

بسم الله الرحمن الرحيم Department of Statistics & Operations Research College of Science, King Saud University

STAT 324 First Midterm Exam Second Semester 1430 – 1431 H

- Mobile Telephones are <u>not allowed</u> in the classrooms.
- Time allowed is <u>90 minutes</u>.
- Answer all questions.
- Choose the nearest number to your answer.
- WARNING: Do not copy answers from your neighbors. <u>They have</u> <u>different questions forms.</u>
- For each question, put the code of the correct answer in the following table beneath the question number:

1	2	3	4	5	6	7	8	9	10
Α	С	С	D	В	А	D	В	А	D
							10	10	
11	12	13	14	15	16	17	18	19	20
В	В	D	С	А	С	А	В	В	С
21	22	23	24	25	26	27	28	29	30
21		23	24	25	20	21	28	29	30
Α	А	С	В	D	С	А	D	D	Α

>> >>

Suppose that the error in the reaction temperature, in ${}^{0}C$, for a controlled laboratory experiment is a continuous random variable X having the function

$$f(x) = \begin{cases} \frac{8}{x^3}, & x > 2\\ 0, & \text{elsewhere,} \end{cases}$$

then:	C	, , ,		
(1)	P(X < 4)			
	(A) 0.75	(B) 3.0	(C) 0.50	(D) 0.15
(2)	P(-1 < X < 4)			
	(A) 3.0	(B) 0.15	(C) 0.75	(D) 0.5
(3)	$P(X \ge 5)$			
	(A) 1.0	(B) 0.15	(C) 0.16	(D) 0.5
(4)	The expected val	ue of X; E(X) equals	S	
	(A) 2.0	(B) 1.0	(C) 8.0	(D) 4.0

,

>> >>

An investment firm offers its customers municipal bands that mature after different numbers of years. Given that cumulative distribution function of X, the number of years to maturity for a randomly selected bond is:

$$F(x) = \begin{cases} 0 & x < 1 \\ 0.24 & 1 \le x < 3 \\ 0.56, & 3 \le x < 5 \\ 1, & x \ge 5 \end{cases}$$

(5)	P(X = 5) equals	to		
	(A) 0.76	(B) 0.44	(C) 0.56	(D) 0.20
(6)	P(X > 2)			
	(A) 0.76	(B) 0.56	(C) 0.50	(D) 0.20
(7)	P(1.5 < X < 5)			
	(A) 0.2	(B) 0.76	(C) 0.56	(D) 0.32

>> >>

Suppose that $P(A_1) = 0.4$, $P(A_1 \cap A_2) = 0.2$, $P(A_3 | A_1 \cap A_2) = 0.75$, then:

(8)	$P(A_2 A_1)$ equals	$P(A_2 A_1)$ equals to									
	(A) 0.00 (B) 0.50 (C) 0.1 (D) 0.2										
(9)	(9) $P(A_1 \cap A_2 \cap A_3)$ equals to										
	(A) 0.15 (B) 0.75 (C) 1.0 (D) 0.2										

₩₩

A certain group of adults are classified according to sex and their level of education as given by the following table:

	Female	Male
Sex		
Education		
College	17	22
Secondary	45	38
Elementary	50	28

If a person is selected at random from this group, then

(10)	(10) The probability that the person is female is:										
	(A) 0.44 (B) 0.50 (C) 0.28 (D) 0.56										
(11)	(11) The probability that the person is female and has an elementary education is:										
	(A) 0.64 (B) 0.25 (C) 0.45 (D) 0.50										

>> >>

Suppose that a certain institute offers two training programs T_1 and T_2 . In the last year, 100 and 200 trainees were enrolled for programs T_1 and T_2 , respectively. From the past experience it is known that the passing probabilities are 0.75 for the program T_1 and 0.80 for the program T_2 . Assume that at the end of the last year we selected a trainee at random from this institute.

