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Preface

This book represents the standard content of an Integral Calculus
course (Calculus IT), more precisely it is objected to engineering and
computer science students at King Saud University to cover the material
of the course MATH 106 (Integral Calculus). This book can be regarded
as a general reference to any Calculus II course.

The book consists of five chapters besides an appendix. Each section
has various examples to make sure that students understand and absorb
mathematical concepts and theories represented in this course.

Chapter One focuses on Riemann Integral, anti-derivative, indefinite
integral and the fundamental theorem of Calculus.

Chapter Two represents the logarithmic function, the exponential
function, the hyperbolic functions and their inverse functions.

Chapter Three focuses on the most famous techniques of integration
such as integration by parts, trigonometric substitutions and the method
of partial fractions.

Chapter Four deals with the applications of definite integral, espe-
cially evaluating the area of a plane region, the volume of a solid of
revolution, the arc length and the area of a surface of revolution.

Chapter Five represents parametric equations of plane curves, polar
curves and focuses on the area between two polar curves.

Chapter Six is an appendix and it aims to present the mathematical
tools for students to plot parametric curves in the plane in a rigorous
way.

At the end, the authors thank the college of Sciences and the Deputy
rector ship for Academic Affairs for their essential support.

September 2021

Dr Mongi Blel and Dr Tariq Alfadhel
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CHAPTER 1

THE RIEMANN INTEGRAL

1 Anti-Derivative, Indefinite Integral

1.1 Anti-Derivative

In the classical calculus course, we defined the derivative of a function if
it exists. In this section we are interested in the inverse problem. If f is
a function defined on an interval I, we look for (if possible) a function F
such that F" = f on I.

Definition 1.1

Let f: I — R be a function defined on an interval I. A function
F: I — R is called an anti-derivative of f on I, if F' is differen-
tiable on [ and

F'(z) = f(z), Vz el

Example 1 :

1. The function F(z) = z* + 1 is an anti-derivative of the function
f(z) =2z on R.



1
2. The function 2y/x is an anti-derivative of the function —= on

ﬁ
(0, 400).

Theorem 1.2

Let F and G be two anti-derivatives of a function f on an interval
I, then there is a constant ¢ € R such that

F(z)=G(z)+¢, Vrel.

Proof .
(F-G)(z)=F'(z) — G'(z) =0, then F—G is the constant function on
the interval 1.

d

1.2 The Indefinite Integral

Definition 1.3

If a function f: I — R has an anti-derivative on I, / f(z)dz

denotes any anti-derivative of f. The function / f(z)dx is called

an indefinite integral of f on I. Therefore,

%/f(x)dx:f(x), Ve el (1.1)

In (1.1), x is called the variable of integration and f the integrand.
Example 2 :

xr-ﬁ-l
1. "dx= —
/x dx T+1+c,r€@\{ 1},

2. / cos(z)dx = sin(z) + ¢,



sin(x)dx = — cos(z) + ¢,
sec?(z)dr = tan(z) + c,
csc?(x)dr = — cot(z) + ¢,

sec(z) tan(z)dz = sec(x) + ¢,

~

— — S S —

cse(z) cot(z)dx = —csce(x)+-c,

Theorem 1.4: Important formulas

Let f,g: I — R be two functions.
1 : d Do
1. If f is differentiable and e f(z) has an anti-derivative, then
x

d
%f(x)dx = f(z) +c

2. If f has an anti-derivative, then

d
= [ re)a = @),
3. If f has an anti-derivative on I, then for all A\ € R,

/)\f(x)dx = )\/f(a:)dx.

4. If f and g have anti-derivatives, then the functions f 4 g have
anti-derivatives and

/ (f(2) £ g(x)) do = / flx)de £ / g(x)de.
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Example 3 :
1.

1.3 Exercises

/2x2+3dx _ /x
NG
4
5

/(3x_4 — 5x)dx = /3x_4dm — /5xdx

2

-3 ° + e
21’ C

1-1-1| Evaluate the following indefinite integrals:

6) / esc(x) cot(x)dz,

7) /(x—ﬁ%—l—%)dm,

) /(x+2+@+“1)2> dz,
(e
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2 Substitution Method or Change of Vari-
ables

Theorem 2.1: Integration by Substitution

Let g: I — J be a continuously differentiable function and
f:J — R be a function which has an anti-derivative F' on J,
then F(g(x)) is an anti-derivative of f(g(z))¢'(z) and

[ #6(@)g @t = Flg(@) +c.

This identity is called also ”substitution” since it can be obtained
by substituting u = g(z) and du = ¢'(x)dx into the integral

f(u)du = F(u) + c.
This formula is obtained by the chain rule formula.

The substitution method is also called the changing variable
method.

Example 1 :
(u=2z) 1 1 1 X
1. [ cos(2z)dx = cos(u)édu =3 cos(u)du = 5 sin(2x) + c.
S n+1 2 1 n+1
2. /(x2 + 1)"2xdx (= /u"du _— +c= @+ )" +c,
n+1 n+1
for n # —1.
3.

u=2z 1 1
/sin(Za: + 3)dx (=2t 2 /sin(u)du =3 cos(u) + ¢

[\

1
= ~3 cos(2z 4+ 3) + c.

4. /secz(mc)d:v () 2 /sec2(u)du = —tan(mx) + c.

™
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Theorem 2.2

Let I be an interval, r € Q\ {-1} and f: I — R a continu-
ously differentiable function. Assume also that the function f" is
continuous on /. Then

[ @@= — i@ +

The proof is given by substituting u = f(x) in the integral / fM(x)f'(z)dx.

Example 2

1. /sin (f(2)) f'(z)dx = —cos (f(x)) + ¢,
2 / sec? (f(2)) f'(x)d = tan (f(x)) + c.

3. /sec (f(x))tan (f(z)) f'(x)dx = sec (f(x)) + c.

u= 133 1
4. /(2x3 +1)762%dx (u=2+) /u7du = §(2x3 +1)% +¢,
u=7—622 1
5. /(7—6x2)%xdx( = )—E wridu = — 8(7 6x )% +c,

22 —1 (u=x —3x+1) 1 du 1
6. d (3= 1
/(3—3x+D6m 3] w = T A e

u=3x 1 1.
7. /cos (3x + 4)dx “~E™ 3 /cos(u)du = 3sin 3z +4) +c,

5\ 1 w=142 —1 -1 5\*
. 1+—-) —de ="— Sdu=— (14 =
8/(+x) me 5/uu 20<+x)—|—c,
u=9—x _1 1 _]_ 2
9./\/9—x2xda: 9227 u?du=? (9—x2)g+c,

! Sl u3du = ——1 &
10./\/5(1+\/5>3d$ = 2/ d (1+\/5)2+




11.

13.

\/Esm(

2.1 Exercises

1-2-1| Evaluate the following integrals

1) /sin(2x + 3)dz,

2) /Fl(?m)dx,
3) /:c\/x—+1d:c,

|

1
) —Fd
)/\/Ecos2 (V) “
2+ 3x+ 6
6) [ 20,
) vr+1 v

7) /x3\/934 + 1 dx

cos (Vx) , u=¥z . 1
de =3 / cos(u)du = 3sin (1:3> +c
14 cos(v/x T /

sm u

13

u=tan(x 1
tan?(z) sec?(z) dx () /quu = gtang(ﬁ) +c

e
9 /sm 1+\/_ LU=V /Sm
/

u=—2 cos(l—i-\/f)—i-c

2

+c.

F£.
E
9

)

11) &\/(%@ dx
12) sec (%);an (%) de
13) /% dx

1-2-2| Evaluate the following integrals with the indicated change of vari-

able:

1) /0 P L Z cos(a),



1
3) / eV 4+ 1de, (t =2 +1),
0

3 Riemann Sums, Area and Definite Inte-
gral

3.1 Summation Notation

Definition 3.1

Given a set of real numbers {a, as, ..., a,}, the symbol Z aj rep-
k=1
resents their sum as follows

Zak =ay+as+ ... +ay.
k=1

Theorem 3.2

For m,n € N, the following summation properties hold:

1. Zak—i—bk Zak—l—Zbk.

n

2. Zak—bk Zak—Zbk
k=1

3. iC’ak = C’iak, where C € R
k=1

k=1

4. Forlgmgn,zmjak+ z”: ak:iak.
k=1

k=1 k=m+1
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Theorem 3.3

For n € N and C' € R, the following properties hold:

120 gt +C=nC,

tlmes

9. Zk - W’
k=1

“~ , nn+1)2n+1)
3.) K= : :

4 Zk3 e ("H)} .

Example 1 :
Evaluation of the following sums

100

LY e 100><(;00+1)

= 5050,
k=1

5 Z 12 (20+1).(2.20+ 1)

= 2870
6 )

3. Zk?’ [ 10“)] — 552 = 3025,

> (k+1)%% = En:k3+2k2+k

B kzl(n +1)12 nn+1)2n+1) n(n+1)
[ 2 ] + 3 * 2
n(n+ 1)

= = (3n* + 11n + 10) ,



16

5.
> Bk —2k+1) = 32k2—22k+21
k=1 k=1
1)(2 1
= (n—l— )2(n+ )—n(n+1)+n
= g(2n2+n+1).
Example 2 :
Find the following limits:
1 5k, 2 Tim =S (k- 1)
-nzasz i o5 2 (k= 1)
Solution
1 Ly k:—51 ! hen 1 k=
ﬁ;5 —5( + )t enngrgﬁz5 =
2.
1 n 1n71
2 2
S k=1 = 5>k
k=1 k=0
1 (n(n—1E2n—-1)\ 1, 1 1
- = — Z(1=2)2==
n3( 6 ( n)( n)

1 1
Then lim — » (k— 1)% ==,
n—oo 1, — 3

3.2 The Riemann Integral

Let f: [a,b] — R be a bounded function on a closed and bounded
interval. The aim of the section is to define the Riemann integral of the
function f on [a,b] if it is possible.

The integral of f on [a,b] is a real number whose geometrical inter-
pretation is the signed area under the graph of the function f on [a,b].
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This number is also called the definite integral of f.

By integrating the function f over the interval [a,z] with varying x in
[a,b], we get a function F' of . The most important result about inte-
gration is the fundamental Theorem of calculus, which states that if the
function f is continuous, the function F'is an anti derivative of f.

Definition 3.4

1. A partition P of the closed interval [a,b] is a finite set of
points P = {ag, a1, ... ,a,} suchthata =a9 < ... <a, =0.
Each [a;_1, a;] is called a sub-interval of the partition and the
number h; = a; —a;_; is called the amplitude of this interval.

2. The norm of a partition P = {ag,ay, ... ,a,} is the length
of the longest sub-interval [a;, a;;1], that is:
||P|| = max{h;,j =1, ... ,n}

3. A partition P = {ag,ay, ... ,a,} of the closed interval [a, b|

. . . a .
is a called uniform if a1 — ar = ——. In this case
n

b —
ar=a+k—2, 0<k<n (3.2)
n

4. A mark on the partition P = {ag,ai, ... ,a,} is a set of
points w = {z1, ... ,x,} such that z; € [a;_1,aq,] for all
1<j<n.

5. A pointed partition of the interval [a, b] is a partition of the
interval together with a mark w = {x;, ... ,x,} on this par-
tition. This pointed partition will be denoted by :

(P, w) = {([aj-1, a5], 7j) }h1<j<n-
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Definition 3.5

Let (P,w) = {([aj_1,a;],7;) }1<j<n be a pointed partition of the
interval [a, b]. The Riemann sum of f with respect to the pointed
partition P is the number

R(f, P,w) Zf z;)(a; — a;1) = Zf(%')hj (3.3)

Each term in the sum is the product of the value of the function
at a given point by the length of an interval. Consequently, each
term represents the area of a rectangle with height f(x;) and length
a; — Qj—1.

The Riemann sum R(f, P, w) is the algebraic area of the union of the
rectangles of width h; and height f(x;). This is an algebraic area since

f(x;)h; is counted positively if f(z;) > 0 and negatively if f(x;) < 0.
Y

LY

[20) % 7Z

1
a = agp Ai—1 Qig; Git+1 b=any

Example 1 :
Let f:[0,1] — R the function defined by f(z) = 2z — 222

IfP:{CLk:E,

0 < k < 10} is the uniform partition of the interval
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[0,1] and the mark w = {z; = ax, 1 < k < 10}, we get the Riemann
sum

10 10

1 1
k=1 k=1
= 10 [0.18 +0.32 + 0.42 4 0.48 + 0.5 + 0.48 + 0.42 + 0.32 + 0.18 + 0
= 0.33.

Example 2

Consider the function f(x) = 4x + 1 on the interval [—1,6] and the
partition P = {—1, 0, 2, 4, 6}. Looking for the Riemann sums for the
function by choosing in each sub-interval of P

1. the left hand end point,

2. the right hand end point,

3. the middle point.

In this case: hy =1, ho =2, hg =2, hy = 2.

1. The left hand endpoints are w; = —1, wy = 0, w3z = 2, wy = 4,
and

fwy) = =3, f(wz) =1, f(ws) =9, f(ws) =17 and

R(f, P,w) = wakhk_E)l

2. The right hand endpoint are wy; = 0, wes = 2, w3 = 4, wy = 6.
Then
flw) =1, fw2) =9, f(ws) =17, f(ws) = 25.

4
Therefore R(f, P,w) Zf wg ) hy = 103.
k=1

3. The middle points are w, = —%, wy =1, wy =3, wy =5. Then

flwr) = =1, f(ws) =5, 4f(w3) =13, f(wy) =21
Therefore R(f, P,w) = Z flwg)hy, = T77.
k=1
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Example 3 :

Consider the function f(z) = x on the interval [0, 1] and the uniform
partition P = {£, 0 < k < n}, for n > 1. Presenting three principal
cases of Riemann sums, as we put the x; at the left, the middle or the

k
right end point of the intervals [a;_1, ax], where a, = —, for 1 < k < n.
n

Ry 1= n—l
R == = —
(fPw)= -3 =S k=
k=1 k=0
2. 1, ag—1 + ag
2
1 e=2k—1 1 — 1
R(f, Pw) = — =— N 2%-1=-.
(f, P, w) n o2n wz 2
k=1 k=1
Bxk—ak
"k n+1
R(f,Pw)=-Y =
(f? 7w) k:l 2n

1 1
The second sum is equal to 3 for every n, the other sums tend to 3 when
n tends to infinity.

Example 4 :

Let f:[1,3] — R be the function defined by: f(z) = 3z + 1, the

uniform partition P = {ax, 0 < k < n} of the interval [1,3] and the

mark w = {xy, 1 < k < n}, where z; is the middle point of the sub-
2k —1

. The Riemann sum is

interval [ay_1,a], xp =1+

R(f. Pw) — %Zf(xk):%zn: (3 (1+2kn_1) +1)

k=1 k=1
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Example 5 :
Referring to the last example with x; the right end point of the sub-

interval [ag_1,ag], vp =1+ —.
n

R(f, Pw) — %Zf(wk):% Y <3<1+%)+1)

3.3 Fundamental Properties

Theorem 3.6

Let f,g: [a,b] — R be two functions and «, 5 € R and (P,w) a
pointed partition of the interval [a, b].

1. Linearity: R(af + Bg, P,w) = aR(f, P,w) + SR(g, P,w).

2. Monotony: If f < g, then R(f, P,w) < R(g, P). In particu-
lar, if f > 0, then R(f, P,w) > 0.

3. Chasles’s Formula: Let ¢ € (a,b), (P, w;) a pointed partition
of [a,c] and (P, ws) a pointed partition of [b, ¢|, then
(Py U Py, w = w; Uws) is a pointed partition of [a,b] and

R(f, P1 U PQ,U)) = R(f, Pl,wl) —+ R(f, P27w2).

Definition 3.7

Let f: [a,b] — R be a bounded function, the Riemann integral
of f on the interval [a, b] is

lim R(f, P, w) (3.4)

1Pll—0




whenever the limit exists. (The limit is over all pointed partitions

b= {([zj-1, 2], w;) }r<j<n)-

If the limit exists, it is said that f is Riemann integrable (or inte-
b

grable) on [a,b]. This limit if it exists, is denoted by: / f(z)dz

and called the definite integral of f on the interval [a, b]

Theorem 3.8

If f: [a,b] — R is Riemann integrable, then

n——+00 n n

L . b—a— b—a
/f(;r:)dx: lim > fla+k ). (3.5)

Theorem 3.9

Let f,g: [a,b] — R be two Riemann integrable functions and
a, B € R. Then

b
1. / adr = a(b — a).

2. The function af is Riemann integrable on [a, b] and

/abaf(:c)dx = a/abf(x)dx.

3. The functions f 4+ g are Riemann integrable on [a, b] and

/abf(x) +g(x)de = /abf(x)dfﬂi /abg(x)dx.
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4. For all ¢ € (a,b) the function f is Riemann integrable on
la, c], on [¢, b] and

/ab f(x)dx = /:f(x)dx + /cbf(x)d:c.

b
5. If f >0, then / f(z)dx > 0.

b b
6. If f <y, then/ f(z)dz S/ g(x)dx.

Theorem 3.10

If f: [a,b] — R is Riemann integrable, the function

F(z) = / f(t)dt is continuous.

a

Proof .
Im<f<Manda<z<y<bm(y—z) < F(y)—F(x) < M(y—x).
Then F' is continuous.

a

Definition 3.11

A function f: [a,b] — R is called piecewise continuous if there ex-
ists a partition P = {xg, 21, ... ,2,} of [a, b] such that f is contin-
uous on every interval |zg, T41[, lim, ot () and lim, o f(zx)
exist in R, forall k =0, ... ,n — 1.
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Any piecewise continuous function f: [a,b] — R is Riemann in-
tegrable.

