.

The introduction of a weak coupling pulse, either in the |1⟩ ↔ |3⟩ or the
|2⟩ ↔ |3⟩ transitions, transforms the system’s dynamics, and significantly enhances
the ω23 and ω31 radiations, while no significant population in state |3⟩ is obtained. In
Fig. 4 the coupling field connecting the |1⟩ ↔ |3⟩ states (V13 coupling scheme) with
maximum intensity I c13 = 1 kW/cm2 enhance the emissions via state |3⟩ (termed
path-2 emissions) several orders of magnitude, while the emissions via state |4⟩
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Fig. 4 Intensities of the ω31 emission with excitation intensity 45GW/cm2 and a |1⟩-|3⟩ coupling
field of I c13 = 1kW/cm2 (solid line) and without the coupling field (dashed line). The enhancement
of the ω31 emission is 13 orders of magnitude

(termed path-1 emissions) are unaffected. Furthermore, the internally generated
path-2 radiations are synchronous to the path-1 ones and to the excitation pulse,
an indication of a parametric process. For a coupling pulse of strength comparable
to the excitation pulse, the dynamics of the system is reversed and the energy is
transferred through the path-2 emissions while the path-1 ones are negligible. The
reliable numerical investigation of the system dynamics offers valuable insights for
the efficient control of the emissions in the system, guiding future experimental
work.

The relative temporal delay of the two pulses can be used to estimate the
coherence relaxation time (CRT) of the atomic states. For the V14 or the V13
coupling schemes, the induced coherence by the coupling field, when it precedes
the pump, enhances the ω41 or the ω31 emissions, so the exponential increase in
the corresponding intensities, that can be accurately calculated as a function of
time, can provide an estimate the CRT of the |4⟩ or the |3⟩ states, respectively.
When the coupling pulse follows the pump, the effect on the ω41 or ω31 emissions
is governed by the σ12 coherence and the calculated exponential decrease in the
corresponding intensities provides an estimate of the CRT of the |2⟩ state. The
theoretical calculations are in good agreement with the experiment [70, 71] in the
V14 system. The coupling field in a ! configuration which connects the upper |2⟩
state with the |4⟩ or the |3⟩ ones, does not induce coherence when it precedes
the pump (negative temporal delay), a condition that was observed both in the
experiment and in the theoretical calculations [62], where it is shown that for
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positive temporal delays the ω41 or ω31 radiation enhancement can provide an
estimate of the CRT for the |2⟩ state.

4 Conclusions

The semi-classical approximation, where the atoms are treated quantum mechan-
ically and the fields classically, is employed in order to compute the atomic
response of alkali metal atoms under different multi-photon processes. In the
case of a four-level atomic system and two-photon excitation by a laser field, a
system of coupled linear ordinary and partial differential equations is numerically
solved self-consistently in order to compute the atomic parameters (populations and
coherences) and the emission fields propagating in the nonlinear atomic medium.
The numerical solution provides a comprehensive spatiotemporal description of the
evolution of both the driven atomic system and the input and internally generated
fields that afford direct comparison with experimental results.
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T. Efthimiopoulos, Coherently controlled emissions |4P3/2,1/2⟩ ↔ |4S1/2⟩ from a femtosecond
Λ-type excitation scheme in potassium atom. J. Mod. Opt. 0340(February), 1–12 (2016)

63. M.O. Scully, S.M. Zubairy, Quantum Optics, 1st edn. (Cambridge University Press, London,
1997)

64. S.N. Dixit, P. Lambropoulos, Theory of photoelectron angular distributions in resonant
multiphoton ionization. Phys. Rev. A 27(2), 861–874 (1983)

65. S. Dixit, P. Lambropoulos, P. Zoller, Spin polarization of electrons in two-photon resonant
three-photon ionization. Phys. Rev. A 24(1), 318–325 (1981)

66. A.T. Georges, P. Lambropoulos, J.H. Marburger, Theory of third-harmonic generation in metal
vapors under two-photon resonance conditions. Phys. Rev. A 15(1), 300–307 (1977)

67. M.R. Teague, P. Lambropoulos, Three-photon ionization with spin-orbit coupling. J. Phys. B:
Atomic Mol. Phys. 9(8), 1251–1262 (1976)

68. A. Armyras, D. Pentaris, N. Merlemis, A. Lyras, T. Efthimiopoulos, The saturation effect of the
parametric emission in potassium atoms under two-photon excitation. AIP Conf. Proc. 1288,
80–83 (2010)

69. D. Pentaris, G. Papademetriou, T. Efthimiopoulos, N. Merlemis, A. Lyras, Emissions enhance-
ment in a pump–coupling V-type coherently controlled four-level atomic system. J. Mod. Opt.
60(21), 1855–1868 (2013)

70. G. Papademetriou, D. Pentaris, T. Efthimiopoulos, A. Lyras, Dynamic emission and population
control in aΛ-type excitation scheme of atomic potassium. J. Phys. B: Atomic Mol. Opt. Phys.
50(12), 125401 (2017)

71. E. Gaižauskas, D. Pentaris, T. Efthimiopoulos, V. Vaičaitis, Probing electronic coherences by
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