(12)	The pro	The probability that the selected trainee passed the program equals to												
	(A) 0.53 (B) 0.78 (C) 0.50 (D) 0.25													
(13)	What is	the probab	oility	that the sele	ected	trainee has	been	enrolled in the						
	program	T_2 given th	at he	passed the p	rograi	n								
	(A)	program T_2 given that he passed the program(A)0.80(B)0.32(C)0.78(D)0.68												

₩₩

If P(A) = 0.9, P(B) = 0.6, and $P(A^C \cap B) = 0.1$, then:

(14)	$P(A \cap B)$ equals to									
	(A) 0.30	(B) 0.40	(C) 0.50	(D) 0.20						
(15)	$P(A \cup B)^{C}$ equals to									
	(A) 0.00	(B) 1.00	(C) 0.50	(D) 0.15						
(16)	$P(A^c B)$ equals	to								
	(A) 0.10	(B) 0.50	(C) 0.17	(D) 0.011						
(17)	$P(B A^c)$ equals to									
	(A) 1.00	(B) 0.011	(C) 0.50	(D) 0.017						

>> >>

If P(A) = 0.8, P(B) = 0.5, and $P(A \ UB) = 0.9$, then:

(18)	The	two events A	and E	are 3			
	(A)	dependent	(B)	independent	(C) disjoint	(D)	Mutually exclusive

>> >>

If the function $f(x) = C(x^2 + 3)$ for x = 0, 1, 2 can serve as a probability distribution of the discrete random variable X.

(19)	(19) The value of C equals to							
	(A)	14	(B)	0.071	(C)	12	(D)	0.032

>> >>

Suppose that we have probability function f(x) = 0.1x, for x = 1, 2, 3, 4. Then

(20)	P(X	P(X > 2) equals to										
	(A)	(A) 0.3 (B) 0.1 (C) 0.7 (D) 0.9										
(21)	The	e expected val	ue of	X equals								
	(A)	3.0	(B)	2.5	(C)	0.25	(D)	0.5				
(22)	The	The Variance of X equals										
	(A)	(A) 1.0 (D) 2.54 (O) 1.25 (D) 0.5										

>> >>

If the random variable X has probability density

$$f(x) = \begin{cases} \frac{x^2}{3}, & k < x < 2\\ 0, & \text{elsewhere} \end{cases}$$

(23)	Then the value of k equals							
	(A)	0.44	(B)	0.40	(C)	-1.0	(D)	0.23

>> >>

If the random variable X has probability density

$$f(x) = \begin{cases} 1+x, & -1 < x < 0\\ 1-x & 0 \le x \le 1\\ 0 & \text{elsewhere} \end{cases}$$

(24)	P(X < 0.5) equals to							
	(A)	0.5	(B)	0.875	(C)	0.375	(D)	0.75
(25)	P(X = 0.2) equals to							
	(A)	1.2	(B)	0.5	(C)	0.8	(D)	0

₩₩

The cumulative distribution function F(x) of a continuous random variable X is as follows:

0110 1 5.									
	[0,		≤ - 1						
	$F(x) = \begin{cases} \frac{x^3}{2} \end{cases}$	$+\frac{1}{2}$, -	-1 < x <	2					
	1		$x \ge 2$						
(26)	P(-0.5	< <i>X</i> < 1.5)	equals	to					
	(A) (0.30	(B)	0.40	(C)	0.39	(D)	0.20	
(27)	$P(X \ge$	0.6) equals	s to						
	(A) (). 86	(B)	0.14	(C)	0.50	(D)	0.15	

>> >>

A random variable 'X' has E(X) = 2 and $E(X^2) = 8$. Another random variable 'Y' is related with X as follows:

Y = (3X + 5)/2

(28)	The mean of Y is:							
	(A) 2.0	(B)	6.0	(C)	8.5	(D)	5.5	
(29)	The Variance of Y is:							
	(A) 4.0	(B)	8.5	(C)	6.0	(D)	9.0	

>> >>

A random variable 'X' has E(X) = 2, and variance = 4.

(30) Then by Chebychev theorem, $P(-1 < X < 5)$ is							
	(A) ≥ 5/9	(B) $\geq 4/9$	(C) $\leq 5/9$	(D) $\leq 4/9$			