Example 6 :
Evaluation of the following definite integrals

3 n
4 1
1. / 4dr = lim - 4= lim @zm,
k=1

_1 n—+oo N n—4+oco N

4 n
2. / xdr = lim ﬁzﬁz lim M:&
0 n—-+00 7 — n n—-+o0o n
3.
' 1 <N 3k
3xr+T7)dr = lim — b 4
JRCET Jm 2
= lim M+7:§+7:£
n——+00 on 2
" RS k, 1 n+1, 1
4. /_l(l—x)d:v—ngrfooﬁ;(l—ﬁ)_ﬁ(n_ . )_5’
! ’ ! 1Kk 1 17
2 /_l‘x’dl":—/_lxdx—l—/o xd$:nl_l>rfooﬁZﬁ+8:§+8:77
6.
4 3 2 N
’ 2)dr = lim — 1+3-= 1+35)+2
[ a2 REEMZ<+ 2) s+

3 — k k2 k
= lim —Z<1+6—+9—2+1+3—+2)
n—)—i—oo’n,k:l n n n

— lim 3 dn 4 9Yn+1) N 3(n+1)(2n+1)
n—+oo 1 2 2n

69
>



7.
2 9 n k? 3
/(6x3+1)daz = lim = 6(2—) +1

0 n—>+oonk: n

2
—  lim 2(12<"+1) +n> — 2.
n—-+oo 1 n
Example 7 :
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Using the definition of the Riemann integral, the following limits can be

expressed as definite integrals
n

1 k.o 1 ko1
nh_}rgoﬁ;(@—k ﬁ) —4), and lim —Z((—4+ ;)3 +4(—4+

n—oo M,
k=1

If f(z) = 2*> — 4 on the interval [2, 3],
3 n

/ (2* — 4)dr = lim 1Z((Q—FE)Q—ZL).
2 1 n

n—+oo n

If f(x) = 23 + 4z on the interval [—4, —3],

5 1o k.1
3 +4x)dr = lim — —4+ —)3s +4(—4
[ b s =t (D

n—-+oo N

Conventions and Notations:

—~))-

n

b a
1. If @ > b, we denote / flz)de = —/ f(z)dx.
a b

2. If f(a) exists, /a f(z)dx = 0.

_)>7

n

Theorem 3.13

A= /abf(:c)d:c.

If f:[a,b] = R is Riemann integrable and f(z) >0, Vz € [a,b],
then the area A of the region under the graph of f from a to b is
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Example 8 :
Consider the following shaded region

<
Il

|
8
+

uk‘:

3 11
3r—4y =11 < yzzsv—l—zzf(x).

The area A of the shaded region is:

3 3
A:/_lf(x)dx:/_l(%x—l—lzl)dm: 19.

Example 9 :

Consider the functions f(x) = 3z + 1 and g(z) = 2z + 2 on the interval

[1,4]. f(x)—g(x)=Bx+1)—(2x+2)=2—-1>0, Vze]l,4]. Then
4

f(z) > g(z), Ve [l,4] and /14(290 +2)dz < /1 (3z + 1)dz.

3.4 Symmetry and Definite Integrals

Definition 3.14

Let f: [—a,a] — R be a function.

1. The function f is called odd if f(—x) = —f(x) for all
x € [—a,al.

2. The function f is called even if f(—x) = f(x) for all
x € [—a,al.
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3. A function g: R — Riis called T'—periodic if g(z+T) = g(x)
for all
x e R.

Theorem 3.15

Let f: [—a,a] — R be a Riemann integrable function.

1. If f is odd, then/ flz)dx =

2. If f is even, then flz)dx = 2/ f(z)dx
—a 0

3. Let f: R — R be a T'—periodic function. If f is Riemann
integrable on [0,7], then f is Riemann integrable on any
closed interval [a, b] and

a+T T
/ f(x)dz = / f(z)dz, Va€R.
a 0

Proof .
0 0 a
1. If f is odd, then / flx)de =" —/ f(=t)dt = —/ f(t)dt
—a a 0

and /a f(z)dz =0.

0 a
2. If f is even, then/ f(z)de 7= —/ f(=t)dt = f(t)dt and

[ 1t dx_z/f “

3. If fis T—periodic, then
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/Ta+T fle)ds t=2-T /Oa Ft+T)dt = /Oa f(t)dt and

/aa+Tf(:t:)d:zc = /aof(x)dx+/0Tf(x)d:p+/Ta+Tf(x)dx
- —/Oaf(x)dx+/on(I)dx+/Oaf(x)dx
= [ 1wy

Example 1 :

1 1 1.0 2
/ xzdx:2/ dex:2{—x3] = —.
1 0 3 ]y 3
1 1 1
/ 22 dx = [—x‘l} = 0.
-1 4 ],

S5+m i
/ sin(z) dx = / sin(z) dx = 0.
S5—m -

3.5 Exercises

Recall that Zk = M, Zkz _ n(n+1)(2n+1)
k=1 k=1

Zkg ( n—l—l)) '

1) Find the value of n such that Z(Qk:z —k+1) =147

k=1

6
2) Find the value of a such that » _ (k* + 3k + 2a) = 130,

k=1

1-3-2| Express the sum Z k(k+ 1) in terms of n.
k=1

Find the value of a satisfying the following identities
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(ak — 10) = 120 3) ) (ak +5) = 275

1 k=5

—_
o

1)

(]

k

o]

2) (ak? +2) = 120

=1

Find the following limits.

n

1) lim %Z(Sk—Q)

n—-+oo N
k=1

Ed

ok 3
2) Jim > (25—

n

1
3) lim — ) (3k* — 2k + 1)

n—-+oo N,

k=1
1 n
4) lim — -3k 42
)n—1>r—l|:loon4;<k 3k +2)
1K Kk
RILEND DRt el

1-3-5| Find the Riemann sum R(f, P,w) for the function f defined by
f(z) = 3z — 2 on the interval [—2,2] with respect to the parti-
tion P = {—2,0,1,1.5,2} by choosing on each sub-interval of the
partition

1) The left-hand end point wy = xx_;
2) The right-hand end point wy = zy

Tr—1+2Tk

3) The mid-point wy, = =

Use the Riemann sums to find the following integrals:
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D (324 Ty,
%) /14(x2+x+2)d$,
) [ na
5) /02(3:15—2) do
5) /13(595—6) do

1-3-7| Find the following limits:

1-3-8 | Evaluate the following integrals:

1) f( )dt, where f(t) = {

_
2

2) / |z — 1| dz.
0

cos(t), for te[-F, 7]
sin(t), for te[5,m].’

1-3-9| Express the following limits as an indefinite integrals:

n
) n—1>+oo Z (2n + k})

R,
"k
li _
g n—1>I—&I-loo n? + k2’
. ~ n
6) nin—}%oo 2 + l{j2’
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. 1 &, . km . 2 g3
R B
= :1
"1 km
9) 1 n o) - DN E
) lim,, 4 ;ncos(n)

4 The Fundamental Theorem of Calculus

Theorem 4.1: The Mean Value Theorem

Let f: [a,b] — R be a continuous function. There exists ¢ € [a, b]
such that

&/fwﬂxzw—aﬁ@)

Proof .
Let m = ir[lfb]f(x) and M = sup f(z). Since m < f < M on the
z€|a, z€la,b]

1
interval [a,b], then m <

b
/ f(z)de < M. By the Intermediate

b—a
Value Theorem, there exists ¢ € [a, b] such that 5 i - /ab f(z)dz = f(c).
|:|
Remark 1 :

b
If f is a non negative continuous function on [a, b]. The integral [ f(z)dz

represents the area under the graph of f and (b — a)f(c) represents the
area of the rectangle with side measurements f(c) and b — a.

Definition 4.2

Let f be a continuous function on [a, b]. The average value of f is
defined by:

b
far = bia/a f(z)dz.
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Example 1 :
1. The average value of the function f(z) = 3z + 7 on the interval

1
1
[0,1] is / (3x + T)dx = ?7 The number ¢ where f reaches its
0

1
average value satisfies the equation 3¢ + 7 = 5 then ¢ = 3

2. The average value of the function f(z) = x? +x + 2 on the interval

! 17
[1,4] is / (2% + 2 +2)dx = e The number ¢ where f reaches its
0
. V13-V3

average value verifies ¢ + ¢+ 2 = o> then c = Ve

3. The average value of the function f(z) = 62 + 1 on the interval
1
5
0,2] is / (62° + 1)dr = 3" The number ¢ where f reaches its
0
average value satisfies the equation 6¢® + 1 = %, then ¢ = 273

Example 2
b

Let f be a continuous function on [a, b] such that / f(z)dx = 0, then

the equation f(x) = 0 has a solution in [a, b]. Theaaverage value of f
on [a,b] is 0. Then by the Mean Value Theorem, f reaches this value at
some point ¢ € |a, b].

Theorem 4.3: (First Fundamental Theorem of Calculus)

Let f: [a,b] — R be a continuous function, then the function F

x

defined by F(z) = / f(t)dt is differentiable on [a, b] and
F'(z) = f(x).

Proof .
Let « € [a,b] and h # 0 such that 4+ h € [a,b]. Using the Mean Value
Theorem there exists ¢ between z and z + h such that

f(c):F@—HL / £(#)
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Since f is continuous, F'(z) = }ILILI(I) fle) = f(x). a

Remark 2 :

1. The continuity of the function f is important. It is possible that
a discontinuous function never equals its average value. We can
take the function f(x) = 0 on the interval [0,1] and f(z) = 1 on
the interval [1 2] The average value of f on the interval [0, 2] is

/f Ydz = = /dx—% But f(z) # 1, for all z € [0,2].

2. Let f be a continuous function on a closed interval [a, b]. For any
x

¢ € [a,b], the function G(z) = / f(t)dt; = € [a,b] is an anti
derivative of f i.e. G'(x) = f(z); Vo € [a, b] because

0= [ - [ s

Theorem 4.4: (Second Fundamental Theorem of Calculus)

Let f: [a,b] — R be a continuous function, and F an anti-

derivative of f on [a, b], then /b f(t)dt = F(b) — F(a)

Proof . N
Let G(z) = / f(t)dt. We know that G'(z) = f(x), then there exists

¢ € R such that F(x) = G(x) + ¢ for some constant ¢ and all a <z <b.
Since G(a) = 0, then ¢ = F(a), and G(x) = F(z)—F(a), for all z € [a, b].
|:|

Notations: [F(x)]" = F(b) — F(a).

Theorem 4.5

Let f be a continuous function on an interval I. If v and v are two
differentiable functions on an interval J such that v(J) C I and
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v(z)
u(J) C I, then the function z — / f(t)dt is differentiable on
u(z)

the interval J and

v(x)
L[ rt) = v (@) f0(@) - (@) flule)); Ve

. J

Proof .
v(z)

Let F(x / f(t)dt, where a € I. f)dt = F(u(x)) — F(v(x)).
Since F'(z) = f(x), the Chain Rule Formula yields

v(z)
i o () =/ (2)f (v(2) = o/ (2) fu(2)); Va €

Example 1 :

d x23 7 _ 6 7 3 7
L(m<éx@41)ﬁ)_2ﬂx+1) 3(272% + 1)

r 1

! _ 1 xr) — 1 —_
Gla) = 4+3@%“2) 4+3a—xf<1)
2z 1

+ .
44324 4431 —2)

3. \/ t2 4+ 3 dt = 0 since / Vt2 + 3 dt is constant,

dx
d 1
4. . u? cos(u) du = —2” cos(x),
€z x
x2
5 d 1 J — 2 1 1

de ), t—1 22—1 -1 z+1
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4.1 Exercises

1-4-1| Let I and J be the integrals defined by:

(2 sin(x) e and J — 2 cos(x) .
= /0 sin(x) + cos(a:)d dJ /0 sin(x) + Cos(a:)d ‘

1) Prove that I = J, (Hint: use the substitution t = § — x).
2) Evaluate I + J.
3) Deduce the values of I and J.
Differentiate the following functions:
1 r)=2x cos(t?)dt, /
) )= [ coste) e
%) fla) = / sin® (1), /
1902
3) f(z) = / cos” (t)dt, /sm:v
cos(x) 5
0 fa)= [ - .
e 12) f(z) = / V3 F cost dt
) fa) = [ e -
tan(z) 3
2 . 13) f(x)—/ V3 + cost dt
6) fa) = [ @+ et .
L 3
x T t
z? 14 x) = / dt
7) f(x):/ tIntdt, x > 0, ) fl@) sing 2+
23:06 x2+1 t2
_ [ et 15) f(2) = / _di
1 JE 1+t
32241 t

sin x 1

dt

Find (g) if F(x) :/

cos t2 +1
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Find the number c that satisfies the conclusion of the Mean Value
Theorem for the following functions

1) f(z) =3z +7on [0,1].

2) f(z) =24z +2o0n[1,4]

3) f(x) =62%+1on [0,2].

4) f(zr)=ax+0b, a#0,on o,/

5 Numerical Integration

Very often definite integration cannot be done in closed form. When this
happens some simple and useful techniques are needed to approximate
the definite integrals. This section discuss two such simple and useful
methods.

5.1 Trapezoidal Rule

Let f: [a,b] — R be a non negative continuous function. To approx-

imate the area under the graph of f, the function f on [z, x;41] is re-

placed by the polynomial P of degree 1 such that P(x;) = f(z;) and

P(xjy1) = f(xj41). It is said that the polynomial P interpolates the

function f on the points z; and x;;;. Then
A Tjy1 — T

Pla) = fla;) —————+ f(2;11)

Tj+1 — T Tj+1 = Tj

Z'—.Z'j

The area under the graph of P on the interval [x;, ;41 is the area of a
trapezoid equal to

%<Ij+1 — 23)(f (1) + f(241))-

The area under the graph of f is approximated by :

n

1
> 5 (@1 = 25)(f (2j01) + fla5)). (5.6)
j=1
b—a | . : .
In the case where x;.; — x; = ——, this area is approximated by
n
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/f ( +2foj + f(b) > (5.7)

This formula is called the trapezoidal rule.
This formula is exact for polynomials of degree at most 1.

Y

\\ y

a = ag

Theorem 5.1

Let f: [a,b] — R be a twice continuously differentiable function.
The remainder for this method is approximated as follows

(b — CL)3M2

o2 where M, = sup |fP(z)].
n

z€[a,b]

|R,| <

Y

Example 1 :
Let f(x) = 22 — 1 and g(z) = 2> + 3z — 1 defined on the interval [1, 3].

Us1ng trapezoidal method for n = 5. An approximation of the integrals

/ f(z)dz and/ g(x)dx is given by:
4k?

4k
a:k:1+— f(xk)—l—i—gandg(xk)—?)—i—Qk—F%
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(SR

/1(2:v—1)dx% <1+5+2;(1+%)) = 6.

3
/1 (22 — 1)dz = [2° — x}i’ = 6.
The reminder R = 0.

3 1 - Ak Ak
/(:c2—|—3:c—1)d:z: ~ oo 317 42) 1+ =) +3(1+ —) -1
1 5 — 5 5
_ 2 20+2Z4:(4—l€2+2k+3) —1(93+§)
5 £ 25 5 5

= 18.72.

3 3 2 3
/(x2+3x—1)dx:[$—+3i—a:} :37.
1

3 2 L2
The reminder |R| < 0.06.
Example 2 :

1
Approximation of the integral / V14 x + x? dx using trapezoidal rule
0

with n = 4.

klae | f(ze) | o | maf (o)
070 |1 T 1
110.25 | 1.1456 2 | 2.2913
2105 1.3228 2 | 2.6457

3 10.75 | 1.5207 2 |3.0414

411 1.73205 1 3.4641

12.44248
1
/ VIt r 2 do~ % F(0) + 2£(0.25) + 2£(0.5) + 2£(0.75) + F(1)],
0

1
1
/ VIt o+ a? de ~ o [12.44248] ~ 15553,
0

1 1
The reminder R fulfills |R| < yrimirt
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Example 3 : ,
Approximation of the integral / . L dx using trapezoidal rule with
n = 4. ’

kil we | f(xe) | my | mef (x)

012 1 1|1

125]0.6666 | 2 | 1.333

213 105 2 |1

3135]04 2 108

414 103333 1 |0.3333

4.1666

| 1
/ dx =~ 1.0415. The reminder R fulfills |R| < —.
2 v —1 12

5.2 The Simpson Method

In this method, the function f on the interval [z;,x;41] is replaced by
the polynomial P of degree 2 which interpolates the function f at the

. . . _ Titxi4
points x;, z;1; and the middle point m; = ===,

[ r@dex [ P = S ) + faga) +4fmy),

_ gy i = 2) (@ —my) oy (@i — @)@ — @)
@ = S ])(l’jﬂ — ;) (x; — my) A ])(ijrl —mj)(m; — x;)

| (z —z;)(x —my)
+ f(J:JJrl) ($j+1 — xj)(l’j-u - mj).

/ Fa)de ~ / Po(w)de = I (f (@) + f(wj0) +4f(m,)).

b—a

If the partition is uniform, ;. — z; = , then
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—_

b— a —

Sulf) = = 2 @) + flwm) +4F (my))

i
o

_ b““(f(a) + £(b) +2Zf(xj) +4Zf(mj))- (5.8)

6n

This formula is called The Simpson formula and it is exact for poly-
nomials of degree at most 3.

