

بسم الله الرحمن الرحيم Department of Statistics & Operations Research College of Science, King Saud University



STAT 324 Supplementary Examination Second Semester 1427 – 1428

- Mobile Telephones are <u>not allowed</u> in the classrooms.
- Time allowed is <u>2 hours</u>.
- Answer all questions.
- Choose the nearest number to your answer.
- WARNING: Do not copy answers from your neighbors. <u>They have</u> <u>different questions forms.</u>
- For each question, put the code of the correct answer in the following table beneath the question number:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---|---|---|---|---|---|---|---|---|----|
|   |   |   |   |   |   |   |   |   |    |
|   |   |   |   |   |   |   |   |   |    |

| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|----|----|----|----|----|----|----|----|----|----|
|    |    |    |    |    |    |    |    |    |    |
|    |    |    |    |    |    |    |    |    |    |

| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
|----|----|----|----|----|----|----|----|----|----|
|    |    |    |    |    |    |    |    |    |    |
|    |    |    |    |    |    |    |    |    |    |

#### **>> >>**

Let the random variable X have a discrete uniform with parameter k=3 and with values 0, 1, and 2.

| (1) The mean of X is     |         |          |          |
|--------------------------|---------|----------|----------|
| (A) 1.0                  | (B) 2.0 | (C) 1.5  | (D) 0.0  |
| (2) The variance of X is |         |          |          |
| (A) 0.0                  | (B) 1.0 | (C) 0.67 | (D) 1.33 |

# ₩₩

Suppose that the percentage of females in a certain population is 50%. A sample of 3 people is selected randomly from this population.

| (3) | (3) The probability that no females are selected is        |     |       |     |       |     |       |     |       |  |
|-----|------------------------------------------------------------|-----|-------|-----|-------|-----|-------|-----|-------|--|
|     | (                                                          | (A) | 0.000 | (B) | 0.500 | (C) | 0.375 | (D) | 0.125 |  |
| (4) | (4) The expected number of females in the sample is        |     |       |     |       |     |       |     |       |  |
|     | (A) 3.0 (B) 1.5 (C) 0.0 (D) 0.50                           |     |       |     |       |     |       |     |       |  |
| (5) | (5) The variance of the number of females in the sample is |     |       |     |       |     |       |     |       |  |
|     | (A) 3.75 (B) 2.75 (C) 1.75 (D) 0.75                        |     |       |     |       |     |       |     |       |  |

# **>> >>**

Suppose that a family has 5 children, 3 of them are girls and the rest are boys. A sample of 2 children is selected randomly and without replacement.

| (6) | (6) The probability that no girls are selected is |        |                |        |                  |       |      |     |      |
|-----|---------------------------------------------------|--------|----------------|--------|------------------|-------|------|-----|------|
|     |                                                   | (A)    | 0.0            | (B)    | 0.3              | (C)   | 0.6  | (D) | 0.1  |
| (7) | Th                                                | e expe | ected number   | of gir | ls in the sample | e is  |      |     |      |
|     |                                                   | (A)    | 2.2            | (B)    | 1.2              | (C)   | 0.2  | (D) | 3.2  |
| (8) | Th                                                | e vari | ance of the nu | mber   | of girls in the  | sampl | e is |     |      |
|     |                                                   | (A)    | 36.0           | (B)    | 3.6              | (C)   | 0.36 | (D) | 0.63 |

# **}} }}**

Suppose that the number of telephone calls received per day has a Poisson distribution with mean of 4 calls per day.

| (9) Th                                                                                 | (9) The probability that 2 calls will be received in a given day is |          |     |          |     |          |     |          |  |  |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------|-----|----------|-----|----------|-----|----------|--|--|
|                                                                                        | (A)                                                                 | 0.546525 | (B) | 0.646525 | (C) | 0.146525 | (D) | 0.746525 |  |  |
| (10) T                                                                                 |                                                                     |          |     |          |     |          |     |          |  |  |
|                                                                                        | (A) 4 (B) 7 (C) 28 (D) 14                                           |          |     |          |     |          |     |          |  |  |
| (11) The probability that at least 2 calls will be received in a period of 12 hours is |                                                                     |          |     |          |     |          |     |          |  |  |
|                                                                                        | (A)                                                                 | 0.59399  | (B) | 0.19399  | (C) | 0.09399  | (D) | 0.29399  |  |  |

