

Department of Statistics
\& Operations Research

College of Science
King Saud University

STAT 324
Supplementary Examination
Second Semester
1424-1425

Student Name:			
Student		Section Number:	
Number:			
Teacher Name:		Serial Number:	

* Mobile Telephones are not allowed in the classrooms
- Time allowed is 2 hours
- Attempt all questions
* Choose the nearest number to your answer
* For each question, put the code of the correct answer in the following table beneath the question number:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$

11	12	13	14	15	16	17	18	19	20

21	22	23	24	25	26	27	28	29	30

(1)
Two engines operate independently, if the probability that an engine will start is 0.4 , and the probability that other engine will start is 0.6 , then the probability that both will start is:
:---

(2)	If $P(B)=0.3$ and $P(A \mid B)=0.4$, then $P(A \cap B)$ equal to;							
	(A)	0.67	(B)	$\underline{0.12}$	(C)	0.75	(D)	0.3

(3)	The probability that a computer system has an electrical failure is 0.15 , and the probability that it has a virus is 0.25, and the probability that it has both problems is 0.20, then the probability that the computer system has the electrical failure or the virus is:	
	(A) 1.15	(B) $\underline{0.2}$

Two brothers, Ahmad and Mohammad, are the owners and operators of a small restaurant. Ahmad and Mohammad alternate between the jobs of cooking and dish washing, so that at any time, the probability that Ahmad is washing the dishes is 0.50 , and Mohammad is also 0.5 . The probability that Mohammad breaks a dish is 0.40 . On the other hand, the probability that Ahmad breaks a dish is only 0.10 . Then,
(4) the probability that a dish will be broken is:

(A) 0.667 (B) $\underline{0.25}$ (C) 0.8 (D) 0.5 (5) If there is a broken dish in the kitchen of the restaurant. The probability that it was washed by Mohammad is:

(6)	From a box containing 4 black balls and 2 green balls, 3 balls are drawn in succession, each ball being replaced in the box before the next draw is made. The probability of drawing 2 green balls and 1 black ball is:					
	(A)	$\underline{6 / 27}$	(B)	$2 / 27$	(C)	$12 / 27$

(7)	The value of k , that makes the function		
	$f(x)=k\binom{2}{x}\binom{3}{3-x}$ For $\mathrm{x}=0,1,2$		
serve as a probability distribution of the discrete random variable X ;			
	(A) $\underline{1 / 10}$	(B)	$1 / 9$
(C)	1	(D)	$1 / 7$

The cumulative distribution of a discrete random variable, X , is given below:

$$
F(x)= \begin{cases}0 & \text { for } x<0 \\ 1 / 16 & \text { for } 0 \leq x<1 \\ 5 / 16 & \text { for } 1 \leq x<2 \\ 11 / 16 & \text { for } 2 \leq x<3 \\ 15 / 16 & \text { for } 3 \leq x<4 \\ 1 & \text { for } x \geq 4 .\end{cases}
$$

(8)	the $P(X=2)$ is equal to:							
	(A)	3/8	(B)	11/16	(C)	10/16	(D)	5/16
(9)	the $P(2 \leq X<4)$ is equal to:							
	(A)	20/16	(B)	11/16	(C)	10/16	(D)	5/16

(10) | The proportion of people who respond to a certain mail-order is a continuous |
| :--- |
| random variable X that has the density function |
| $f(x)= \begin{cases}\frac{2(x+2)}{5}, & 0<x<1, \\ 0, & \text { elsewhere. }\end{cases}$ |
| Then, the probability that more than $1 / 4$ but less than $1 / 2$ of the people contacted |
| will respond to the mail-order is: |

| (A) $\underline{19 / 80}$ | (B) $1 / 2$ | (C) $1 / 4$ | (D) $81 / 400$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Suppose the failure time (in hours) of a specific type of electrical device is distributed with a probability density function:

$$
f(x)=\frac{1}{50} x \quad, 0<x<10
$$

then,
(11) the average failure time of such device is:

	(A)	$\underline{6.667}$	(B)	1.00	(C)	2.00	(D)	5.00

(12) the variance of the failure time of such device is:

	(A)	0	(B)	50	(C)	$\underline{5.55}$	(D)	10

A random variable X has a mean of 10 and a variance of 4 , then, the random variable $\mathrm{Y}=2 \mathrm{X}-2$,

(13)	has a mean of:							
	(A)	10	(B)	$\underline{18}$	(C)	20	(D)	22
(14) and a standard deviation of:								
	(A)	6	(B)	2	(C)	4	(D)	16

(15) \begin{tabular}{l}
The probability distribution of X , the number of typing errors committed by a \\
typist is: \\