If the middle point is not used, taking n = 2m and P = {z¢, 21, ... , Tom_1}
a partition of the interval [a,b]. The Simpson Formula take the fol-
lowing form

5.0) = S (F@) + T+ 43 S +2 Y Sow)). (59
Example 4 :

Let g(x) = 2>+ 3z —1 and h(x) = 2® defined on the interval [1, 3]. Using
Simpson method for n = 8, to approximate the integrals

3 3
/ (z* 4 3z — 1)dx and / rid.
1 1

2k+1 5k k2
xk:1+17$2k:1+§2and$32k+1:1+ >9(33k):3+z+1_6
3k 3k k
dh(zg) =14 2 420 2
and h(wy) =147+ 75 + 5

3 1 3 3
/ (22 43x—1)dx ~ T (3 + 17+ 4Zg(a:2k+1) + 2 Zg(:cgk) = 18.666
1 k=0

k=1



k| xp | mg | mpg(zr)
0 1 1 3
1| 5/4 | 4 | 17.25
51 3/2 [ 2 | 1L5
30 7/4 | 4| 20.25
4 2 2 18
5090/4 | 4 | 43.25
6| 5/2 | 2 | 2525
7111/4] 4 | 59.25
8 3 1 17
224

3
1
3
dr ~ —
[ e

3
1+ 27+4Zh(x2k+1) +2

> (o)

0 1 1 1

1 5/4 4 7.8125

2| 3/2 2 6.75

3| 7/4 4 21.4375

4 2 2 16

) 9/4 4 45.5625

6] 2 | 2| 312

7 11/4 4 83.1875

8 3 1 27
240

Example 5 :

41

Let f(z) = V14 23 defined on the interval [0,3]. Use the Simpson

3
method for n = 6 to approximate the integral / V14 z3de.
0

Solution
k

xk:§7
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0] 1 1 1
1]1/2] 4 4.24264
21 1 2 2.82842
313/2| 4 8.3666
4| 2 2 3.4641
515/2| 4 16.3095
6| 3 1 5.2915
41.50276
3
/ V1+ 23dr ~ 6.9171.
0
Example 6 :

3
Approximation of the integral / V1 —x + 22 dr using Simpson’s rule
1

with n = 4.

k T f (xk) my mkf (Jik)
0]1 1 171

1|1.5] 1.32287 4 15.2915.3
212 1.73205 2 | 3.4641
31252179449 | 4 | 8.717798
413 2.645751 | 1 | 2.645751

21.119181

3
/ vV1—x+ 22 dr ~ 3.5198.
1

Theorem 5.2

Let f: [a,b] — R be a function of class C* on the interval [a, b].
If n =2m and P = {xg,x1, ... ,Tom_1} a partition of the inter-
val [a,b]. Then the remainder of the approximation of f by the
following sum .5,

m—1
b—a

“O(f0) + SO+ 4 S +2 3 o)),

Sn(f)
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is approximated as follows:

w My = sup |f(4)(:v)|.

|Rn| S I
180n* z€[a,b]

Example 7 :
Let f(z) = V24 2?2 defined on the interval [0,2]. Use the Simpson
2

method for n = 6 to approximate the integral / V2 + 2%dx.
0

Solution

B k
Ty = 57
k| ae [ my | muf(a)
0 0 | 1 V2
1 1/3 4 5.81186
212/3] 2 3.1269438
3 1 4 6.92820
414737 2 3.8873
5 5/3 4 8.7432513
6| 2 | 1 | 2.44948974
32.361254842
2
/ V2 4+ 22dx ~ 3.59569498.

f()=(2+fv) f()—x(2+:v)‘l,f”()—2(2+w)%
®)(2) = —62(2+2%)"2, fD(2) = 12(22% — 1)(2+ 2°)" 2 and
5)(2) = 60x(3 — 22%)(2 + %)~ 2.
Usmg the variation of the function f* on the interval [0, 2], the value of
My is 1.07 , then |R| < 1077.

5.3 Exercises

1) Approximate the integral / v/ 1+ sin(z)dx using trapezoidal

0
rule with n = 4 and the regular partition. Give an approxi-
mation of the error.
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2) Approximate using trapezoidal rule with n = 5.

/5 dz
0 \/1+CE4

2
3) Approximate the integral /
0

" __dz using Si s rul
xr using Simpson’s rule
var+1 & P
for n = 4 and n = 8. Give an approximate of the reminder in
each case.

[1-5-2] Let f(x) = 20—1 and g(z) = 22+3z—1 defined on the interval [1, 3].
Use trapezoidal method for n = 5 to approximate the integrals

/1 " @) and /1 ().

1-5-3| Let g(z) = 2* + 3z — 1 and h(x) = x3 defined on the interval [1, 3].
Use Simpson method for n = 8 to approximate the integrals

3 3
/ (z* 4+ 3z — 1)dx and / rid.
1 1



CHAPTER 2

‘—THE TRANSCENDENTAL FUNCTIONS

1 The Natural Logarithmic Function

1.1 The Natural Logarithmic Function

For a € Q, the function z —— z® is continuous on (0, +00), then it is
Riemann integrable on any interval [a, b] C (0, 400).

xa—i—l
F\ € Q, -1, Ydx =
ora € Q, a # /x x P

+c.

Definition 1.1

For z > 0, the function

In(x) = - represents the al- y
A

gebraic area of the region be-
tween the graph of the function

1
ft) = o the z— axis and the

straight lines ¢t = 1 and t = x. f ®=1
The function = +—— In(z) is 1 Tz
called the Natural Logarith-

mic Function.

45
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Theorem 1.2

For all z,y in ]0, +o00[, we have:
1. Inzy =Inz +Iny.
2. ln% =—Inz.

3. Inz™ =nlnz, for all n € N.

4. Inx" =rlnz, for all r € Q.

Proof .

1
1. Let y €]0,+o00] and f(z) =Ilnxy. As f'(x) = L. . there exists

Ty ’
a real number ¢ (which depends on y) such that f(z) = ¢+ Inz.

For x = 1, we shall have: ¢ =Iny.

2. We deduce from 1. that for y = %,
1 1
0=In(1) =In(z.—) =1 In(—).
0(1) = In(e.) = In + In()

3. We prove Inz" = nlnz by induction.
The result is true for n = 1 and n = 2. Assume the result is true
for n, then Inz"™' =Inz".z =lnx+Inz" = (n+1)Inz.

m

= —1Inax.
n

m
n

4. Inx

Example 1 :
1
Simplification of R [2In|z 4+ 1] + In|z| — In |2 — 2|].

[In|z(z + 1) — In|z* — 2]]

1
s 2In|z 4+ 1]+ In|z] —In|z® - 2|]] =

| =

= In
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Theorem 1.3

1
1. limwzl, 4. lim ﬂ:(),
h—0 h T—+o0 T
2. lim Inz = +o0,
r—>+00
1
3. lim Inz = —o0, 5. lim n36:0; VseQ.
z—0F z—+4oo IS
Proof .

1.

The result is obtained by definition of the derivative of the natural
logarithmic function at = 1. (i.e. we use the formula

1 1 h)—1
d n(r+h)—Inz for o= 1),

R | h

e Inx > 0, thus the Logarithmic function is strictly increasing,
x

moreover In2" = nln2 and In2 > 0 thus the function is not
bounded above, this yields that lim Inx = 4o00.
T—>+00
x 1 .
In(—) =0=Inz +1In—, thus lim Inx = —oc.
T X z—0t

The function g(z) = In z—z has its absolute maximum at 1 because
1—
g (x) = ~ Y ThusVa €0, +oo[, Inz — x < —1. Then
x
Inz <z—1<2z and In(y/x) lnng\/Eforx>1.

11 1 1 1
Hence 0 < =~ — nye < —, forz > 1, and lim 2T,
2 x x N3 Totoo I

Ifs€eQ}, Inz®=slnuz.
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Corollary 1.4

The Logarithmic function In: |0, +00[— R is bijective. There ex-
ists a unique real number which will be denoted by e such that
In(e) =1, (2 < e < 3), e is called the base of the Natural Loga-
rithmic function. (e ~ 2.71828)

Remark 3 :
1. In(x) >0, Vo > 1,
2. In(x) <0,V0 <z < 1,
3. In(z) =0 <= z =1,

2
1
4. @(ln(x)) =2 0; Vz > 0, (i.e. The function x — In(x) is

concave on (0, 00)).

1.2 The Logarithmic Differentiation

In some cases, the derivative of the function In | f| is used to compute the
derivative of f.

Theorem 1.5: (The Logarithmic Differentiation)

Let u: I — R\ {0} be a differentiable function, then

d ~u'(x)
o u(@)]) = D)
Examples 1 :
1. If f(x) = In(2? + 22 + 4), then f'(z) = w2 Vz e R.

x2 4244’
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2. If f(z) = (x4 1)*(z +2)3(z — 5)", then
In|f(z)]|=2n|z+1|+3In|z+ 2|+ 7ln |z — 5| and

fllw) 2 3 7
f(x) _:17—|—1+:E—|—2+x—5

So

2 n 3 . 7
r+1 x+2 x-—5

7@ = ( )@+ 1)z +2)*(x — 5)

3. If f(x) = In(|2 — 3z|%), then f'(z) = 5(=3).2 — 3z)' __b

(2 —3x)° 3z —2
4+ 22
4. If =1

f(z) =1In ( iizz) = %ln(4—|— z%) — %ln(él — 7).

1 2z 1(—2z) 8z

Then f'(z) = = _ _
At Ve Rk gl B gy

1)4 2)3 1
5. Ify:\/(x+ Jz+2) ,Iny==[4In|z+1|+3In|z+2|-2In|z — 1]].

(z — 1) )

1] 4 3 2
Differentiate both sides, we get y_2 + — .
Y 2lz+1 zz4+2 zx-1

1\/(x+1)4(x+2)3l 4, 3 2 ]

Hence ¢ = - .
eneey (r —1)2 r+1 z+2 z-1

2

1.3 Exercises

Solve the following equations:
1) Injlz—1|=7 2) In|z3 —1] =0
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Differentiate the following functions:

1) f(z) =In(2? + 2z + 4),
2) f(z) =In(]2 - 3z]"),

3) f(z) :1n(;z), l<a<l,
4) f(z) =In }x4 + 23+ 1}
5) f(z)=1In }x2 + COS(QZE)’
6) f(z)=sinz In|5z|
7) f(z) = tan (In|3z|)
8) f(x) = [3z + In|sin z|]®
VaZ +1 sin®z
9) f(z) =In e
10) flay= B2 @ 17

Va? 42

Find the derivative of the following functions:
1) f(x) = Log(a® +4), 3) f(z) =1In(z + V4 +a?),
2) (@) = In(x + a2 — 1),

Differentiate the following functions:

1) s = EEP DDy ) = fe 1 o)vEa T

(22 + 2)5(22 + 3)*’
(z +1)3(2z — 3)1 4) f(z)=(2+1)2(2+2)3(z—5)".

(1+72)3(2x + 3)2

2) flx) =

Y

Use implicit differentiation to find y' if

1) o>+ 1n(£) —4x = -3, 2) ze¥ +2x —In(y+ 1) = 3.
Y
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2 The Exponential Function

The natural logarithmic function In: ]0, +00[— R is increasing and bi-
jective, then it has an inverse function.

Definition 2.1

The natural exponential function is the inverse of the natural log-
arithmic function. It is denoted by e®.

Properties 2.2

1. The exponential function 5. lim e* =0,

is bijective and increasing.

6. lim e* = +o0,

2. diex =e”, B=-rC2
L
. @
3. eV = e%eV, 7. lim — = +o0,
r——+o00 I
et —1 .
4. lim =1, 8. lim ze” =0.
z—=0 I T——00
Proof .

1. Obtained from the properties of the inverse of continuous functions.

2. Since Ine®” = x, then after differentiation both sides, we get,
d T
Le

dx

=1, then die”” =e”.
el‘ T
3. Ine"™ =x+y=1Ine* +IneY =Ine*e, then e*¥ = e%ev.

r_1
4. lim &
x—0 x
function at 0.

= 1, which represents the derivative of the exponential

5. lim Inx = —o0, then lim e* = 0.
z—0t T—>—00
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6. lim Inz = +o0, then lim e* = +o0.

T—r—+00 T—r—+00
. e’ . ) Inz
7. lim In(—) = lim z —lnz = lim 2(1 — —) = +oo, then
T—+00 €T T—4-00 T——+00 i
e
lim — = +o00
T—+o00 I

8. If <0, ln(—xe”):x—kln(—x):—x(h’;—ﬂ)—l), then lim (—re®)=0.

T——00

O

If u: I — R is a differentiable function, then

di (e¥®@)) = o/ ()@,
T

The proof is obtained directly from the Chain Rule Theorem.

Examples 1 :

d

1. %el_ﬁ — _9zel=?

2. iezln(m) = (In(x) 4 1)e*@),
dx
d 1

3. — <e5x + —> = 5e’* — 7%,
dx e

4. If g is a continuous function on R and / & g(z)dr = —**,

d 322 | 322 o
then . [—e ] = e’ g(z) and g(z) = —6.

5. If xe¥ + 2z — In(y + 1) = 3, then using implicit differentiation, we
/

y / 2+e
t e¥ ley 19 - 2 — dy = — .
get eV +xy'e’ + U1 0 and y pRTR—
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6. To know the equation of the tangent line to the graph of the func-
tion f(x) = o — e~ * that is parallel to the line (D) of equation
6r — 2y = 1.

Recall that two straight lines (D;) and (Ds) with equations
y = ar + c and y = a’z + ¢ respectively are parallel if and only if
a =ad and (D7) and (Dy) are orthogonal if and only if a.a’ = —1.

The required tangent line equation is
y—1y =m(x—x1), withm= f"(x;).

The equation of D is y = 3x — %, then the tangent line is parallel
to D if and only if m = 3. Now, it suffices to find x such that

f'(x) =3.

fll) =14e" =3 <= e% =2 <= a2 =In(3). Then
r1 = —1In(2) and f(7;) = —In(2) — e® = 2 —1In(2). Therefore the
equation of the tangent line is y — 2 4 In(2) = 3(z + In(2)).

Exercise 1 :

1. Solve the equation e’ = 4.
2. Simplify the expression In (¢®)?.

Solutions

1. eo*t3 § 41 2:> Ine’ = nd <= 5r+3 = Ind. Then
— + n

€T =
5
2. In(e®)* =1In (e**) = 2z.

2.1 Exercises

Solve the following equations:

1) e**~ 1 =5 2) e’ =1
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Differentiate the following functions:

1) fla) = 3) fla) =ate
2) flx) = ),

Find the equation of the tangent line to the graph of the function
f(z)=xz—e that is parallel to the line (D) of equation 6x—2y="7.

Solve the following equation for z:
e’ 1
l+er 3

3 Integration Using “In” and “exp” Func-
tions

Theorem 3.1

Using the last properties of the logarithmic and exponential func-
tions, we have
dx /
L. /—=ln|x|+c, 3. /“<"”)dx:1n|u(x)|+c,
v u(z)
2 /e”dx =e’+g, = /w(x)eu(x)dx =" 4 ¢,
Examples 2 :

Evaluation of the following integrals:

1 /deu:e—_z—/ du = -1 +c
) 1= (1-u? (I-e=) 7




10.

11.

12.

13.

14.

dx 1 .

= c

z(In(x))? In(z)
i =

(e$+1)2x /u2 ex+1+’

T v u=er+e" " d —

€ ° g = —uzln(em—ke””)—kc,

et +e " U
U=Cos T du

tan(x)dr =" — | — = —1In]cos(z)| + ¢ = In|sec(z)| + ¢,
u=sinz d .

cot(x)dx = @ |sin(z)| + ¢,

dv
rinr

|

u
u=Inx _1
= /u 2du =2 (Inx)

X

N

+ c.

dT u=lngz d
* o 2/—u:1n|1nx\+c.
Inz U

95
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/sec(m)dm = In|sec(z) + tan(z)| + ¢
/ (x)dx

cse = In|csc(z) — cot(x)| + ¢

= —In|esc(z) + cot(x)| + c.

Proof .

sec/(x) = sec(x) tan(z), tan’(x) = sec?(x), then

4 (sec(z) + tan(z))
sec(x) + tan(x)

/sec(x)d:c = In|sec(x) + tan(z)| + c.

= sec(x). Therefore

csc/(x) = — cesc(z) cot(x),  cot/(x) = — csc?(z), then
4 (cse(z) — cot(x)) _ ese(x) and L (csc(z) 4 cot(x))
csc(x) + cot(x)

cse(x) — cot(x) = —csc(x).

Therefore

/csc(x)dx = In|csc(x) — cot(z)| + c.

3.1 Exercises

Evaluate the following integrals with the indicate change of vari-
able:

1) / vedz, (1= 1?),
%) /de, (t = nx),

T

U odx
t=e"
9 [ S =)

Evaluate the following integrals:




o7

rT—2 tan(e3?)
e [

%) / @+In(@)"?,

X

4 The General Exponential Functions

Definition 4.1

For a > 0, the function f(x) = *™(@ defined for € R is called
the exponential function with base a and denoted by a”.

Theorem 4.2

Let a > 0 and b > 0, x and y two real numbers, then

1. a**Y = a*a?, 5 (3 &
ey _ O d
2. = av’ 6. %(a”) = a”In(a),
3. (a®)¥ =a™,
(@) 7. di(a“(m)) = 0@ In(a)u/(z),
G
4. (ab)® = a®b", if u is differentiable.

