## **King Saud University**

## **Department of Physics and Astronomy**

Course: PHYS 312

Title: Classical Mechanics (3-0) 3

Textbook: Classical Dynamics of Particles And Systems By S.

Thornton And J. Marion, Brooks Cole; 5<sup>th</sup> Edition (2003).

## **Course Description:**

Normal coordinates, some methods in the calculus of variations, Hamilton's and Lagrangian's principles. Lagrangian's and Hamiltonian's dynamics, central force motion, dynamics of a system of particles, dynamics of rigid bodies, motion in a non-inertial reference frame, coupled oscillations.

**Grading Policy:** 

Exam 1: 20% Exam 2: 20% Homework and Quizzes: 20% Final Exam: 40%

## SYLLABUS by Sections Numbers

| Week | Material                                                                                             | Examples          | Problems |
|------|------------------------------------------------------------------------------------------------------|-------------------|----------|
|      | Introduction.                                                                                        |                   |          |
|      | iiiii oaaciioii.                                                                                     |                   |          |
| 1    | Course requirements and syllabus                                                                     |                   |          |
|      | Wha tis Classical Mechanics and why study it? What is the validity of Classical Mechanics?           |                   |          |
|      | Chapter1.Matrices, Vectors, and Vector                                                               | 1.1, 1.4,         |          |
|      | Calculus                                                                                             | 1.5               |          |
| 2    | 1.3 -Coordinate Transformations;.                                                                    |                   |          |
|      | 1.4 - Properties of Rotation Matrices;.                                                              |                   |          |
|      | 1.7 -Geometric Significance of Transformation Matrices;.<br>1.8,-Definition of a Scalar and a Vector |                   |          |
|      | , 2 smion of a Social and a voolor                                                                   |                   |          |
|      | Chapter6. Some Methods in the Calculus of Variations                                                 | 6.1, 6.2,         |          |
|      | 6.1- Introduction                                                                                    | 6.3,<br>6.4, 6.5, |          |
| 3    | 6.2 – Statement of the problem                                                                       | 6.6,              |          |
|      | 6.3 -Euler's Equation;.                                                                              |                   |          |
|      | 6.4 – The Second Form of the Euler Equation;                                                         |                   |          |
|      | 6.6 –Euler Equations and Auxiliary Conditions                                                        |                   |          |
|      | Chapter7.Hamilton'sPrinciple-Lagrangianand                                                           | 7.1, 7.2,         |          |
|      | HamiltonianDynamics                                                                                  | 7.3,<br>7.4, 7.5, |          |
| 4    | 7.2 – Hamilton's Principle                                                                           | 7.4, 7.5,<br>7.6, |          |
|      | 7.3 –Generalized Coordinates;                                                                        | 7.7, 7.8,         |          |
|      | 7.4 - Lagrange's Equations;                                                                          | 7.11, 7.12,       |          |
|      | 7.5- Lagrange's Equations with Undetermined Multipliers 7.9 –Conservation Theorems;                  |                   |          |
|      | 7.10 -Canonical Equations of Motion-Hamiltonian                                                      |                   |          |
|      | Chapter8.Central Force Motion.                                                                       | 8.1, 8.2,         |          |
|      | 8.2 – Reduced Mass                                                                                   | 8.3,<br>8.4,      |          |
| 5,6  | 8.3 – Conservation Theorems – First Integrals of the Motion                                          | J. 1,             |          |
|      | 8.4 – Equations of Motion                                                                            |                   |          |
|      | 8.5 – Orbits in a Central Field<br>8.7 Planetary Motion, Koplan's problem:                           |                   |          |
|      | 8.7 -Planetary Motion- Kepler's problem;                                                             |                   |          |
|      |                                                                                                      |                   |          |

| 7,8   | Chapter9.Dynamics of a System of Particles 9.1 - Introduction 9.2 - Center of Mass; 9.3 - Linear Momentum of the System 9.4- Angular Momentum of the System; 9.5 - Energy of the system                                                               | 9.1, 9.2,<br>9.3,<br>9.4,                 |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 9,10  | Chapter 10. Motion in a Noninertieal Reference Frame  10.1 – Introduction 10.2 – Rotating Coordinate Systems 10.3 – Centrifugal and Coriolis Forces; 10.4 – Motion Relative to the Earth                                                              | 10.1, 10.2,<br>10.3, 10.5,                |
| 11,12 | Chapter11.DynamicsofRigidBodies  11.3 -Inertia Tensor;  11.4 -Angular Momentum;  11.5 -Principal Axes of Inertia;  11.6 -Moments of Inertia for Different Body; Coordinate  System;  11.8 -Eulerian Angles;  11.9 -Fuler's equations for a Rigid Body | 11.3, 11.4,<br>11.5, 11.6,<br>11.9, 11.10 |
| 13,14 | Chapter12.CoupledOscillations  12.2 -Two-coupled Harmonic Oscillators                                                                                                                                                                                 |                                           |
| 15    | Repetitionand preparation forthefinal exam                                                                                                                                                                                                            |                                           |