بسم اله الرحمن الرحيم
Department of Statistics
\& Operations Research
College of Science, King Saud University
STAT 324

First Midterm Exam
Second Semester
1430-1431 H

	لالم المالب
\|فه التحضير	الرقم الجاهي
\|لمم الاكتور	رضم اللثعبة

- Mobile Telephones are not allowed in the classrooms.
- Time allowed is 90 minutes.
- Answer all questions.
- Choose the nearest number to your answer.
- WARNING: Do not copy answers from your neighbors. They have different questions forms.
- For each question, put the code of the correct answer in the following table beneath the question number:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
A	C	C	D	B	A	D	B	A	D

$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
B	B	D	C	A	C	A	B	B	C

$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 0}$
A	A	C	B	D	C	A	D	D	A

Suppose that the error in the reaction temperature, in ${ }^{\circ} \mathrm{C}$, for a controlled laboratory experiment is a continuous random variable X having the function

$$
f(x)= \begin{cases}\frac{8}{x^{3}}, & x>2 \\ 0, & \text { elsewhere }\end{cases}
$$

then:

(1)	$P(X<4)$							
	(A)	0.75	(B)	3.0	(C)	0.50	(D)	0.15
(2)	$P(-1<X<4)$							
	(A)	3.0	(B)	0.15	(C)	0.75	(D)	0.5
(3)	$P(X \geq 5)$							
	(A)	1.0	(B)	0.15	(C)	0.16	(D)	0.5
(4)	The expected value of $\mathrm{X} ; \mathrm{E}(\mathrm{X})$ equals							
	(A)	2.0	(B)	1.0	(C)	8.0	(D)	4.0

An investment firm offers its customers municipal bands that mature after different numbers of years. Given that cumulative distribution function of X , the number of years to maturity for a randomly selected bond is:

$$
F(x)=\left\{\begin{array}{lc}
0 & x<1 \\
0.24 & 1 \leq x<3 \\
0.56, & 3 \leq x<5 \\
1, & x \geq 5
\end{array}\right.
$$

(5)	$P(X=5)$ equals to							
	(A)	0.76	(B)	0.44	(C)	0.56	(D)	0.20
(6)	$P(X>2)$							
	(A)	0.76	(B)	0.56	(C)	0.50	(D)	0.20
(7)	$P(1.5<X<5)$							
	(A)	0.2	(B)	0.76	(C)	0.56	(D)	0.32

Suppose that $P\left(A_{1}\right)=0.4, P\left(A_{1} \cap A_{2}\right)=0.2, P\left(A_{3} \mid A_{1} \cap A_{2}\right)=0.75$, then:

(8)	$P\left(A_{2} \mid A_{1}\right)$ equals to							
	(A)	0.00	(B)	0.50	(C)	0.1	(D)	0.2
(9) $P\left(A_{1} \cap A_{2} \cap A_{3}\right)$ equals to								
	(A)	0.15	(B)	0.75	(C)	1.0	(D)	0.2

A certain group of adults are classified according to sex and their level of education as given by the following table:

Sex Education	Female	Male
College	17	22
Secondary	45	38
Elementary	50	28

If a person is selected at random from this group, then
(10) The probability that the person is female is:
(A) 0.44
(B) 0.50
(C) 0.28
(D) 0.56
(11) The probability that the person is female and has an elementary education is:
(A) 0.64
(B) $\mathbf{0 . 2 5}$
(C) 0.45
(D) 0.50

Suppose that a certain institute offers two training programs T_{1} and T_{2}. In the last year, 100 and 200 trainees were enrolled for programs T_{1} and T_{2}, respectively. From the past experience it is known that the passing probabilities are 0.75 for the program T_{1} and 0.80 for the program T_{2}. Assume that at the end of the last year we selected a trainee at random from this institute.