Properties 4.3: (Properties of the General Exponential
Functions)

d
1. If a > 1, d—(am) = a®In(a) > 0, and the function a” is
x
increasing on R.

d

If0<a<l, d—(aw) = a”In(a) < 0, and the function a” is
x

decreasing on R.
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yﬂ =a”®
! y
a>1 a<l1
/ ‘ y=o®
T | T
2. Ifa>0anda7é1,/a“du:1na(a) +c.
Examples 1 :
d
1. —(5%) =5%1In(5
T (5) = 5°In(5),
d 1
2. —(6Y%) = 6V"In(6) ==
7,(67) n( )2\/5

31
. dr =
3 /3 T n(3) + ¢,

0 P 1— %
1 /_ e = [1113@]_1 T3 31]:(3)’

tan(z) 5tan(w)
5. /5—daz = /5““‘@) sec?(w)dxr = +c.
cos?(x)

In(5)

Theorem 4.4
1
lim(1 4 k) = lim (14 —)% = e.
h—0 T—00 X
Proof . (14 h
(1+ h)% = "% Since 1 = In’(1) = lim M, then

L h—0

For the second equality, take z = %



Exercise 2 :
Find f'(z) if

1. 2z = 47@), 4. f(x) = [sin(z)[",

2. flz) =7V,

3. flz) =7, 5. f(z) = (142"
Solution

1. Differentiate both sides:

2 — 4@ f(z) Ind = fl(z) = — 2 2 !

1 -
2. flz) = 7Y% = V"7 then f'(z) = 7%59672 In7.

(z) =37 In7 = 3% In 7.

f
4. f(z) = |sin(z)|" = e*™ 5@ then
f'(z) = [In]sin(z)| + z cot(x)] |sin(z)|".

5 f(z) =1+ m2)2x+1 = et In(l+2?)  hep
2x(2 1 z
f(z) = (2 In(1 + 2%) + M) (1422

1+ 22
Examples 2 :
_..3 61”3
1| 2%6"de "= ——
/x T 3l +c
e 1 T+1)
2.  — = .
/Qw 1 2/ ln2 T
3= cot(:z:) — cot(x 3—Cot(ac)
3. / x :t()/?)tdt: +e
sin? In3
1 t= :pln:r 2xlnx
4. / 201 + Inx)dx /Qtdt +c
In2
< -4z 1 54
5. [ 4%5%dx "= 5tdt =
/ Ind In4 Inb te

Y

@ md  2znd  zlnd’

29
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/3$(1+Sin(3$))dx = /3‘”dm+/3x sin(3*)dx
3 1

= E + m sm(3 )3 ln 3d£l?
3" cos(3Y)
~ In3 In3

3\/5 u:\/E 2
7. doe "X 2 | 3%du = —3V* 1+ ¢,
N7 * / U In3 te

4.1 Exercises

Find the derivative of the following functions:

1) f(x) =107, 6) f(z)=(a?+4)"",

2) f(%) = 2(z-3+1)7 7) f(x):(Sin(x)_i_:)))(llcos(x)—k?)’
3) flw) =507, T

4) [x) = 6% ) Fo) = (& + 1)),

5) f(ZE) — (12 + 1)Sin(2$)7 9) f(l’) _ Z‘Q(ZL’Q + 1)(363—&-1)’

Evaluate the following integrals:
T 2 5
1) /Mda:, 4) /:L’le Hde,

2:(:

s( 5
2) /63“” sec?(2 + *)dz, 5) / ( E) dx,
1

3) / 109 gin(2)dx, 6) / 2327 (3% +1)du.
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The General Logarithmic Function

Definition 5.1: (The General Logarithmic Function)

If a € (0,00) and a # 1, the function f: R — (0, 00) defined by
f(x) = a® is bijective. Its inverse function f~! is denoted by log,
and called the logarithmic function with base a. For y € (0, 0)

and z € R,
x =log,(y) <= y=a". (5.1)

Examples 3 :

1. 9=3? < 2 =1og,(9),

2. 16 = 4% < 2 =log,(16),

3. 64 =43 <= 3 = log,(64).

4. logyz =3 2 =2%=8.

5. log, 125 =3 & 125 = a® < a = v125 =5.

6.

2log|z| =log2 +log |3z — 4| <= loga® = log|2(3x — 4)|
— 2% =23z 4|
—
—

2% =23z — 4) ifo%
#?=24-3z) ifa<g3

r=4, 2, -3+V170r —3—-VI1T.

Theorem 5.2

For all a € (0,00) \ {1},

1
rln(a)’

d
1. o log,(z) =
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_ In(x)
2. log,(z) = In(a) Ve >0
3. log,(z) = In(z).
Proof .

1. Since @l°%a(®) = eloga(@) e — 4 then by differentiation,

1

1 =xz(In a)%loga(:v) — % log,(z) = zln(a)"

2. From the previous result it is deduced that there exists ¢ € R such

that |
log,(z) = 1?123 + c. Since log,(a) = 1, then ¢ = 0.
~ In(z)
o1 = =1 .
|:|
Notation. For a = 10 the function log,, is denoted by Log.
Examples 4 :
1
L. If Log| 1 S —_—
F) = Log| (o) = R, then ') = b
2. If f(x) =In|Log(z)| = In(| In(x)|) — In(In(10)), then
[ =
~ zln(z)
3. If f(z) = 2™ then In(f(z)) = (4 + 2?)In(z). Differentiating
. . f'(x) 44 22
both sides with respect to x, we have e = 2zIn(z) +
T x

and f'(z) = (2:}6 In(z) + (4 + x2)é>x4+“”2.

d

4. dx?T =7"Inm,
d

T :7_‘,1,71'717
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d T d rlnx x
6. 3t = e =(1+Inz)x

Properties 5.3

Fora>0,b>0,a# 1 and b # 1, we have
1. log,(b) =1, log,(1) = 0, and log, (b*) = z, Vz € R,
2. log,(zy) = log, x + log, y, Vo > 0, y > 0,
3. logb(g) log, x — log, y, Vx > 0, y > 0,
4. logy(z¥) = ylogyxz, x > 0, z # 1, Vy € R,
5. (log, x)(log, b) = log, z.
6. y = bloe¥) for y > 0,

7. blna — alnb.

Proof . |
log, 1=y <= r=a += v=e""% & ylna=lhz < y—liz
. Inb
1. From the previous property, log,(b) = mh = 1,
In1 Inb* xlnb
log, (1) = ™ =0, and log,(b") = h - mp Y
Inzy Inz+Iny
. p— p— :1 1
2 logb(xy) lnb lnb Ogbx + Ogb Y,

3. IOgb(i) = lnﬁzl;ny = log, © — log, v,

4. logy(a¥) = 5 = 4 = ylog, @,
5. (log, r)(log, b) = Wz b _ Iz _ 50 o

6. blosy) = elogyy)Inb — (b — o
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7. blna — e(lna)(lnb) _ alnb.

5.1 Exercises

Solve the following equations for x:
logs(x*) + logy(2°) — 210g3(9:%) = 5.

Find the derivative of the following functions:

1) f(z) = logs(a* + 1);
2) f(x)=/1+Log(1+2?) logy(1+a").

6 Inverse Trigonometric Functions

Theorem 6.1

Let f: I — J be a bijective function where I and J are intervals,
then

1. If f is continuous, then f~!is also continuous.

2. If f is differentiable and f’(z) # 0 for all z € I, then f~!is
differentiable on J and (f~!)(y) = ———.
VW= m)

6.1 The Sine Function

The function f: [~7, 5] — [~1,1] defined by f(x) = sin(z) is contin-
uous and bijective. The inverse function f~! is denoted by sin™'(z) or

Arcsinz. The inverse function is continuous on [—1, 1].
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Yy

y = sin~!(z)

INIE]

Yy

1
IME]
R - ---
&

I
_

I
ME]

Remark 4 :

1. sin~!(sin(x)) = z only for x € [-%, 7]

2. sin (sin™'(z)) = x; Vo € [-1,1].

1

3. Since sin™"(z) € [, ] for all x € [-1,1], then

(
cos(sin™(z)) = /1 — sin*(sin"(x)) = V1 — 22

d 1 1
4. —(sin"")(z) = = for all z €] —1,1[.
dl’<81n )(.Z') COS(Sin_l(l’)) m? or all @ ] ’ [
Example 5 :
. sin(sin ™! (z)) x
1.t ! = =  f el —1,1[.
an(sin™ (z)) cos(sin 1 (2)) — fore ] [
N )
2. cot(sin~!(z)) = " forze [—1,1],2 # 0.
x

6.2 The Cosine Function

The function f: [0,7] — [—1, 1] defined by f(z) = cos(z) is continuous
and bijective. The inverse function f~! is denoted by f~!(z) = cos™!(z)
or f~1(x) = Arccos(z).

Yy

\y = cos—!(x)

——

-1 -1 1 T
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Remark 5 :

1. cos(cos™(x)) =z, if v € [-1,1],
2. cos™!(cos(z)) =z, if z € [0, 7].

3. sin(cos™!(z)) = V1 — 22, if x € [-1,1].

—1 —1
= ,for x €] —1,1].

d
4. o (cosT)(@) sin(cos™H(x)) /1 — 22

dx

6.3 The Tangent Function

The function f:] — Z,Z[— R defined by f(x) = tan(z) is increasing,

272

continuous and differentiable, (f'(z) = 1 + tan?(z) = sec?*(z)). The
inverse function f~! is denoted by tan~!(z), for z € R.

Yy

= tan(z)

[SE)
e

Remark 6 :

inverse function of cot: |0, 7[— R.

1. y=tan '(z) <= =z =tany, Vx € Rand Vy €] — 5, 7],
2. tan(tan"!(z)) =z, Vx € R,

3. tan~!(tan(z)) = x; Vo €] — 5, 5],

1 = 1 for all x € R.

d,
4. g (tan (@) = 1+ tan®(tan~'(z)) 1+ 2%’

dx

In the same way we define the function cot™: R —]0, 7, as the

—1

(cot ™Y (2) = 17 cot?(cot1(z))  1+a2
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6.4 The Secant Function

The function f: [0, 5[U]5, 7] defined by f(z) =

1 (2) s i
—— = sec(z) is in-
cos(x)
creasing and C*. Tts inverse function is denoted by f~1(z) = sec™(x),
for x €] — 00, —1] U [1, +00].

Yy y = sec(x)

- e
=sec I (z

5 y= (z)

-1 K

1 i

HV

SENE

[VE]

Remark 7 :
1. sec’(x) = sec(x) tan(z), sec?(z) = 1 + tan?(z),
2. tan®(sec”!(x)) = 22 —1 and tan(sec~'(z)) = Va2 — 1, if 2 €]1, +00]
3. tan(sec™'(z)) = =22 — 1, if €] — 00, —1],

4. %(Sec_l)(ﬁ) = W%, for all x G] — 00, —1[U]1, —|—Oo[
6.5 The Cosecant Function

1
The function f: [-7F,0[U]0, 5] defined by f(z) = sin(z)

_ cos(z)

= csc(x) is

decreasing and C*°, (f'(z) = —csc(z) cot(z) = —— 2 )) Its inverse
sin®(z

function is denoted by f~*(z) = csc™!(x) for z €] — 0o, —1] U [1, +00].
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y = csc(z)

Remark 8 :
1. csc’(x) = — ese(x) cot(z), esc?(z) = 1 + cot?(z),
2. cot?(csc(z)) = 22 — 1,

Va2 — 1, if x €]1, +o0],

—V2?2 —1,if x €] — 00, —1],

3. cot(ese™(x))

4. cot(csc™(x))

d —1
5. —(csc™t =,
@) = ey

for all z €] — 0o, —1[U]1, 400].

Exercise 3 :
Prove that

1. sin"}(x) + cos7(z) =

w3

1 1
2. tan"*(z)+tan" (=) = g, if # > 0 and tan™'(z) +tan" (=) = —g,
x x
it v <0.

Solution

d
1. . (Sin_l(x) + COS_l(ZE)) = 0 and since sin™' 0 4+ cos ™' 0 = Z
x
then sin™'(z) + cos™! (1) = g
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d 1 1 —%
2. - (tan_l(x) +tan_1(;)> R f; = 0 and since
tan~'(1) +tan~'(1) = § , then tan '(z) +tan~'(3) = 5, if > 0

and the function tan™!(z) + tan~*(2) is odd, then

1
tan"'(z) +tan" (=) = —g, if x <0.
x

Theorem 6.2

d 1

1. —sini(z)= ——,V|z| <1
d —1

2. — -1 = — VY 1
= oS (x) — lz| <1,
d —1

3. @tan (.’E)—m,V.’EGR,

4 Lot i@y = —L vzeR

Tdr Y W T e VT ’
d 1

5. —sec H(z) = ———, V |2| > 1.
-
d —1

6. —csc Hz) = ————, V |z| > 1.
T (z) PN ||

Theorem 6.3

For a > 0,

g)—l—c , (Jz| < a)

1 dz .
0 \/ﬁ—SIH (a

—f’(x) r = sin~? M c a
2 [ sttt (5 e s W<
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Examples 6 :

1. d =0 = = tan™" [ —=
/5+x6 ) 3/a2+u2 3 (ﬁ)“’
u:x2_,a:3 3

/ du 3. 4 x? n
— — = —§ -
5 =3 % in 3 c,

=sin"' (lnz) + ¢,

[\

./\/%dx
= m A

dx u=+3z 1 -1
4, = =—t ( 3) ;
/1+3I2 \/_/1+U2 \/§an \/_x e

w

62x u:ez‘r a=4 1 du 1 €2x
T R et T
/e4$+16$ 2/a2+u2 g (4)“’
g e 5)-
. ————— — = —sec — c,
e2r — 36 uvu? —a? 6 6
7.

Slﬂ(l‘) u= cos(x a=5

= —sin~* (—Cos5(m)) + ¢,




2% u— 1 2
8. —d = -
/\/74—496 ! 1n2 \/7_u2 2" (2)
9 /d—xu:x+_3,a:4/d—u_1
' 22 + 62 + 25 n u2+a2 4
10.
/ r+2 der = /( < + 2 )dm
V4 — 22 B \/47x2 \/4—:1:2
dxr
3 - ez [ s
1 .. /T
= —(4—x)2+2sm (5)—1'6,
11.
/3:+tan1xd / x N tan™!' x p
_— ‘/I/‘ = ./I/‘
1+ 2 1+a2?  1+a?
1 tan—! 2)°
- 51n(1+:s2)+w+c.
12.
SiIl( ) t= Cos:v
/ ecos(z) 1 dx Vet —
ut=et—1 _/ 2du
o 14 u?2

= —2tan~ (v ecos(@ — 1) +c.

_Q/L
t\/ 12

—2 SeC_1(€2 cos@)y 4 ¢,

71
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Exercise 4 :
Compute the following integrals:

r+1 x
1. .
/x2+1dx, 6 / —1_x4dl’,
e’ cos(x)
- P,
Ve —1 V1 — sin®(z)
e’ z
3. / —dx, g [f_costx)
e o /1—sin®(z)
1 e
4. / dz, 1
o 1 o
2 x x +sin~(z)
D. —d 10. ——d
0 \/1—334 “ \/1—&72 “
6.6 Exercises
Compute Z—i for each of the following:
1) y=sin”(3), 1) y=cot™(2),
2) y=cos(2), 5) y=sec” (2,
3) y = tan”(3), 6) y = csc™'(3),
Find the exact value of y in each of the following
1) y= 35111_1(%) 5) y = 2sec”'(-2),
L, V3
B V3 6) y =3cos H(——=),
2) y = 2c05 (L), 2
21 7) y = cos(2cos™(z)),
3) y= 4tan’1(ﬁ) 8) y = sin(2cos™ (1))
1 9) y = cos1(~1),
4) y=>5cot™H(— -
) y=>5cot (7). 10) y = sin™' (%),
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11) y = tan~*(—/3), 16) y = CSC_l(—%),
12) y = cot_l(—%g), 17) y = sec™(—2),
13) y = sec™ 1 (=v/2), 18) y = csc™'(-2),
14) y = csc™ ' (—v/2) 19) y = tan™"(,
15) y = sec_l(—\%), 20) y = cot™(—/3).
Evaluate the following integrals.
x :
1 dx, 5 () cog(22)dr,
. o
2_21! eQz
z 6 dz,
) ), e ) [
an~ !z
3) /6t dx 7) /e”” cos(1 + 2e”)dx,
T4a2
A esin_l(x) 4 . 4sec’1(a:) 4
—dux, ——dx.
N i N e

7 Hyperbolic and Inverse Hyperbolic Func-
tions

7.1 The Hyperbolic Functions

Definition 7.1

et — e T

1. The function sinh(x) = Te, for x € R is called the
hyperbolic sine function.

x —T

2. The function cosh(z) = %, for x € R, is called the

hyperbolic cosine function.

inh r __ ,—x
3. The function tanh(z) = ::;h((fc)) = Zx n Z_x, for x € R, is
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called the hyperbolic tangent function.

cosh(xz) e +e”
= f R
sinh(x) e* —e®’ o i S IO

is called the hyperbolic cotangent function.

1 2
5. The function sech(z) = = , for z € R, is
cosh(z) e*+e®

called the hyperbolic secant function:

1 2
6. The function csch(x) = Snh(z) = for x € R\ {0},
is called the hyperbolic cosecant function:

4. The function coth(z) =

Some properties of the hyperbolic functions:

Theorem 7.2

1. cosh®(z) —sinh®*(z) =1, Va €R,

2. 1 — tanh?(x) = sech?(z), Vr € R,

3. coth?®(z) — 1 = csch®(x), Vo € R\ {0},

4. cosh(z + y) = cosh(z) cosh(y) + sinh(z) sinh(y),

5. sinh(z 4 y) = sinh(z) cosh(y) + cosh(z) sinh(y).