# ₩₩

Given a standard normal distribution. The area under the curve which lies:

| (12) to the left of $Z = 1.39$ (Hint: $Z \le 1.39$ ) is |            |            |            |  |  |  |  |  |  |
|---------------------------------------------------------|------------|------------|------------|--|--|--|--|--|--|
| (A) 0.7268                                              | (B) 0.9177 | (C) 0.2732 | (D) 0.0832 |  |  |  |  |  |  |
| (13) between $Z = -2.16$ and $Z = 0.65$ is              |            |            |            |  |  |  |  |  |  |
| (A) 0.9177 (B) 0.2732 (C) 0.0294 (D) 0.7268             |            |            |            |  |  |  |  |  |  |

#### ₩ ₩

The weight of a large number of fat persons is nicely modeled with a normal distribution with mean of 128 kg and a standard deviation of 9 kg.

| (14) | (14) The percentage of those fat persons with weights at most 110 kg is   |        |     |        |     |         |     |         |  |
|------|---------------------------------------------------------------------------|--------|-----|--------|-----|---------|-----|---------|--|
|      | (A)                                                                       | 0.09 % | (B) | 90.3 % | (C) | 99.82 % | (D) | 2.28 %  |  |
| (15) | (15) The percentage of those fat persons with weights more than 149 kg is |        |     |        |     |         |     |         |  |
|      | (A)                                                                       | 0.09 % | (B) | 0.99 % | (C) | 9.7 %   | (D) | 99.82 % |  |
| (16) | (16) The weight x above which 86% of those persons will be                |        |     |        |     |         |     |         |  |
|      | (A)                                                                       | 118.28 | (B) | 128.28 | (C) | 137.72  | (D) | 81.28   |  |

#### **>> >>**

Suppose that a system contains a certain type of components whose lifetime is given by T. The random variable T is modeled nicely by an exponential distribution with mean of 6 years. If a random sample of four of these components are installed in different systems. Then,

| (17) | the var                                        | iance of the rat | ndom variable T | is               |                       |  |  |  |
|------|------------------------------------------------|------------------|-----------------|------------------|-----------------------|--|--|--|
|      | (A)                                            | 136              | (B) $(36)^2$    | (C) 6            | (D) 36                |  |  |  |
| (18) |                                                |                  |                 | the components i | in the sample will be |  |  |  |
|      | functio                                        | ning more that   | n 6 years is    |                  |                       |  |  |  |
|      | (A)                                            | 0.4689           | (B) 0.6321      | (C) 0.5311       | (D) 0.3679            |  |  |  |
| (19) | the pro                                        | bability that    | at least two of | the components i | in the sample will be |  |  |  |
|      | functio                                        | ning more that   | n 6 years is    |                  | -                     |  |  |  |
|      | (A)                                            | 0.4689           | (B) 0.6321      | (C) 0.5311       | (D) 0.3679            |  |  |  |
| (20) | the ex                                         | pected numb      | per of compone  | ents in the sar  | nple which will be    |  |  |  |
|      | functioning more than 6 years is approximately |                  |                 |                  |                       |  |  |  |
|      | (A)                                            | 3.47             | (B) 1.47        | (C) 4.47         | (D) 3                 |  |  |  |

# **>> >>**

The amount of time that customers using ATM (Automatic Teller Machine) is a random variable with the mean 3.0 minutes and the standard deviation of 1.4 minutes. If a random sample of 49 customers is observed, then

| _                                                                       |      |       |                 |        |                  |        |              |       |               |  |  |
|-------------------------------------------------------------------------|------|-------|-----------------|--------|------------------|--------|--------------|-------|---------------|--|--|
| (21) the probability that their mean time will be at least 3 minutes is |      |       |                 |        |                  |        |              |       |               |  |  |
|                                                                         |      | (A)   | 1.0             | (B)    | 0.8413           | (C)    | 0.50         | (D)   | 0.4468        |  |  |
| (22)                                                                    | the  | prob  | ability that th | eir me | ean time will b  | e betv | ween 2.7 and | 3.2 m | inutes is     |  |  |
| (A) 0.7745 (B) 0.2784 (C) 0.9973 (D) 0.0236                             |      |       |                 |        |                  |        |              |       |               |  |  |
| (23)                                                                    | if v | ve wi | sh to be 96%    | confi  | lent that the sa | mple   | mean will be | withi | n 0.3 minutes |  |  |
| of the population mean, then the sample size needed is                  |      |       |                 |        |                  |        |              |       |               |  |  |
|                                                                         |      | (A)   | 98              | (B)    | 100              | (C)    | 92           | (D)   | 85            |  |  |

# **}**

A random sample of size 25 is taken from a normal population (first population) having a mean of 100 and a standard deviation of 6. A second random sample of size 36 is taken from a different normal population (second population) having a mean of 97 and a standard deviation of 5.

