

Course Specifications

Course Title:	ADVANCED THERMODYNAMIC
Course Code:	CHEM531
Program:	Master
Department:	Chemistry
College:	College of Science
Institution:	King Saud University

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	4
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment6	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	6
2. Assessment Tasks for Students	7
E. Student Academic Counseling and Support7	
F. Learning Resources and Facilities8	
1.Learning Resources	8
2. Facilities Required	8
G. Course Quality Evaluation8	
H. Specification Approval Data8	

A. Course Identification

1. Credit hours: 2		
2. Course type		
a. University College Department * Others		
b. Required * Elective		
3. Level/year at which this course is offered: 2 nd Year (post graduation)		
4. Pre-requisites for this course (if any) : CHEM231 (Chemical thermodynamic) + MATH111		
5. Co-requisites for this course (if any):		

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	2	10
2	Blended	9	30
3	E-learning	9	30
4	Distance learning	9	30
5	Other	-	_

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	30
2	Laboratory/Studio	0
3	Tutorial	0
4	Others (specify)	0
	Total	30

B. Course Objectives and Learning Outcomes

1. Course Description

The course of advanced thermodynamics includes a generality on classical thermodynamics in order to refresh the memory then a brief reminder of mathematics in relation to matter, such as, for example, the relations of statistical mathematics (Bolzman equations, probability equations and Lagrande polynomial expansion) then develops, chapter by chapter, the physical concepts of statistical thermodynamics. Each paragraph ends with a series of exercises. Finally, 2 exams of medium duration and a final exam will be the subject of examining the students.

2. Course Main Objective

Teach students the transition from the thermodynamics of microscopic particles to the thermodynamics of macroscopic particles (microscopic state of matter and microscopic exchanges of energies) in order to better understands the phenomena of energy transfer in its macroscopic state.

3. Course Learning Outcomes

	CLOs	Aligned PLOs
1	Knowledge and Understanding	
1.1	Define the different states of matter and recognize the relationships between them	
	Describe the properties of solutions (ideal and real);	
1.2	Describe the properties of solutions (ideal and real);	
1.3	Recognize and describe the phase diagrams (liquid-vapor, liquid-liquid and solid-liquid	
2	Skills :	
2.1	Interpret the phase diagrams and evaluate the critical points.	
2.2	Calculate and analyze the thermodynamic parameter of mixtures such as the partial molar parameters (volume, free enthalpy, enthalpy and entropy)	
2.2	<i>Estimate the changes in the enthalpy, entropy and the Gibbs energy changes.</i>	
2.3	Estimate colligative properties of solutions.	
2.4	Derive the thermodynamic function of mixture and determine the different molar parameters such as molar volume, free enthalpy expressions and calculate the partial molar volume of each constituent. Represent and interpret the experimental data	
3	Interpersonal Skills & Responsibility	
3.1	-Work independently and as in groups including leadership responsibilities;	
3.2	- Manage resources, time and other members of the group	
3.3	- Communicate results of work to other	
3.4	- Act responsibly in a personal manner; Display of ethical and high moral standards in both private and public environments.	

	CLOs	
3.5	-Use sta- Manage resources, time and other members of the group	
4	Communication, Information Technology, Numerical	
4.1	Utilizing university electronic resources of learning.	
4.2	Interpretation of numerical, chemical and general scientific information.	

C. Course Content

No	List of Topics	Contact Hours
	CHEM 531: ADVANCED THERMODYNAMIC	
1	I. The distribution of molecular states I.1 Configurations and weights I.1.1 Instantaneous configurations I.1.2 The Boltzmann distribution I.2 The molecular partition function I.2.1 An interpretation of the partition function I.2.2 Approximations and factorizations	5
2	 II. The internal energy and the entropy II.1 The internal energy II.1.1 The relation between U and q II.2 The value of b II.2 The statistical entropy II.2.1 Impact on technology 	5
3	 III. The canonical partition function III.1 The canonical ensemble III.1.1 The concept of ensemble III.1.2 Dominating configurations III.1.3 Fluctuations from the most probable distribution III.2 The thermodynamic information in the partition function III.2.1 The internal energy III.2.2 The entropy III.3 Independent molecules III.2.3 Distinguishable and indistinguishable molecules III.2.4 The entropy of a monatomic gas Exercises 	6
4	IV Fundamental relations IV.1 The thermodynamic functions IV.1.1 Helmholtz energy IV.1.2 The pressure IV.1.3 The enthalpy	6