Proof .

1. cosh(z) 4 sinh(z) = €*, cosh(x) — sinh(x) = e, then
cosh?(z) — sinh?(z) = 1,
1 _ cosh®(z) — sinh?*(x)

2. sech?(z) = = =1 — tanh?(z),
sech™(z) cosh?(z) cosh?(z) anh(z)

1 h*(z) — sinh?
3. esch?(2) = ——5— = cos (x) 5 sinh’(z) = coth®(z) — 1,
sinh®(x) sinh?(z)
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Tty —x—y T—y —x+y
4. cosh(x) cosh(y) = ¢ T e T and

em-‘,—y + e—:c—y o 6z—y _ e—ac—i—y
4

sinh(z) sinh(y) =

, then

ea:—f—y + e—:c—y

cosh(z) cosh(y) + sinh(x) sinh(y) = 5 = cosh(z + ¥)
Tty Ty Ty —z+y
5. cosh(x)sin(y) = ‘ ¢ 1 ¢ _te and
Tty _ ,—T—yY =y _ ,—Tty
sinh(z) cosh(y) = ‘ ¢ Ie ¢ , then
e:ery — e Ty
cosh(x) sinh(y) + sinh(x) cosh(y) = —y = sinh(z + y).
d

Theorem 7.3: (Derivative of Hyperbolic Functions)

d . d 2
1. %(smh(x)) = cosh(x) 4. a(coth(x)) = —csch”(z)
2. %(cosh(x)) = sinh(z) 5. %(sech(x)) = —sech(x) tanh(z)
3. %(tanh(m)) = sech®(z) 6. %(csch(m)) = —csch(x) coth(z).

Theorem 7.4: (Integration of Hyperbolic Functions)

1. /Sinh(x)da: = cosh(z) + ¢

2. /cosh(:c)dx = sinh(z) + ¢
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sech?(x)dx = tanh(z) +

/
4. /csch2 = —coth(z) +
- Jfees

sech(z) tanh(x)dx = —sech(x) + ¢

6. /csch(m) coth(x)dx=—csch(z)+c

Examples 1

sinh(v/) vy sinh(u)du = 2 cosh(u) 4+ ¢ = 2 cos r)+c
1,/ \/Edm—Q/ h(u)du = 2 cosh(u) + ¢ = 2 cosh(v/z) + ¢.

2. /COSh(:L‘)CSChQ(I)dI = / ::;i;iz)) dx = _sinlrll(:p) +c

Exercise 5 :

Find the points on the graph of the function f(z) = sinh(z) at which the
tangent line has slope 2.

Solution

d
The slope of the tangent line is m = d—y = f'(x) = cosh(z).
T

Then m =2 <= cosh(z) =2 < e* —4e* +1=0.
There are two solutions: ; = In(2 + v/3) and 25 = In(2 — v/3).

flen) = 2B B and () = T EE ~

Then <1n(2 + \/_), \/3) and <ln(2 - \/5), —\/§> are the required points.
7.2 The Sine Hyperbolic Function and its Inverse
1. The function f(x) = sinh(z) is odd and f’(z) = cosh(z) > 0,

inh
2. lim sinh(z) = +oc0 and lim sinh(x)
THee T——+00 T

:+OO

3. f is continuous and bijective. The inverse function f~! is denoted
sinh™. This function is continuous,
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4. 2,y € R, y =sinh '(z) <= 2 =sinh(y).

Y,
y = sinh(z) Yy A

Theorem 7.5

d 1
1. —sinh™ = ———, Vz eR,
&) = e

2. sinh™'(z) = In(x + V22 + 1), Vz € R.

.

Proof .
d 1 1 1
1. —sinh '(2) = = = )
dx (@) cosh(sinh™* () \/1 + sinh?(sinh ™! (2)) Va2 +1

Vr € R,

2. y =sinh '(z) <= sinh(y) = =, then
cosh(y) = 1/1+sinh®*(y) = V1 + 22 and e¥ = cosh(y) + sinh(y).
Hence y = sinh ' (z) = In(z + V22 + 1), Vo € R.

7.3 The Cosine Hyperbolic Function

1. The function f(z) = cosh(z) defined on R is even and
f'(x) = sinh(z),
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2. The restriction of the function f on the interval [0, +o00[ is continu-
ous and increasing. Then f: [0, +00[— [1,400] is bijective. The
inverse function f~': [1,4+o0[— [0, +o0o[ is denoted by cosh™' is
continuous on [1, 4+o00].

h
3. lim cosh(z) = +oco and lim cosh(z)
Tee T—+00 €T

= —’—OO’

4. If 2 € [1,00) and y € [0,00), y = cosh™*(2) <= x = cosh(y).

Y, y = cosh(x) Y,
/ y = cosh™!(x)
=:L' ,l, =£L'
Theorem 7.6
d 1
L. %cosh_l(:v) = Wk Vz €]1, +o0],

2. cosh™!(z) = In(z + V22 — 1), Va € [1, +o0].

Proof .

1 4 cosh™ (z) = ! = ! -
" dx sinh(cosh™ ' (x)) \/cosh2(cosh_1(x)) _q Va?-— i

Vo € R,

2. y = cosh () <= cosh(y) = =, then
sinh(y) = y/cosh®(y) —1 = v/22 — 1 and e¥ = cosh(y) + sinh(y).
Hence y = cosh™'(z) = In(x + V22 — 1), Yz €]1, +-o0].



7.4 The Tangent Hyperbolic Function

1. The function f(x) = tanh(z) defined on R is odd and
f'(z) = 1 — tanh?(z) = sech®(z) > 0,

2. The function f: R —] — 1, 1] is continuous and increasing. Then
f is bijective. The inverse function f~' denoted by tanh™ is con-

tinuous on | — 1, 1.

3. lim tanh(z) =1,

T—+00

4. y =tanh *(z) <= z = tanh(y) for all y € R and z €] — 1, 1].

Y,
yﬂ
y = tanh~1(x)
+ = tanh(x 1
+ y = tanh(x) "
g
L1
Theorem 7.7
1. %tanh (ZL') = 1——,7327 \V/l' E] — 1, 1[,
1 1
2. tanh™!(z) = éln <1i—i) , Vo el —1,1].
Proof .
d 1 1
1. —tanh™'(z) = = , Vo €] —1,1],
dz (@) 1 — tanh?(tanh~*(2)) 1 — a2 z €] |
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y =tanh'(z) <= tanh(y) =2
— e —1 o 1t
e +1 1—x
1 1+
& y=tanh '(z) =1
y = tanh (o) = 51n (1)

7.5 The Inverse Hyperbolic Cotangent Function

1.

7.6

The function f(z) = coth(x) defined on R* is odd and

f'(z) = 1—coth?(z) = —csch?(x) < 0. The function f is continuous
and decreasing, then f is bijective. The inverse function f~! is
denoted by f~! = coth™ and it is also continuous.

1 1
coth™ () = §ln (i i_ 1) .

lim coth(z) =1,

T—r+00

y = coth™'(z) <= x = coth(y) for all y €]0, +oo[ and z €]0, 1].

-1
~1 .
(f )/<:U> - 1 _ :C2.
d
/ 7 ° 5= —coth™(z) + ¢ for |z| > 1.
-z

/ dx 1 14+
=—In
1—22 2 11—z

The Inverse Hyperbolic Secant Function

on R\ {£1}.

. The function f: [0, +o00[—]0, 1] defined by:

2
f(z) = sech(x) = prp— is bijective and decreasing since
et + e "
f'(x) = —sech(z) tanh(x) < 0.
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2. The inverse function f~' is denoted by f~' = sech™' and it is
continuous,

3. lim sech(z) =0,

r—+00
4. For all v €]0,1] and y € [0, +00[, y = sech™!(z) <= z = sech(y).

Y, Y 4 v =sech™!(x)

1 \
5 y = sech(x) _
T
Theorem 7.8

— 1|
1. (sech™)(z) = ————, Vz €]0, 1],
( V(@)= ——5 10, 1
14+ v1—2?
2. sech™'(z) = In <%) , Vz €]0,1].
Proof .
1. isech_l(z) =— ! S Vz €]0, 1]
dx sech(sech ™! (z)). tanh(sech ™ (z)) /1 — 22’ Y

2.y = sech '(z) <= sech(y) = = <= cosh(y) = 1, then

P 141 =22
T and y =sech '(z) = 1In (%) :

sinh(y) =

7.7 The Inverse Cosecant Hyperbolic Function
1. The function f: R\ {0} — R\ {0} defined by:
f(z) = esch(x) = ———— is bijective and decreasing since
e.T i e—il'

f'(x) = —csch(x) coth(z) < 0.
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2. fr€Randy € R\ {0}, y = csch™*

3. lim esch(z) =0,

T—+00

4. For all z,y € R\ {0}, y = csch™!

() <= x = csch(y).

() <= x = csch(y).

Yy Yy
y = csch™1(x)
3 y = csch(x)
x
Theorem 7.9
1. (csch™')(z) = _—1, Vz €]0, +o0],
zV1+ 2?
2. csch™(z) =In (”— V;”z), Vz €]0,4o00].
Proof .
d 1 1
1. —csch™Y(z) = — = — )
dx (@) esch(csch™ (). coth(esch ™ (2)) V1 + a2
Vz €]0, +oo],
2.y = csch™!(z) <= csch(y) = = sinh(y) = 1, then
e 1++v1 2
cosh(y) = Y1 and y = csch™!(z) = In ( Vit )
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7.8 General Summary

Theorem 7.10: [Derivatives of Hyperbolic Functions]

d
1. . sinh(z) = cosh(x),

2. L sinh(f(2) = cosh(7(x)) /'(x),

d
3. . cosh(z) = sinh(x),

4 cosh(f(2)) = sinh(f(x)) J'(x),

5. % tanh(z) = sech?(z),

6. tanh(f(z)) = sech?(f(x)) ()

7. 4 coth(x) = —csch®(z),

dx

8. - coth(f(z)) = —esch?®(f(a)) (@),
d

9. ﬁsech(:v) = —sech(z) tanh(x),

10. % sech(f(x)) = —sech(f(2)) tanh(f(x)) f'(z),

d
11. @csch(x) = —csch(z) coth(x),

12. %csch(f(x)) = —csch(f(x)) coth(f(z)) f'(x).
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Theorem 7.11: [Integration of Some Hyperbolic Func-

tions]

1. /sinh(x)dx = cosh(z) + ¢,

2. /sinh (f(2)) f'(z)dx = cosh (f(x)) + ¢,

&2

(x)dx = sinh(z) + ¢,

Q
@)
)
=

e

(f(z)) f'(x)dx = sinh (f(x)) + ¢,

(@]
@)
)
=

N

sech?(x)dz = tanh(x) + c,

(f(2)) f'(x)dz = tanh (f(z)) + ¢,

=2}
[02]
D
)
=
[\

(x)dx = — coth(z) + ¢,

~
(@)
10
(@)
=
no

\\\\\T\\\\\
&

(f(2)) f'(z)dx = — coth (f(x)) + ¢,

=

sech(z) tanh(z)dx = —sech(z) + ¢,

—_
e

sech (f(z)) tanh (f(x)) f'(z)dx = —sech (f(z)) + ¢

—_
—

csch(x) coth(x)dx = —csch(z) + ¢,

—_
2

(f(x)) coth (f(x)) f'(x)dz = —csch (f(2)) + ¢,

o
»n
Q
=

—_
b
=+
&
=
=

(x)dz = In|cosh(z)| + ¢,
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14. /tanh (f(2)) f'(z)dz = In|cosh (f(z))] + ¢,
15. /coth(x)dm = In|sinh(z)| + ¢,

16. /coth (f(2)) f'(z)dz = In|sinh (f(z))] + c.

Theorem 7.12: [Derivatives of Inverse Hyperbolic
tions]

2. Ecosh_l(x) = W where x > 1,
d - f'()
%cosh Yf(z) = W where f > 1,
1

d
3. —tanh™'(z) =

. 122 where |z| < 1,
x J—

itamh_l(f(yc)) = &, where |f] < 1,

da 1—(f(x))?
g 4 th™(r) = ——, where |z| > 1
;gm0 z) = 75 Where |z ,
° ~1 f'(x)
T coth™ (f(z)) T (F@))E where |f] > 1,
d i -1
5. —sech™ (z) = , where 0 < z < 1.

dz xv1—x?




86

d =1 —f'(z)
%sech (f(x)) = O GER where 0 < f < 1,
6 icsch_l(:zc) = | where x # 0
dx |z|v/1+ 22’ ’
d_ .1 —f'(x)
—csch x)) = , wher 0.
&= ) = e G e 7

Theorem 7.13
dx T
L[t ()4
/m a

2. —%m = sinh™* (@) +c,

3. /\/% = cosh™! (2) +c , (x>a),
fz) = cosh™ M c a
4. de = cosh < " ) +c, (f>a),

. dr [itanh™' (£)+c¢ if [z] <a
") a2—22 \LleothT' (%) +c if |z >a’

dx 1
6. — = —1
/aQ—ac2 2anx—a

7 /%m _ Liann? <@) +e, (f] <a)),

T+ a

‘—i—c, Ve € R\ {—a,a},

P@ o Ll
[t w e e W1# 9

dz 1 /(T
9./xm——asech (5)—#0 , (0<z<a),
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['() 1 [ f(@)
10. dr = —= sech JN c ),
| Fove g (7)+e - 0<s<a

dx 1 I
11 - = h—l e
/x\/l‘2+a2 aCSC (a)+c , (#0),

Examples 2 :

d
1. — tanh™! — _
dr an (31‘) 1— (31,)2 1 — 9.1727

9. %smhl(\/}) - 11/(5\/5)2 = Qﬁ\;”—x,
> %seChl(Cos(zx)) - cos<2;>(7fi_n$2<)zx>>z N cos(szi)rylSjgzx)y
4, %coshl(\/i) :ﬁ\/%
> %tanhl(sm(?’x)) = iﬁ?éfif))z = 008?33:)’
6.
4
Ly - oy T

~ 14 cosh™(4z)
7. % In [cosh(32)] = ?th—tl(g)) ~ 3tanh(37),
s. %1n|1+sinh(m)| - %



38

Cdx
10.
dx u=dz 1 I —1,U
o e 2 P Cgnh (=2
/\/81+16x2 4/\/92+u2 gsb(g) +e
1. h*1(4x)—|—c
= ~sinh™'(—
4" 9’ "
11.
dx u=e* ‘ ’
- = sech —
fate = I i
——Sech H—)+e¢,
)
u=x 1 1 .
12. [ 2*cosh(z®)dx = g/cosh(u)du =3 sinh(z°) + c,

X

—x

14.

/
13. / csch () coth () dx = /Csch(u) coth(u)du = csch(l) +c,
/

(e"—e™) sech® (e” + ¢™)da vt /sech2(u)du:tanh (e"+e %)+,

sinh(x) /sinh(:z:)
5, [ gy o [ A g () e
/1+sinh2(x) ’ cosh? () v sech(z) + ¢
sinh(x)
.| —————dx =In(1 h
16 /1+cosh(x)dx n(1 + cosh(x)) + ¢,

17. /%da: = / OE sinh(z) dx = tan"!(cosh(z)) + ¢,

1 + cosh?(z) + (cosh(x))?

7.9 Exercises

-7-1| Find the derivative of the following functions:

1) f(z) = 4esch®(2x — 1),
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\)

) f(z) = sinh(2z)csch(3z),
) [(x) = logy(sec(z) + tan(x)),
4) f(z) = (3sinh(z) + cos(z) + 5)@+D),
5) sech (1 ++/z),
)
)
)

w

wn

6) tan~!(sinh(z)),
7) In|sinh(1 — 2?%)],
8

Compute the following integrals:

1
1 dz,
) /sech(x) 4 — sinh?(x)

eIE
2) /1 _e%dx,

e
3 [
) /\/462754—9 v

xcosh(z)

) /ﬁﬁﬁ
dx
) [ =
0 [ i
dx
D | =
i /<x—1>¢%’

8 Indeterminate Forms and L’Hoépital Rule

8.1 Indeterminate Forms

The indeterminate forms arise from the fact that (R,+,.) is not a field,
where R = RU{—00, +00}. The only operations that are wrong are 0.00
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and 400 + (—o0). These operations are obtained for example within the
real sequences or the limits of functions. For example if a sequence (uy, ),
converges to 0 and the sequences (vy,), tends to oo, we can not decide if
the limit of the sequence (u,,.vy,), exists.

The only indeterminate forms are 0.00 and 400 + —oo. The other inde-
terminate forms can be transformed to these two forms. For examples
we have

9 — 0.00 g — 0.00 1° — eooln(l) _ eO.c>o 00 _ 6011’1(0) _ 60'00.
0 Y m ) )
Example 1 :
uon : (.T - 2)2 .
0 T Ty T mlemy =0
0 3(x —2
R T R T
0 r—2 ({L‘ — 2) r—2
0 — 2)2 1
“~7 = lim —(x ) = lim— = oo
0 z—2 (x — 2)4 z—2 (x — 2)2

In each of above cases the functions are undefined at x = 2. And both
numerator and denominator in each example approach to 0 as x — 0.