(12)	The probability that the selected trainee passed the program equals to							
	(A)	0.53	(B)	0.78	(C)	0.50	(D)	0.25
(13)	What is the probability that the selected trainee has been enrolled in the program T_{2} given that he passed the program							
	(A)	0.80	(B)	0.32	(C)	0.78	(D)	0.68

If $P(A)=0.9, P(B)=0.6$, and $P\left(A^{C} \cap B\right)=0.1$, then:

(14)	$P(A \cap B)$ equals to							
	(A)	0.30	(B)	0.40	(C)	0.50	(D)	0.20
(15)	$P(A \cup B)^{C}$ equals to							
	(A)	0.00	(B)	1.00	(C)	0.50	(D)	0.15
(16)	$\mathrm{P}\left(\mathrm{A}^{\mathrm{c}} \mid \mathrm{B}\right)$ equals to							
	(A)	0.10	(B)	0.50	(C)	0.17	(D)	0.011
(17)	$\mathrm{P}\left(\mathrm{B} \mid \mathrm{A}^{\mathrm{c}}\right)$ equals to							
	(A)	1.00	(B)	0.011	(C)	0.50	(D)	0.017

If $P(A)=0.8, P(B)=0.5$, and $P(A U B)=0.9$, then:

(18)	The two events A and B are				
	(A)	dependent	(B)	independent	(C) disjoint
(D)	Mutually exclusive				

If the function $f(x)=C\left(x^{2}+3\right)$ for $x=0,1,2$ can serve as a probability distribution of the discrete random variable X.

(19)	The value of C equals to							
	(A)	14	(B)	$\mathbf{0 . 0 7 1}$	(C)	12	(D)	

Suppose that we have probability function $f(x)=0.1 x$, for $x=1,2,3,4$. Then

$\mathbf{(2 0)}$	$\mathrm{P}(\mathrm{X}>2)$ equals to							(B) 0.1
	(A)	0.3	(C)	$\mathbf{0 . 7}$	(D)	0.9		
$\mathbf{(2 1)}$	The expected value of X equals							
	(A)	$\mathbf{3 . 0}$	(B)	2.5	(C)	0.25	(D)	0.5
$\mathbf{(2 2)}$	The Variance of X equals							
	(A)	$\mathbf{1 . 0}$	(B)	3.54	(C)	1.25	(D)	0.5

" ${ }^{\prime \prime}$
If the random variable X has probability density

$$
f(x)=\left\{\begin{array}{lr}
\frac{x^{2}}{3}, & \mathrm{k}<\mathrm{x}<2 \\
0, & \text { elsewhere }
\end{array}\right.
$$

$\mathbf{(2 3)}$	Then the value of k equals							
	(A)	0.44	$(\mathrm{~B})$	0.40	(C)	$\mathbf{- 1 . 0}$	(D)	0.23

-

If the random variable X has probability density

$$
f(x)=\left\{\begin{array}{cc}
1+x, & -1<x<0 \\
1-x & 0 \leq x \leq 1 \\
0 & \text { elsewhere }
\end{array}\right\}
$$

(24)	$\mathrm{P}(\mathrm{X}<0.5)$ equals to							
	(A)	0.5	(B)	0.875	(C)	0.375	(D)	0.75
(25)	$\mathrm{P}(\mathrm{X}=0.2)$ equals to							
	(A)	1.2	(B)	0.5	(C)	0.8	(D)	0

-

The cumulative distribution function $\mathrm{F}(\mathrm{x})$ of a continuous random variable X is as follows:

$$
F(x)=\left\{\begin{array}{lc}
0, & \mathrm{x} \leq-1 \\
\frac{x^{3}+1}{9}, & -1<\mathrm{x}<2 \\
1 & \mathrm{x} \geq 2
\end{array}\right.
$$

(26)	$P(-0.5<X<1.5)$ equals to							
	(A)	0.30	(B)	0.40	(C)	0.39	(D)	0.20
(27)	$P(X \geq 0.6)$ equals to							
	(A)	0.86	(B)	0.14	(C)	0.50	(D)	0.15

-

A random variable ' X ' has $\mathrm{E}(\mathrm{X})=2$ and $\mathrm{E}\left(\mathrm{X}^{2}\right)=8$. Another random variable ' Y ' is related with X as follows:
$\mathrm{Y}=(3 \mathrm{X}+5) / 2$.

$\mathbf{(2 8)}$	The mean of Y is:							
	(A)	2.0	(B) 6.0	(C) 8.5	(D)	$\mathbf{5 . 5}$		
$\mathbf{(2 9)}$	The Variance of Y is:	(B) 8.5	(C) 6.0	(D)	$\mathbf{9 . 0}$			

A random variable ' X ' has $\mathrm{E}(\mathrm{X})=2$, and variance $=4$.

| (30) | Then by Chebychev theorem, $\mathrm{P}(-1<\mathrm{X}<5)$ is | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| | (A) $\geq \mathbf{5 / 9}$ | (B) $\mid \geq 4 / 9$ | (C) $\mid \leq 5 / 9$ | (D) $\mid \leq 4 / 9$ |