	IV.1.3 The Gibbs energy IV.2 The molecular partition function IV.2.1 The translational contribution IV.2.2 The rotational contribution IV.2.3 The vibrational contribution IV.2.3 The electronic contribution IV.2.4 The overall partition function V Using statistical thermodynamics	
5	 V.1 Mean energies V.1.1 The mean translational energy V.1.2 The mean rotational energy V.1.3 The mean vibrational energy V.1.3 The mean vibrational energy V.2 Heat capacities V.2.1 The individual contributions V.2.2 The overall heat capacity V.3 Equations of state V.4 Molecular interactions in liquids V.4.1 The radial distribution function V.4.2 The calculation of g(r) V.4.3 The thermodynamic properties of liquids V.5 Residual entropies V.6.1 The relation between K and the partition function V.6.2 A dissociation equilibrium V.6.3 Contributions to the equilibrium constant Exercises 	8
	Total	30

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	-Define the different thermodynamic functions and recognize the relationships between them	Use interactive method (question-answer), Incorporation of the IT to develop the	Homework assignments, Using active
1.2	-Describe the different thermodynamic systems	knowledge and particularly (the smart	learning techniques,
1.3	Define the microscopic scales of the matter and recognize the relationships between the microscopic and the macroscopic states	board, internet), Proposing stimulation questions	-Major final and two segmented midterm exams
2.0	Skills		
2.1	Interpret the different thermodynamics functions using the mathematical concept.		

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
	Calculate and analyze the	- Solving examples,	Following up
2.2	thermodynamic functions (free enthalpy, enthalpy and entropy)	- Class discussions,	students participations in class discussion
2.3	<i>Estimate the changes in the enthalpy, entropy and the Gibbs energy</i>	- Using modern methods of teaching such as the IT ways,	activities. Major and final
2.4	Demonstrate mathematically the releation between the different thermodynamics parameters		exams Problem solving by students on board
2.5	Derive the thermodynamic function such as the enthalpy, enthropy, Gibbs enthalpy, internal energy mixture.		
2.6	Represent and interpret the theoretical data		
3.0	Values		
3.1	Resolution of problems	Give more exercises and problems to solve in group work.	MED: 1 and 2 Final exam
3.2	Exploitation of results	Provide tables from experimental data and let the student draw the curves and deduce the important parameters.	Labs exam
3.3	Communication of results	Make the links between the results obtained and the translators.	MED: 1 and 2 Final exam

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
0			-
1	Major Exam I	Week 4	30%
2	Major Exam II	Week 8	30%
3	General Revision	Week 10	-
4	Final Exam	Week 12	40%
8			100%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

Daily individual consultations of students which takes place according to a program drawn up by the teacher according to his availability.

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	Physical Chemistry, 9 Ed. Peter Atkins and Julio de Paula, Publisher : W.H. Freeman and Company, 2010
Essential References Materials	N.A.
Electronic Materials	N.A.
Other Learning Materials	Software: Word, Excel, Power-Point presentations, Chemdraw, etc.

1. Facilities Required

Item	Resources	
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Laboratory (10 experimentations)	
Technology Resources (AV, data show, Smart Board, software, etc.)	Using Smart board	
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	<i>N.A.</i>	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Faculty	Administrators	Feed back
Department	Administrators	Feed back
	Students	Feed back

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	
Reference No.	
Date	25-01-2023