Example 2 :
1 1
lim M, lim e* In(1 + =), lim (14 2)* — Vat + 2 + 2,
=0 sin(z)  z—oo x’ 200
1
lim (1 + —)* are all indeterminate forms.
T—00 x

8.2 The Hopital’s Rule

Theorem 8.1

Let f and g be two continuous functions on the interval [a, b] and
differentiable on Ja,b]. We assume that ¢'(x) # 0 for all x €]a, b|.
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Then there exists ¢ €]a, b such that

Proof .
We remark that g(b) — g(a) # 0, otherwise there is a < d < b such that
g'(d) = 0. We consider the function

g\x)—gla
ha) = 1) — a) — () — fla)) 20 =912,
h fulfills the conditions of Rolle’s lemma, then there exists ¢ €]a, b[ such

that 0 =1'(c) = f'(c) — ¢ (0)%, which proves the Theorem. O

Theorem 8.2: [The Hopital’s Rule]

Let f, g be two differentiable functions on |a, b[\{c}. Assume that
g'(x) # 0 for all z €]a,b[\{c} and lim f(x) = lim g(x) = 0.
Tr—cC Tr—cC

f'(z) f(z)

If lim =/( e RU{—00,+0}, then lim —= = /.
T—c g’(a;) { } T—C g(x)
Proof .

Define f(c) = 0 and g(c) = 0. Let = €]c,b[. Then f and g are continuous
on [¢, z], differentiable on Jc, z[ and ¢'(y) # 0 on |e, z[. By Theorem (8.2)
there is y €|c, z[ such that

[z
g(x

/
Then lim & = lim ') = (. Similarly, we prove that
wet g(z)  ymet g'(y)

/() @) P

lim ——= = /. Therefore, lim —= =
r—c™ g(%) T—C g(x) T—=C g/<.’E)

) _ _
)
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Remark 9 :
1. Theorem (8.2) is valid for one-sided limits as well as the two sided
limit. This theorem is also true if ¢ = 400 or ¢ = —o0.
2. Theorem (8.2) is valid for the case, lim f(z) = oo or —oo and
Tr—cC

lim g(x) = o0 or —c0.
Tr—cC

Examples 3 :
. sin(z) .
1. lim = lim cos(z) =1,
z—0 x z—0
. 1—cos(x) . sin(z) .. cos(x) 1
2T T M2 T
. sin(3x) . 3cos(3z) 3
3. lim ———= =lim —= = -
250 sin(5x) 250 5 cos(bxr) 5’
. tan(2x) . 2sec?(2r) 2
4.1 =lim ———~ =
750 tan(3z) 2503 sec?(3z) 3
1
5. limzInz = lim o lim —z = 0,
z—0 z—0 s z—0
6. tim LS _ o, cs@)
=T cos(x) e~ sin(z)

vr—1-=2 ) 1 1

71 lm— Lt 1
oo 2225 eosdpo—1 40

3 2 2
[T N ek SR Y

x—>1x2—2x—|—1_w—>1 Q0 — 2 z—1 2

(55)
0 lim YETL gy A2VE) @

1
e Ing :xalf:xﬂmzé’
X

z—0 T z—0 xT



11.

12.

13.

14.
15.
16.
17.

18.

19.

20.

8.3
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1 + si - —
; V1 +sin(t) dt TF s VIF0 1
1 1 7

lim = lim
x—0 x x—0
tan™! T :
B N O I , 1 1 1
lim — = =lim ———% = lim 5 = = -,
z—1 z—1 z—1 1 =11+ 1+1 2
X .
lim = lim x = 400,
Z—00 ]n(x) T—00
In(1+1)
1
lim (1+ =) = lime = =¢°,
T—r00 xr T—>r00
lim 2% = lim "™ = 400,
T—r00 T—r00
Inz 1
lim — = lim — =0.
r—o0 I T—00 I
. x+e” . 1+e€” ) e i 1
lim = lim = lim = lim —— =0,
z—oo ] 4 3% z—oo  3e3T z—o00 9e37 z—o0 9e2%
2
} .2 Coxt—1 ) 2x . 1
lim (z° — 1)e™™ = lim — = lim > = lim — =0,
T—00 z—oo er x—00 2 €% rz—o00 eT
9 1 1n<1+521> 2622 1627 9
lim (1 +e ’”)I = lime = = lim e +* = lim e2:2 = ¢°,
T—r00 T—r00 T—r00 T—00
. In3\” . n3 . (14153 . o
lim <1+ 22) = fim e OHE) = fim e = lLim e (OHF) =3,
T—r00 €T Tr—r00 r—00 xr—r 00

Note that: lim (1 + g>m =e¢" for all a € R.
T

T—r00

Exercises
Use L’Hospital’s rule when appropriate. When not appropriate,
say so.

) x ) .1
1) lim, o m, 3) lim xsin(-),

Tr—+00 €T
2) lim +/ze 2,

r—r—+00
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4) :lvii%(cot(:v) — i), 13) glglg(l) %E:sl((f))’
5) lim(csc(z) — cot(x)),
) x—>0< (z) (@) 14) lim (sec($)+tan(x))csc(x),

6) lim (tan(2z))%, 20+
z—07t 3 9
. tan(z) —x 15) U - =
7) lim 2—27 ) ! (ln(x) T — 1)’
8) lim 2@ 16) lim (¢" + 1),
2 (%) 3tan(x) ’
m 17) lim 22
xT 1im —
9) :vllgler ’ z—oo g2
. 2sinh(z) — sinh(2z) e2r 1
10) 1 i
) 750 2x(cos(z) — 1) 18) ach—>IEo x
11) Tim sin(3z) — 3sin(x) 19) lim e~*V/z,
z—0 33 ’ =300
)y 00T ) i

Use L’Hospital’s rule to find the sum Z k.

k=1



CHAPTER 3

TECHNIQUES OF INTEGRATION

1 Integration By Parts

The product rule of differentiation yields an integration technique known
as integration by parts. Let us begin with the product rule:

d dv(z)  du(x)
 (ufao@) = u(@) 2 ¢ )

Integrating each term with respect to x from x = a to x = b, we get

/abd%(U(x)v(x))dx = /abu(x) (dz_f>> dz + /abv(x) (dz_f)> .

Using the differential notation and the fundamental theorem of calculus,
we get

b b
[u(:)s)v(:)s)]z = (u(b)v(b) — u(a)v(a)) = / u(z)v'(z)dx +/ v(x)u'(z)dx.

The standard form of this integration by parts formula is written as

/ w(z)v' (x)dx = (u(b)v(b) — u(a)v(a)) —/ v(z)u (z)dx.

95
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and

/udv:uv—/vdu.

We state this result in the following Theorem

Theorem 1.1: (Integration by Parts)

If v and v are two continuously differentiable functions on the
interval [a, b], then we have

/ (@) (@)dz = (w(b)v(b) — u(a)v(a)) — / o(@) () dz

and for the indefinite integrals

/udvzuv—/vdu.

Examples 4 :
Using integration by parts, we have

1. /ln(x)da: E@e=t In(z) —z+c

u=In2(z)v’

2. /lnz(x)dx Dt zln®(z) — 2(zIn(z) — z) + c.
3. /xexdm A
/xZe””dx = (2° — 2z + 2)e" + .

D. /7r xsin(x) dx usa,v Zsin(x) [~z cos(x)]g + /7T cos(z) da = [~z cos(z)]y = 7.
0 0

6. /x cos(z)dx " =) 4 sin(z) + cos(z) + c.
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2,,/

/xQ sin(z)de " e — cos(x) +/2x cos(z)dx

= —a? cos(z) + 2z sin(x) + 2 cos(x) + c.

8. /x2 cos(z)dz = (x* — 2)sin(x) + 22 cos(x) + c.

9.

/ez sin(z)dx s cos(x) +/e”3 cos(x)dx

u=e® v’ =cos(z)

= —e” cos(z) + e”sin(x) — /ex sin(x)dx

627

— 5(Sin(x) —cos(z)) + ¢,

10.
/e‘” cos(x)dx umeo=et e cos(x) + /e” sin(z)dx
u=sin(ol'=et - o cos(z) + €*sin(z) — /e“’ cos(z)dx
e’ .
= 5 (cos(x) + sin(x)) + ¢,
11.

/cosh(m) cos(x)dx u=cosh{w)pi=cos(r) cosh(z) sin(x) — /sinh(m)sin(x)dx

u=sinh(z),v’=sin(z)

= cosh(z) sin(x) + sinh(z) cos(x)

—/cosh(x) cos(x)dx.
Then /cosh(x) cos(x)dr = %(sin(x) cosh(z) + cos(x) sinh(z)) + c.

0 —sec? (s
12. /x sec?(z)dz " = @ x tan(z) — /tan(a:)dx = ztan(z) — In|sec(x)|+ c.
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13.
. u=sinh~1(z),v'=1 .11 xT
sinh™!(z)dz = xsinh™ " (x) — / —dx
f o W) i
= rsinh™(z) — V1+ 22 +c
14.
/cosh_l(x)d:v uscos™ D=l cosh™(z) — / S
x?—1
= rcosh™(z) — Va2 — 1 +ec
15.
~1 u:tanh_l_(;c),v’:l 1 x
/tanh (x)dz = xtanh™ (x) — / T dx
R ,
= x tanh (a:')+§ln(1—x)—|—c.
16.
.1 u:sin_l(x),v’:l .1 / X
sin” " (x)dx = rsin () — | ——=dx
[ R A
= zsin~'(z) + V1 — 22+
Or
u=sin"1(z
/sin_l(x)dx L@ /ucos(u)du = usin(u) + cos(u) + ¢
= rsin~'(z) + V1 — 22 +c.
17.

u=tan—!(z),v'=
/tan_l(x)dx e L= xtan_l(a:)—/ -

1+ 22
1
= rtanh™!(z) — 5 In(1+ 2%) +c.
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18.
/tan_l(x)dx u=tan_ H(c) /usecQ(u)du = utan(u) + In | cos(u)| + ¢
= rtanh ' (z) — %ln(l + %) +c.

19.

u=In(x? v'= 212
/ln(:zz:2 + 1)dx L=t rin(2® +1) —/ -

2?2 +1
= mln(:pQ—l—l)—/

222 +2) — 2
i+ =2,
= rIn(z? + 1) — 2 + 2tan ' (x) + c.

2+ 1

1.1 Exercises

Evaluate the following integrals:

1) / (), 3) / ' sin(x)dz,

2) /ln(:c2—1)d:c, 9) /cos(x) cosh(x)dz,
3) ?m(azuxﬂ) dx, 10) /emcos(bx)dx,
4) [ aie"dx,

. /xgcos(x)m 11) / ¢ sin(bx)dz,
6) /x%os(x)dx’ 12) /xtan—l(x)d:c,
7) / 2% sin(x)dz, 13) / rsinh™ (z)du,
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2 Integrals Involving Trigonometric and Hy-
perbolic Functions

Some Important Trigonometric Formulas

a [0] Z z z 5 | radians
0 | 30° | 45° | 60° | 90° | degree
. 1 V2 | VB
sin | 0 \5[ ? 51
3 2 1
cos |[1| 5| %5 | 5 |0
tan | 0 \/?g 1 | V3| o

table 3.1: Exact values of the sine, cosine and tangent functions for
important angles.

Y
= cos(z) cos(y) — sin(z) sin(y),

(z+y) () sin(y)
5. cos(x — y) = cos(z) cos(y) + sin(x) sin(y),

6. sin(x) cos(y) = %(sin(m +y) +sin(z —y)),

7. sin(z) sin(y) = %(cos(z —y) — cos(z +y)),

8. cos(x) cos(y) = %(Cos(x +y) + cos(z — y)),

9. cos(z) + cos(y) = 2cos(*F¥) cos(5Y),

10. cos(z) — cos(y) = —2sin(*¥) sin(*F2),

11. sin(z) + sin(y) = 2sin(%5¥) cos(%5Y),



12. sin(z) — sin(y) = 2 cos(“4) sin(%5Y),

P
13. cos(2z) = cos?(z) — sin®(z),

1 2
14, cos(z) = LT 005C0)
2
1 — cos(2
15. sin®(z) = w,

16. sec*(z) = 1 + tan?(x),
17. csc?(x) = 1 + cot?(x),

tan(z) + tan(y)

18. tan(x +y) = 1~ tan(z) tan(y)’

tan(x) — tan(y)

19. tan(zr —y) =
an(r —y) 1 + tan(x) tan(y)’

Some Important Hyperbolic Formulas
1. cosh®(z) — sinh?(z) = 1,
2. sinh(z + y) = sinh(z) cosh(y) + cosh(z) sinh(y),
3. sinh(z — ) = sinh(x) cosh(y) — cosh(z) sinh(y),

4. cosh(x + y) = cosh(x) cosh(y) + sinh(x) sinh(y),
)

(r+y) = ( (v)
5. cosh(z — y) = cosh(zx) cosh(y) — sinh(x) sinh(y),
6. sinh(x) cosh(y) = %(sinh(m +y) + sinh(z — y)),
7. sinh(z)sinh(y) = %(cosh(m +y) + cosh(z — y)),

8. cosh(z) cosh(y) = %(cosh(x +y) — cosh(z — y)),
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Integrals of Type /cos"(:c) sin™(x)dx, m,n € N

1. If m = 2q + 1, we set u = cos(z), then du = — sin(x)dz and

/cos”(x) sin®t(z)dr = /cos”(:v) sin®(z). sin(x)dx
= /cos"(x)<sin2(x))q.sin(:v)dx
_ / cos”(x)(l—Cos2(x))q.(—sin(x))dx

= —/u"(1—u2)qdu.

2. I n = 2p+ 1, we set u = sin(z), then du = cos(z)dz and
/ cos? (z)(x) sin™ (z)dz = / cos? (z) sin™ (). cos(x)da
_ / ((cos?(2))” sin™ (2). cos()d
_ / (1 — sin®(z))” sin™ (x). cos(z))da

- /(1 — u2) u"du.

3. If n =2p and m = 2q,

/ cos? (z)(x) sin? / cos?(z)(1 — cos?(x))'da.
/

We compute the integral J, =
) and v’ = ( ), then

x)dz by induction and by

parts: We set u = cos?1(

J, = sin(z)cos™ (z) + (2n — 1)/0052”_2(x) sin?(z)dx
= sin(x) cos™ () + (2n — 1)1 — (2n — 1)J,.

2n—1<

Thus J, = 5= sin(z) cos x)+ 2=,
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Examples 5 :

1.
/sin3(a:)dx vl /(1 —u?)du
L3
= —cos(z) + 3 cos (x) + ¢,
u=sin(z 1
2. [ cos®(z)dx i /(1 — u®)du = sin(x) — 3 sin®(r) + c.,

sin5(:v)cos4(z)dg:u:CO:S(m)—/u4(1fu2)2du: cos”(x)_cos(x) | 2¢08"()

5 9 7

ot

D
° n
ml\’) EOO
—~|—
B2l&E
ISH
3
N
l
g
&
|
—
—
|
S
N>
S
.
QU
e
I
n
@
o
=
_|_
Q
@}
2
=
+
o

o
o

8 10

9 _ sin(z)cos(z) = _ sin(27) @
cos (a:)da:——2 —|—2+C——4 5T 6
sin(z) cos®(z)  3sin(z)cos(z) 3w

4 8 8

51 i 3
sin (z)dz = /(1 — cos*(x))?dx = —56%((52%) =+ Zw + w

+c,

10.

/Sin2(x) cos*(z)dr = /(1 — cos?(z)) cos®(z)dx
sin(z) cos?(z)

sin(x) cos(x)
3 + 3 1 +c.



104

Another solution

/ sin?(z) cos(z)dz = }1 / sin?(22)dz — é / (1 — cos(4z))dz
T

Integrals of Type /secm(w) tan”™(z)dxz, m,n € N

1. If m = 2q and q # 0, we set u = tan(zx), then du = sec?(x)dz and

sec (z) tan" (z)dz = [ w™(1 + u?) du.
/ /

2. If m =0,

/tan(:v)d:n = In|sec(x)| + c.

/tanQ(x)dx = /(secQ(a:) — 1)dzx = tan(z) — z + c.

For n > 3,

L,= /tan"(m)dm = /tan"2(x) tan®(z)dx

= /tann_Q(x) sec’(x)dx — Ly_s

_ tan""!(x) Lo
n—1

3. If m#0,n=2p+1, we set u = sec(z), then du = sec(z) tan(z)dz.

/secm(x) tan® ! (z)dzx = /uml(u2 — 1)Pdu.

4. If m = 2g + 1 and n = 2p, the result is obtained using integration
by parts and induction.
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Examples 6 :

tan’(x)
3

u=tan(x t 5
2. /tan4(x) sec?(x)dw ) /u4du = (z) +c;

+ ¢

1. /sec4(x)dx utan(@) /(1 +u?)du = tan(x) +

5)
=tan(z 8 10
3. /sec4(:1:) tan” (z)dx u=tan() /u7(1 +u?)du = tang(z) + tanlo(x) +c
sec? u=tan(x 2 5
4 sec*(z) da tan(z) /(1 + u2)u_% du = 2tan? (z) + = tan2 (x) + ¢;
V/tan(zx) 5

5. / fan® () dar = / tan(a) (sec?(a) — 1)da = w—m |sec(z)| +c;
6.
/ tan’ (2)dz — / tan® () (sec(x) — 1)da
_ %_ / tan®(z)dz
_ tani(m) B tan;(x) - In|sec(x)] + ¢
7. / tan3(z) sec®(x)dz L / (2 —1)u? du = Sec;(@—secz(x) +e;

=sec(x 7 5
8. /Sec5(x) tan®(x)dz ecl®) /u4(u2—1)du = sec7(x) — 8805@) +c;

9. By integration by parts, u(z) = sec(x), v'(x) = sec?(z), we get

/ sec(z)dz = / sec() sec?(z)dz
— sec(z) tan(z) — / sec(x) tan? (z)dz
/

= sec(x)tan(z) — seCS(x)dx—i-/sec(:c)d:c;
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Therefore
, 1 1
sec’(x)dx = 5 sec(r) tan(z) + 5 In |sec(z) + tan(x)| + c.