\qquad| x | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}(x)$ | 0.41 | 0.37 | 0.16 | 0.05 | 0.01 | \\

Then the average number of errors for this typist is: \\
\hline

\\
\hline
\end{tabular}

If the random variable X has an exponential distribution with the mean 4, then

(16)	$P(X<8)$ equals to:							
	(A)	0.2647	(B)	0.4647	(C)	$\underline{0.8647}$	(D)	0.6647
(17) the variance of X is:	the variance of X is:							
	(A)	4	(B)	$\underline{16}$	(C)	2	(D)	1/4

If the random variable X has a normal distribution with the mean 10 and the variance 36, then

(18)	the value of X above which an area of 0.2296 lie is:							
	(A)	14.44	(B)	16.44	(C)	10.44	(D)	18.44
(19)	the probability that the value of X is greater than 16 is:							

	(A)	0.9587	(B)	$\underline{0.1587}$	(C)	0.7587	(D)	0.0587

$1>$

(20)	Suppose that the marks of the students in a certain course are distributed according to a normal distribution with the mean 65 and the variance 16. A student fails the exam if he obtains a mark less than 60. Then the percentage of students who fail the exam is:			
	(A) 20.56%	(B)	90.56%	(C)
50.56%	(D)	$\underline{10.56 \%}$		

In a certain industrial facility accidents occur infrequently. If the probability of an accident on a given day is p , and accidents are independent of each other. If $\mathbf{p}=\mathbf{0 . 2}$, then

(21)	probability that within seven days there will be at most two accidents will occur is:							
	(A)	$\underline{0.7865}$	(B)	0.4233	(C)	0.5767	(D)	0.6647
(22)	probability that within seven days there will be at least three accidents will occur is:							
	(A)	0.7865	(B)	0.2135	(C)	0.5767	(D)	0.1039
the expected number of accidents to occur within this week is:								
	(A)	1.4	(B)	0.2135	(C)	2.57	(D)	0.59

The number of traffic accidents per week in a small city has a Poisson distribution with mean equal to 1.3. Then,

(24)	the probability of at least two accidents in 2 weeks is:								
								(A)	
0.2510	(B)	0.3732	(C)	0.5184	(D)	$\underline{0.7326}$			
(25)	the standar diviation of traffic accidents per week in the small city is:								

A study was made by a taxi company to decide whether the use of new tires (A) instead of the present tires (B) improves fuel economy. Six cars were equipped with tires (A) and driven over a prescribed test course. Without changing drivers and cares, test course was made with tires (B). The gasoline consumption, in kilometers per liter (km / L), was
recorded as follows: (assume the population to be normally distributed with unknown variances and are equals)

Car	1	2	3	4	5	6
Type (A)	4.5	4.8	6.6	7.0	6.7	4.6
Type (B)	3.9	4.9	6.2	6.5	6.8	4.1

(26) A 95\% confidence interval for the true mean gasoline brand A consumption is:

(A)	$4.462 \leq \mu_{A} \leq 6.938$	(B)	$2.642 \leq \mu_{A} \leq 4.930$
(C)	$5.2 \leq \mu_{A} \leq 9.7$	(D)	$6.154 \leq \mu_{A} \leq 6.938$

(27) A 99% confidence interval for the difference between the true mean of type (A) and type $(B)\left(\mu_{\mathbf{A}}-\mu_{\mathbf{B}}\right)$ is:

	(A)	$-1.939 \leq \mu_{A}-\mu_{B} \leq 2.539$	(B)	$-2.939 \leq \mu_{A}-\mu_{B} \leq 1.539$
	(C)	$0.939 \leq \mu_{A}-\mu_{B} \leq 1.539$	(D)	$-1.939 \leq \mu_{A}-\mu_{B} \leq 0.539$

A food company distributes two brands of milk. If it is found that 80 of 200 consumers prefer brand A and that 90 of 300 consumers prefer brand B,

(28)	96% confidence interval for the true proportion of brand (A) is:					
	(A)	0.328	≤ 0.3		(B)	$0.228 \leq p_{A} \leq 0.675$
	(C)	0.328	≤ 0.4		(D)	$0.518 \leq p_{A} \leq 0.875$
(29)	A 99% confidence interval for the true difference in the proportion of brand (A) and (b), is:					
	(A)	$0.0123 \leq p_{A}-p_{B} \leq 0.212$			(B)	$-0.2313 \leq p_{A}-p_{B} \leq 0.3612$
	(C)	$-0.0023 \leq p_{A}-p_{B} \leq 0.012$			(D)	$-0.0123 \leq p_{A}-p_{B} \leq 0.212$
(30)	If the value of α decrease (get smaller), then the interval estimate will decrease (get smaller);					
	(A)	Yes	(B)	No	(C)	No change