| (24) | the probability that the sample mean of the first population will exceed the  |       |     |        |     |        |     |        |  |
|------|-------------------------------------------------------------------------------|-------|-----|--------|-----|--------|-----|--------|--|
|      | sample mean of the second population by at least 6 is                         |       |     |        |     |        |     |        |  |
|      | (A) 0.0013 (B) 0.9147 (C) 0.0202 (D) 0.9832                                   |       |     |        |     |        |     |        |  |
| (25) | the probability that the difference between the two sample means will be less |       |     |        |     |        |     |        |  |
|      | than 2 is                                                                     |       |     |        |     |        |     |        |  |
|      | (A)                                                                           | 0.099 | (B) | 0.2483 | (C) | 0.8499 | (D) | 0.9499 |  |

#### **>> >>**

| (26 | 5) | From the table of t-distribution with degrees of freedom $\nu = 15$ , the value of |       |     |       |     |       |     |     |  |
|-----|----|------------------------------------------------------------------------------------|-------|-----|-------|-----|-------|-----|-----|--|
|     |    | $t_{0.025}$ equals to                                                              |       |     |       |     |       |     |     |  |
|     |    | (A)                                                                                | 2.131 | (B) | 1.753 | (C) | 3.268 | (D) | 0.0 |  |

#### **>> >>**

| (2 | 7)                               | The following measurements were recorded for lifetime, in years, of certain         |     |                         |     |                         |  |  |  |  |
|----|----------------------------------|-------------------------------------------------------------------------------------|-----|-------------------------|-----|-------------------------|--|--|--|--|
|    |                                  | type of machine: 3.4, 4.8, 3.6, 3.3, 5.6, 3.7, 4.4, 5.2, and 4.8. Assuming that the |     |                         |     |                         |  |  |  |  |
|    |                                  | measurements represent a random sample from a normal population, then 99%           |     |                         |     |                         |  |  |  |  |
|    |                                  | confidence interval for the mean life time of the machine is                        |     |                         |     |                         |  |  |  |  |
|    | (A) $-5.37 \le \mu \le 3.25$ (B) |                                                                                     |     |                         | (B) | $4.72 \le \mu \le 9.1$  |  |  |  |  |
|    |                                  |                                                                                     | (C) | $4.01 \le \mu \le 5.99$ | (D) | $3.37 \le \mu \le 5.25$ |  |  |  |  |

#### ₩ ₩

A survey of 500 students from a college of science shows that 275 students own computer of type A. In another survey of 400 students from a college of engineering shows that 240 students own the same type of computer.

| (28)  | (28) a 99% confidence interval for the true proportion of the first population is    |     |                                   |     |                                  |  |  |  |  |  |
|-------|--------------------------------------------------------------------------------------|-----|-----------------------------------|-----|----------------------------------|--|--|--|--|--|
|       |                                                                                      | (A) | $-0.59 \le p_1 \le 0.71$          | (B) | $0.49 \le p_1 \le 0.61$          |  |  |  |  |  |
|       |                                                                                      | (C) | $2.49 \le p_1 \le 6.61$           | (D) | $0.3 \le p_1 \le 0.7$            |  |  |  |  |  |
| · · · | (29) a 95% confidence interval for the difference between the proportion of students |     |                                   |     |                                  |  |  |  |  |  |
|       | owning type A computers                                                              |     |                                   |     |                                  |  |  |  |  |  |
|       |                                                                                      | (A) | $0.015 \le p_1 - p_2 \le 0.215$   | (B) | $-0.515 \le p_1 - p_2 \le 0.215$ |  |  |  |  |  |
|       |                                                                                      | (C) | $-0.450 \le p_1 - p_2 \le -0.015$ | (D) | $-0.115 \le p_1 - p_2 \le 0.015$ |  |  |  |  |  |

# **>> >>**

The following data show the number of defects of code of particular type of software program made in two different countries (assuming normal populations)

| Country A | 48 | 39 | 42 | 52 | 40 | 48 | 54 |
|-----------|----|----|----|----|----|----|----|
| Country B | 50 | 40 | 43 | 45 | 50 | 38 | 36 |

| (30) | a 90% confidence interval for the difference between the two population means |     |                                     |     |                                    |  |  |  |  |
|------|-------------------------------------------------------------------------------|-----|-------------------------------------|-----|------------------------------------|--|--|--|--|
|      | $\mu_A - \mu_B$ is                                                            |     |                                     |     |                                    |  |  |  |  |
|      |                                                                               | (A) | $-2.46 \le \mu_A - \mu_B \le 8.46$  | (B) | $1.42 \le \mu_A - \mu_B \le 6.42$  |  |  |  |  |
|      |                                                                               | (C) | $-1.42 \le \mu_A - \mu_B \le -0.42$ | (D) | $2.42 \le \mu_A - \mu_B \le 10.42$ |  |  |  |  |