By integration by parts, u(z) = sec®(z), v'(x) = sec?(x), we get

/ se®(z)dr = sec(x)tan(z) — 3 / sec? () tan?(z)dz
e () tan(z) — 3 / sec®(2)da + 3 / soc®(2)da.
Then
/ sec*(2)dz = isec?’(x)tan(x)—i—%sec(m)tan(m)

3
+§ In |sec(x) + tan(z)| + c.

Integrals of Type /cscm(:c) cot™(x)dx, m,n € N

1. If m = 2q and g # 0, we set u = cot(z), then du = — csc?(z)dz and

/ esc2(z) cot™(z)dx = — / a1+ u2)" du,
2. It m =0,
/ cot(z)dz = In|sin(z)] + c.
/ cot?(z)dz = / (cs?(z) — 1)dz = — cot(x) — 2 + c.

For n > 3,

cot" () esc®(z)dx — Ly_»

Ln:/cot”(x)dx = / ot"?(z) cot?(x)dx

tn 1
_ _M_LH
n—1



107
3. If m # 0and n = 2p+1, we set u=csc(x), then du= —csc(x) cot(z)dz

/csem(as) cot? ™ (z)dr = — /um_l(u2 — 1)Pdu.

4. If m = 2¢g+ 1 and n = 2p. The result is obtained by integration by
parts and induction.

Examples 7 :

1. /csc(a:)da: = In|csc(x) — cot(x)| + ¢,

2. Let u = csc(z),v" = csc?(x),

/csc3(x)dx = —csc(x) cot(x) 4+ 1n | csc(x) — cot(z )|—/CSC (z)dz,

then / osc® () dx = %(— asc(z) cot(x) + In | ese(x) — cot(x)]) + ¢.
3.
/ esc(z) cot?(z)dz = / esc(2)dz — / esc(x)dz
_ % (—cse(x) cot(z) —In | ese(x) —cot (z)])+¢,
4.
/ cscl(z) coti(z)dr “TE / (1+u?)ut du = — / (u* +u®) du
_ _cotZ(x) B cot;(x) Lo

Integrals of Type /sin(aa:) cos(bx)dx, /sin(aw) sin(bx)dx,

/ cos(ax) cos(bx)dx
1. /sin(am) sin(bx)dxr = %/cos((a —b)z) — cos((a + b)x)dz,

2. /Sin(a:c) cos(bzx)dx = %/Sin((a + b)x) + sin((a — b)x)dx,
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1
3. /cos(a:x) cos(bz)dx = 3 /cos((a + b)x) + cos((a — b)z)dz,
For a,b € R such that |a| # |b|, we have
sin((a —b)z)  sin((a +b)z)
a—>b a+b
sin((a + b)x)  sin((a —b)z)
_|_
a+b a—2b

4. 2/sin(a:€) sin(bx)dr = +c,

5. 2/cos(ax) cos(bx)dx = +c,

b —b
6. 2/sin(ax) cos(bz)dr = _cosllatbjz) _ cos(la = b)a) +c,
a+b a—b
Examples 8 :
1.
. . 1
/Sln(5§6) sin(3z)dx = 5/608 — cos(8z)dx
_ sin(2z)  sin(8x)
= 1 16 +c.
2.
: L[ .
/sm(4x) cos(3x)dr = 5/8111(7@ + sin(z)dx
~ cos(x)  cos(7x)
- 2 4 C
3.

/COS(5ZE) cos(2z)dx = /%[cos(?m) + cos(3z)|dx

= 70 sin(7x) + 6 sin(3z) + c.
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Integrals of Type /sinh(aw) cosh(bx)dx, /sinh(aw) sinh(bx)dx,

/cosh(asc) cosh(bx)dx

/sinh(a:v) sinh(bz)dr = % /cosh((a + b)x) — cosh((a — b)x)dx,

/sinh(ax) cosh(bz)dr = %/sinh((a + b)x) + sinh((a — b)z)dz,

/cosh(ax) cosh(bx)dx = /cosh((a + b)) 4 cosh((a — b)z)dx,

1
2
Examples 9 :
1.
. : 1
/smh(5x) sinh(3z)dzr = i/cosh(Sx) — cosh(2z)dz

1 1
= —sinh(8z) — 2 sinh(2z) + ¢,

16
2.
: L[ :
/smh(4a:) cosh(3z)dr = E/smh(h’) + sinh(z)dz
_ cosh(z) + ! cosh(7z) + ¢
2 14 ’
3.

/cosh(5x) cosh(2z)dx = /% [cosh(7x) + cosh(3z)]dx

1 . 1 .
= 1 sinh(7x) + 6 sinh(3z) + c.
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Integrals of Type /cosh"(w) sinh™(z)dx, m,n € N

1. If m = 2¢q + 1, we set u = cosh(z), then du = sinh(z)dz and

/Cosh"(x) sinh®t (z)dx = /cosh"(x) sinh?(z) sinh(z)dx
n 2 7 .
= [ cosh ($)<COSh (.7:)—1) sinh(z)dz
= /u" <u2 — 1>qdu.
2. If n=2p+ 1, we set u = sinh(z), then du = cosh(x)dx and

/ cosh™ ! (2)(z) sinb™ ()dz = / cosh? (z) sinh™ (z) cosh (x)dar

/ (1 +sinh2(a:))p sinh™ (z) cosh(z))dz

/ (1 + u2>pumdu.

3. If n =2p and m = 2q,

/costh(x)(x) sinh®(z)dxr = /costh(x)(coshQ(x) — 1)4dz.

We compute the integral [,, = / cosh®(z)dz by induction and by

parts: We set u = cosh®”!(z) and v/ = cosh(z), then

I, = sinh(z)cosh®* (x) — (2n — 1) /CoshZ”Q(x) sinh?(z)dx

= sinh(z) cosh®™ (z) — (2n — 1)1, + (2n — 1)1,_;.

Thus I, = 5= sinh(z) cosh®* ' (z) — =11, ;. In particular
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inh h inh(2
]1 = /COSh2(CL’)dCL’ = i ({E)QCOS ($) - g +c= w — g + c.

I, = /COSh4({L‘)dx — Sinh($)205h3($) _ 3Sinh($;COSh<x> N 3;- .

Examples 10 :

1.
/sinh5(:t) cosh? (z)dz uscosh(e) /u4(u2 —1)%du
sh” sh” 2 cosh’
_ cosh”(x) 4 Cos (z) 2cosh’(x) Ve,
) 9 7
u=sinh(z i h7 i h5
2. /Sinh4(x) cosh®(z)dx zh(z) /u4(u2 —1)du = S 7(35) _ s 8 (x) te.
3.

/\/sinh(x) cosh?®(z)dx u=sinh(e) /ué(u2 —1) du

h3 u=cosh(z
. / sinh”(z) osh() /(u2 — 1) u™? du = sech(x) + cosh(z) + ¢,

Cosh2 (x)

/Slnh )cosh?(z)dx = /(coshQ(x) — 1) cosh?(x)dzx

inh h? 7 7
= w ~3 sinh(x) cosh(z) + 3% +ec.

Another solution

/SiHhQ(.T) cosh?(z)dr = i/sinh2(2x)dx = é/(cosh(élx) — 1)dx

sinh(4z) = N
= ———-+c
32 8
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Integrals of Type /sechm(w) tanh™(z)dxz, m,n € N

1. If m = 2¢q and ¢ # 0, we set u = tanh(z), then du = sech®(z)dx

and
/secth(:v) tanh" (z)dxr = /u"(l —u?) T du.
2. If m =0,
/tanh(m)dw = In|cosh(z)| + ¢
/tanhQ(x)dx = /(1 — sech®(z))dz = x — tanh(z) + c.
For n > 3,

L,= /tanh"(x)dx = /tanh”_2(x) tanh®(z)dx

= L, —/tanh"_Q(m)sechQ(x)dx

tanh”" ' (z)

= L, o—
2 n—1

3. If m=2¢+1and n =2p+ 1, we set u = sech(x), then
du = —sech(z) tanh(x)dzx.

4. If m =2q+ 1 and n = 2p. The result is obtained using integration
by parts and induction.

Examples 11 :

1. /tanh4(x)sech2(x)dx = / (tanh(z))*sech?(z)dr = w +c
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/tanh3(:v) sech(z)dz = /tanh2(x) sech(z) tanh(z)dx
= /(1 — sech®(z)) sech(x) tanh(x)dz

usech(®) /tanhg(az) sech(x)dx

sech®(z)

= —sech
sech(z) + 3

+c,

u=tanh(z t, h8 t th
3. /sech4(x)tanh7(x)dx tanh( )/u7(1—u2)du: anh”(z)  tan ($)+C7

8 10

u=tanh(z t h3
4. / sech’ (x)dz "~ =) / (1 — u?)du = tanh(z) — —an3 (@), .

[ cosh(z) cosh(z) v — tan—(sinh(z .
> /SeCh(x)dx_/coshg(m)dx_/1+sinh2(a:)d -t (sinh(z)) +c.

6. By integration by parts, u = sech(x), v/(x) = sech?(z), we get

= sech(z) tanh(z) —

/SeChB(:r;)dx = sech(x) tanh(a:)+/sech(x) tanh®(z)dx
/sech3(x)dx+/sech(x)dx.
Therefore

1 1
/sech3(x)dx = §sech(x) tanh(z) + 5 tan~!(sinh(z)) + c.

7. By integration by parts, u = sech®(x), v'(z) = sech?(z), we get

/ sech’(z)d = sech®(z)tanh(z) 4 3 / sech®(z) tanh*(z)dx
/

= sech®(z)tanh(x) — 3 [ sech®(z)dz + 3/sech3(a:)d:r;.
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Then
5 Lo 13 3
sech”(x)dx = Z—lsech (x) tanh(z) + gsech(x) tanh(x)

+§ tan~ ! (sinh(z)) + c.

4
/ sech (l’) d u:ta;h(x) /(1—?,62)16% du

tanh(x)

1 2 5
= 2tanh?(z) — R tanh2 (z) + ¢,

Integrals of Type /cschm(:c)coth"(w)d:c, m,n € N

1. If m = 2q and ¢ # 0, we set u = coth(x), then du = —csch?(x)dx
and

[ esertarcon@s = - [[wr(u — 1y,

2. If m =0,

/coth(a:)da: = In | cosh(z)| + c.

/COch(w)dl' = /(CSCh2($) + 1)dx = —coth(z) + z + c.
For n > 3,

L,= /coth"(x)dx = /coth“_Q(x)cothQ(x)dx
- /coth”_Q(x)cschQ(x)dx + L, o

coth™ (x
_o ot )
n—1
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3. f m=2¢+1and n=2p+ 1, we set u = csch(zx), then
du = —csch(z)coth(x)dzx.

/cscthH(a:)cotthH(a:)dx = —/uzq(u2 + 1)Pdu.

4. If m = 2¢+ 1 and n = 2p. The result is obtained using integration
by parts and induction.

2.1 Exercises

Evaluate the following integrals:
1) [ sinh(az) cosh(bx)dx, for |a| # |b|

2) [ cosh®(z)dx,

w
~—

sinh®(z)dw,

4) [ sinh™(x) cosh®(x)dz,

(@)
~—

— e S S S S S S

sinh®(z) cosh*(z)dx,

sinh®(z) cosh®(z)du,

7) [ sinh?(x)dx,
8) [ sinh*(z)dx,
9) [ sech®(z)tanh®(z)dx,

10) [ tanh®(x) sech®(x)dz,
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3 Integral of Rational Functions

In this section, we study the integrals of the form [ F(z)dz, where F' is
a rational function:

P(x)
Q(x)
We shall describe a method for computing this type of integrals. The

method is to decompose a given rational function into a sum of simpler
fractions (called partial fractions) which is easier to integrate.

F(z) = —~2 P QeR[X]

3.1 The Irreducible Polynomials in R[X]

Definition 3.1

P(z)
Q(x)

1. A rational function has the form R(x) = , where P and

() are polynomials.

2. A rational function is called proper if the degree of the numer-
ator is less than the degree of the denominator, and improper
otherwise.

. . P(x) . . o
3. A rational function R(z) = 00 is called irreducible if there
i
is no polynomial S € R[X]| which divide P and Q.

Remark %30 :
Let FF = é be rational functions with deg @) < deg P, then by using

polynomial long division, there are two polynomials R and S such that
— =R+ —,
Q Q

is proper).

and deg S < deg@. (i.e. the rational function

(x
Q(x)
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xt + 522 + 3 6% + 3
— =1+ .

-z x -1 . .
In what follows, the rational functions are taken ir-
reducible and proper.

Definition 3.2

1. The irreducible linear polynomials are the polynomials of the
form

For example

R(z)=z—a, a€eR

2. The irreducible quadratic polynomials are the polynomials of
the form

R(x)=ax®* +bx+c, a,b c€R: b*—4ac<0.

Examples 1 :

1. 22 + 9 and 22 + o + 1 are examples of irreducible quadratic poly-
nomials.

2. 22 — x and 22 — 1 are reducible quadratics polynomials since
*—r=z(x—1)and 2> — 1= (x — 1)(z + 1).

Theorem 3.3

The only irreducible polynomials in R[X] are the irreducible linear
polynomials and the irreducible quadratic polynomials.
Any polynomial @ € R[X] has the following decomposition:

m

Q@) = [[ 7@ [] @i (@), (3.1

where L;(z) = ajz+b; and Qx(x) = cx2* + dpx + e, where ay, # 0,
d2 —4cpe, <Oforall j=1,...,mand k=1,...,n.
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3.2 Decomposition of Rational Functions

In what follows, F' = g is a rational function such that deg P < deg Q.

We look for the right form of the decomposition of F'. This right form is
Az + B

(ax? + bx + )

A
a sum of terms —————a # 0 and , where b? —4ac < 0.

(az +b)

1. If Q(z) = (az + b)Q1(z), with a # 0 and Q1(—2) # 0, the rational
function F' has a decomposition in the form
A P

— deg P, < d .

F(x) =

/F(:v)dac = éln lax + b| + / 511((?) d.

2. For a repeated linear term, such as Q(z) = (ax + b)"Q:(x), with
a # 0, n > 2and Q(—2) # 0, the rational function F has a

a
decomposition in the form

- A P1
Fla)=> —L_—+=1  degP <degQi.
(m) (CL.T"’b)] +Q17 eg 1 < eng

j=1

Ay - 4, b
/F(I)dx - 71n|a$+ b+ Zg (1 —j)(az + b)i-1 " Ql((a;))dx.

3. For a quadratic term ax? + bx + ¢, such as
Q(r) = (ax? + bz + ¢)"Qy(z), with b? — 4ac < 0 and Q) is premier
with (az?® + bx + ¢), the rational function F' has a decomposition in
the form

- A;x + B, P
Fla)=3 —22 5 2L deg Py < deg Qr.
(z) (ax2+bx+c)9+Q1’ cg 1 < deg s



Examples 2 :

e 2
a2 —20—-3 x-3 ax-—1

2.

222 — bxr — 8
a3 — a2 —8x + 12

22% — br — 8
(x —2)%(xz+3)
A B C
l‘—2+(l‘—2>2+$+3
1 2 1

x—2 (1;—2)2+x+3
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3.
3r+1 _ Ar+B N C
(22 4+ 2 +2)(z+3) 2?4+rx+2 x+3
B z+1 1
2?+r+2 x+3
4.
1 B A B Cz+D
(z—1)(z+1)(2—2z+1) x—1+x+1+x27u’c+1
111 a1l
- 2—1) 6(x+1) 3a2-—2+1
D.
1 B 1
(22 =32 (z—V3)2(z+V3)?
_ A, B C D
V3 (=32 z+V3  (z+V3)?
V3, ! V3
T 36(z—+3) 12(z—+3)2  36(z+v3) 12z +v3)2
6 22 +1 B 1 1 D

C-De+)@—2 2-1 3@+1) 3@-2
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- 20 +3x—7 2 n 3
"3 =32 +x -3 -3 22+1
g 20— 1 -1 n 1 n 1
(w422 —-3) 5(x+2) (x+2)2 5(x-—3)
9 r+3 11 1 1 +1 1
(@2 —1)(x+5) 3z—-1 4dx+1 122+5
10 20 — 2 oo+ 1
(@2t r+4)(r+2) 22+r+4 x 42
22+ 6 2z +6 3 1
1. x2—2x—3:(x—3)(x—|—l):x—3_x+1
19 r+5  r+5H 1 n 3
"2 tdrt+4 (2422 42 (1+2)2
13 $2+1 . .CC2+1 _A1+A2+Blsr;—i—01_ 1 1
Catdr? 2222 44) oz 22 22 +4 4(2?) 4(z2+4)
14.
i . T . A1 i A2 I Ag
(z—-D@2-1)  (+D@-12 z+1 z-1 (v—1)2
B 1 N 1 n 1
 A(z+1) A1) 2(x-—1)%
15.
et 228 +1 (a4 a?) + (2P —a®+ 1)
4+ a3 422 xt 4 23 + x?
3 _ .2 3.2
> —x°+1 > —x*+1
= 14— 14
xt + 23 + a? r2(x?2 4+ 2+ 1)
S R
B 20 22 2(z2+ax+1)
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3.3 Integral of Rational Functions

3.3.1 Case of Irreducible Linear Factor of Denominator:

Examples 3 :
Evaluation of some integrals
1.
/ 622 + 3 J 5 d$+9/ dz +9/ dx
r = — —+= =
z(r—1)(z+1) r 2) -1 2] xz+1
9 9
= —31n|x|+§1n|x—1|+§ln|x+1|+c.
2.

/m4+5m2+3dx_/m_§+ 9 , 9 i
3 —x B r 2x—-1) 2xz+1)

2 9 9
= %—31n|x|+§ln|x—1|+§1n|x+1|+c.

/ r+3 dx_l/da: _l/da: +i dx
(22 —1)(z +5) - 3)xz—-1 4) 2+1 12) z+5

1 1 1
= §1n|x—1\—11n|x+1|+ﬁln|x+5|+c.

4 1 1
/7@: —4/fdx—4/x_de—4/x_3dx+4/ dx
x4 — 13 T z—1

4 2
= —dlnfz[+ -+ 5 t4lnjz -1 +e
r oz

5. Using the change of variable u = sin(z), we get

/ _ 3cosi(x) dr — / 3 i
sin®(x) + sin(z) — 2 u? +u—2
3
- [ o™
B du du
N /u—l_/u+2
= Inju—1]—In|u+2|+¢
= In|sin(xz) — 1| — In|sin(z) + 2| + ¢,
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3.3.2 Case of Irreducible Quadratic Factor of Denominator:

Examples 4 :

1.
/ 8 dr — / dx _/ dx
(22 +1)(2249) B 2?2 +1 2?2 +9

! tan~! <x> +c
3 3 ’

2r+5 2x + 1 4
——dzr = —dz+ | ———dx
2 4+x+1 2 +r+1 2 4+x+1

= 1n(x2+x—|—l)+2/

= tan '(z) —

(x + %)2 %

In(z? + 2 4+ 1) + — tan"*(

2 _
/239 erQda: _ 2/d£72/ T d:z:f/ dx
x(z? +1)2 x x2+1 (2 +1)2

_
2(22+1)

/ 2r — 2 dr - /( z+1 n _1>dx
(22 +z+4)(z+2) 2?2+r+4 z+2
_ / r+1 da:—/ dz

2 +x+4 z+2

1
- /Ldz—ln|x—|—2|+c,

1
= Inz® —In(z®+1) + B tan™!(z) + +c,

2+ x+4
z+1 z+1
/2 dx = / Ty | 15
2 +x+4 (x+3)2+ %
u:w% u+%
= 2 15 U
us +
1 15 1/2 _ U
=  —Inju®+ = tan~!
2 o 4 \/15/4 \/15/4
1 1 2z +1
= —In(z?+x+4)+ tan~* +c,
( ) T ( T5)
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The final answer is
2z + 1

2c — 2 _1 9 1 o -
/(x2+x+4)(x+2)dx_2ln(x Fa+d)+ o tan () —lnfe 4 24,
D.
/w2+3w+1d _/ v a4l
s 14T T 211 a2+4)W
N / e e + ! d
= 2$2+1_2$2+4 $2+22 X
= 1111(5‘32 +1) — 12In(2? +4) + 1tan*l(z) +ec,
2 2 2
6.
8z% + 13z 27 3 9
————dr = 4| ——dr — = | ———=d
/<$2+2)2 v /1’2_‘_2&’; 2/(x2+2)2x
3 (z242)7!
PV SPP S i ) R
2 —1
3 1
_ 2
7.

dv = [dv+- [ ——< dx — 4

1 1
- $+Zln|w| - gln($2+4) — 2tan™! (g) +c,

3.4 Exercises

Compute the following integrals:

r—3 dx
Y /x+5df”’ 3) /m

>+x-5 322+ x+4
9) [ T g [BTraetd
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dx dx
) /m ) /(x+1)<x2+x+1>’

dx dx
6 /m 8) /@_1)2(1”“2)2’
4 Trigonometric Substitutions

4.1 Integral Involving /a? — x?2

We use the substitution z = asin(f) where 6 €] — 7, 7[ to solve the
integral. We can also take z = a cos(f), with 0 €]0, «|.

4.2 Integral Involving /a? + x?2

We use the substitution # = atan(f) where 6 €] — 7, 7| to solve the

integral. We can also use the substitution x = asinh(¢), with ¢t € R to
solve the integral.

4.3 Integral Involving /x? — a?

We use the substitution =z = asec(f) where 6 € [O, g[ to solve the

integral. We can also use the substitution x = a cosh(t), with ¢ €]0, +o00|
to solve the integral.

Examples 5 :
1.
x+3 3

T
de = + dz
V4 — x? /\/4—:162 V4 — 22

= —1/( 2 + k )dx
2 Va4 —a22 /22 — 22
= —\/4—x2+3sin’1(g)+c.
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dz df .
/x T — /251n(9) (xz = 2sin(h)) 1 )
~ L in(esc(6) + cot(8)) + ¢ :
2 A [ ]

1. 24+4—22

= —ghl——F—)+e 3ia—e?
d 1 1 2+ V4 — x?
We know that /x\/zlx—ia,@ = —iseCh_l(g) +ec= —illl(%) +ec.

dx sec(0)
= = de = 3tan(f
/ 2222 + 9 / 9tan?(9) (@ an(?)) \&5’
1 / cos(0) 40 -
9/ sin?()
csc(6) V9 + 22 = -
— _— 7 Cc = — . 3
9 9z
dx db
/Pfﬁf%'_ /iﬁﬂﬁ (& = 5sec(d)) .
1 @ o
3 ) OO A
1 . x? —25 5
= 5 sin(f) + ¢ = 55 +c.

/ 2 _9dx _ 3/tan2(9)d9 (x = 3sec(6))

_ 3/@%%m—1m9 : g
= 3tan(d) —0+c

= V9—a2— sec_l(f) +ec.

3
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[V < g [ecow w="50) &
,&X
6. - %SeC(G) tan(6) + %ln | sec(f) + tan(6) + ¢ -
T .5 ( L )+ :
= — In T C.
Vi+tda? 2 1+ 4a? !
1 4 cos(h)
IR U — 4sin(0
/ 2216 — 22 ! / (4sin(6))?/16 — (4sin(6))? .
1 1
7 16/ ')
. 1 A
= — [ csc*(9) db
16 ( ) 16—22
1 V16 — 22
= 16 cot(0) +c = — 62 ¢
5 200) —
mdm = / faec(l) 2 2ol tan(@) (x = 2sec(f
22 4sec?(6)
/tanQ(O)
sec(0) L
8. _ / sec(f) do — | cos(6) db
= In|sec(d) + tan(0)| — sin(@)
T Va2—4 Va? —
= In|= - ¢
2 2 x




10.

11.

12.

13.

—
/ (22 + 8z + 25)2

dz
22

2+ 9

1

dx
2

Va2 —25

/

372

x
V4 — 22

8

x=2sin(0)
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1
———dr (x+4=3tan(d
/[(x+4)2+32]2 (o ten(®)
/ 3sec?(6) &0 %‘vxg
(9tan2(9) +9) * S

1 do 1.
§/Sec(9)—§bln(9)+c
1

9

x=>5sin(f) / 5 cos(6) 40
(

25 — 25sin%(0)) 2

1 , i
o= [ sec0) a8 ‘ .
1 A [

— tan(f

55 an(f) + ¢ e
1 T

— 4o

25 /25 — x2

9tan?(0) sin?(0)
csc(0) V9 + 22
= = — —+ c,
9 9z

/4sin2(9)d9 = /2(1 — cos(26))db
= 260 — 2sin(0) cos(0) + ¢

QSin_l(g) - g 4— 122+
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14.
/\/x2—|—2x+2dw = /\/(x+1)2+1dx, (x + 1 =tan(6))
= /secg(ﬁ)dﬁ
= % sec(d) tan(0) + % In | sec(f) + tan(0)| + ¢

1 1
= §(a:+1) (x—l—1)2—|—1+§ln|x+1—|—\/(x+1)2+1|+c.

4.4 Integrals Involving Quadratic Expressions and
Miscellaneous Substitutions

Examples 1 :

L 2?2 4+20+5=(2"+20+1) - 1+5= (v +1)*+4.

1 1 1 1 3
2. 22 1= (22+2-=. Y= (22 +1,= 24 =
P+ + (x* + 23:+(2)) (2)+ , (93+2)+4
1 1 1 1 3
5 5 5 5 25
4. 2%+ b = (2* + 25.1: + (5)2) — (5)2 = (z+ 5)2 -

Examples 2 :
We use the completing square method to evaluate the following integrals:

d u=xr— d — —
L[ s [ @ e—tan e - D e

2

/Vﬁdw - /md@"

u=x—3

1
/mdu
rz—3

= sin_l(%) +c= sin_l(T) +c.
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2x — b 2x — b
x? — 6x + 13 (x—3)2+4
3= / 4t + 1 gt
2(1+¢2)

B /2t dt+1/ dt
a 14 ¢2 2 ) 1+1¢2

= In(1+#*) +tan*(t) +c

r—3
2

1
= In(z® — 62+ 13) + 5 tan~*( ) +c.

1 dx
/(x2+6x+13)gdx B /((m+3)2+4)‘3 (w=2o+3)

_ / du
(w2 +2)F
2sec?(6)
= ———=df = 2tan(f
/ 8sec3(6) (u an(6))
1 do 1
= Z/sec(@) = Z/cos(@)d@
1 U
= Zsm(ﬁ)—i—c—z u2+4+c
_ 1 T+ 3
4/(z+3)2+4
sin(x) da u:cgs,(z) 7/ du
/5 —2cos(z) + cos? V5 = 2u + u?

du
- / Vw—12+ (22

-1
= —sinh™! <u2> +c

s(z) — 1
= —sinh™! (C%(Z)> +c.
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(/¢P?ﬂﬂm _ /v@ﬁzﬁfﬁm
- /\/mdu (w=1+5)
- / 5 tan(6)5sec(d) tan(6)d9  (u = 5sec(d))
= 25 / sec?(0)d — 25 / sec(6)df
- §sec(9)tan(a) - §1n\s,ec(9) + tan(0)| + ¢

1 Vi 2725
= iux/u2—25——l ’5 4 ‘—I—c

241
= LA oVa - D \“5 e e

4.5 Exercises

Simplify each of the following expressions by eliminating the radical
by using an appropriate trigonometric substitution.

1) x r — 2 2 —2x

—— 3) ———, 5) ———.
V9 — z? ) xvx? —25 ) Va2 —2r—3
3 1
2) i) 4) i’
V16 + 22 Va2 42z + 2
Evaluate the following integrals:
34+ /
1 6 Va2 + 2z + bdx,
) V16 + xQ )
x—2
2) 7 / &
PN U Iz

)/\/xQ—I—a?dx, for a > 0,

)/ x? — a?dx, for a > 0, g
x

| Ny

)/v;v2+3.11:+1dx, (4 +a22)2

dx
8 —
) /\/x2—|—2x—3



131

5 Half Angle Substitution

In this section, we treat the integrals of the following form

/ cos(z),sin(z)) i

Q(cos(x),sin(z))

where P(X,Y) and Q(X,Y) are two polynomial functions in X, Y.
Method: Generally we use the following substitution

1 2d
u = tan(g), du = 5 secQ(g)dx, then dx = . +22. We have
2 1 —u?
sin(z) = ruu?’ cos(z) = T ZQ.
Indeed:

sin(z) = sin(2.§):2sin(§)cos(§)

~ tan(3) 2w
Cosec?() 14w
and
cos(z) = cosz(g) — sinz(g) = 0052(2)(1 - tanz(g))
o I—tan®*(3)  1-—4?
© l4tan®(%)  1+u?
Examples 1
Evaluation of the following integrals
1.
du
2 + sin(x) 2u 142

u2

e
1+ .
- / +u+1 /m
_ Tt <2tan\(/§)+1>+c.
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2.
x
2+cos(x)dx - 1—u?) 14 u? du
2+ (15)
x
tan | =
2 2
= /72 du= —= tan~! (2> +e.

3+u 3 V3

3.

1 1 2 x
/3sin(x)+4cos(x)dm B /3( )+4( u2) 1+ u2 du (u:tan(g))

1+u2

2
- /—2(2u2—3u—2) du
_ 7/;65
- Qu+ Du—2) "

1 1 1 2
= —7/ dquf/ du
5) u—2 5) 2u+1

1 1
= —71n|u—2|—|—71n|2u—|—1|—|—c

—éln‘tan( )—2’ fln‘Qtan( )+1‘+C.

4.
1 t=tan(%) dt 1 _q,t
- d =2 = Ztan (=
/5—1—3005(35) ’ /t2+4 g v (2)—|—c
_ 1 71(tan(§)> .
2 2
D.

x
/ dx 4= tail(ﬁ) / 2du
1 —sin(x) B 1+ u?—2u

1 t=tan(%) dt x
6. d =7 —— =Inl|t—1 =In|tan(<)—1 .
/Sin(l’)*COS(l‘)fl * t—1 | [+ =1n] an(2) [+e
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We can also compute the integral as follows
/ dr / 1 1 + sin(z)
- = - - dz
1 — sin(x) 1 —sin(x) 1+ sin(z)

L[l (1),

1 — sin?(7) cos?(x)

- /(cosi(:r;) * ilons(22>d$
- /sec2(x)dx+/sec(x) tan(x)dx

= tan(z) + sec(z) + c.

7.
/ dz t=tan(%) _/ dt
cos(z) + sin(z) B 2—(t—1)2
t+v2-1
] it I
t—v2-1
tan(% 2—1
_ 3 an(%) + /2 e
tan(2) —v2 -1
We can also do the following
/ dx _ / dx
cos(x) + sin(x) V2(sin(z + 1))
= % In ‘csc(x + %)) + cot(x + %)) +e
Remark 11 :

However it was interesting to make another change of variables.

1. If the function F(x) = R(sin(z),cos(x)) is odd, then we can set
t = cos(z),

2. If F(x +7) = F(z), we set t = tan(x),
3. It F(m —x) = —F(x), we set t = sin(x).
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5.1 Exercises

Compute the following integrals:
dx sin(z)dx
D | = 2 . :
sin®(x) cos(x) sin(z) — cos(z)

6 Miscellaneous Substitutions

6.1 Integrals Involving Fraction Powers of

Examples 1 :
Evaluation of the integrals

1.
3 8
/ Ve z_:uﬁ/ 6u5du:6/ Y
1+ Jx 1+ u? 1+ u?
1
= 6/u6 ut +ut -1+ du
14 u?
6 6
= 26— —x0 + 227 — 6as + 6tan~'(z
7 )
2.

/2x+3dx s=271 1/2( 5 "
V1422 2 u?

1 2
= _/u—i; du
2 uz

1 1
= —(1+422)2+ (1422)2 +c

3
Therefore
4
20+ 3 1 3 174 2
—d:[—l 21)% + (1 2*]:—
0 \/1+2xx 3(+:1:)2+(+:1:)20 3
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3.
1 — 6u” 6u’
/ﬁd.ﬁlﬁ :6 /% dU:/ Y du.
r2 4+ 13 u’ +u u+1
Using long division of polynomials,
6u’ 6
/ Yodu = / 6u? — 6u + 6 — du
u+1 u+1)
= 2u® —3u’+6u—6In|u+1|+c
1 1 1 1 1
v —2s% — 325 +6a% —6ln|ot +1’ te
TT + 23
4.

1 u:xl 6 5 6 6
/ 1£L‘6 P / u2 U du — / U g
x3 +1 u? +1 u? +1

/<6u4—6u2+6—u2i_1) du

6 5
= %—2u3+6u—6tan’lu+c

6 s 1 1 R
= gxﬁ — 222 4+ 6285 — 6tan <x6> +c.

6.2 Integrals Involving a Square Root of a Linear
Factor

Examples 2 :

/ (x+1)1md“’ e / w13 iug) g = / A
1
g et (v
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2.
Jam [
= 4/(u—1)du:4[u;—u1+c
- 4 (—Vlg\/@g 14z
3.

= —u2—|—4u—41n|u—|—1|+c

—r+4yr —4ln |1+ Vz| +c.

/VH dr =2 (1+\/’)57 :%(Hf)

6.3 Exercises

Evaluate the following integrals:

/—_ 3
/ 2 4) / VT dx,
2.T + 3 1/3 $2 +x
2) / z\/2 — V1 — 22dz, 5) /d—a:
0 x?/4x? — 1

) [ e

Nlo
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7 Improper Integrals

Definition 7.1

Let f be a continuous function on the interval [a, b], where a € R,
beRU{+00}.

We say that the integral of f on the interval [a, b[ is convergent if
the function

Flz) = / oy

defined on [a,b] has a finite limit when z tends to b (z < b).
This limit is called the improper integral of f on [a,b] and will

b
be denoted by: / f(z)dz.

Examples 1 :

1.
1 6sin’l(a:) J i t 6sin’l(a:) J
—ax = 11m —ax
0o V1— 22 t—1= Jo V1 — 22
L sin~1(t)
u:sm_l(:c)

. jus
= lim edu =e2 — 1.
t—1— 0

This integral is convergent.

r = sin'(z — 1)}(1) =

SE

! 1 ! 1
2. [ ——— dz = d
/0 V2 — a? ! /0 V31— (x—1)2

The integral is convergent.

00 t
/ re ®dxr = lim ([—xe_z]g —/ —e " dx)
0 t—00 0

= lim ([~ze — 7))

= lim ([~te]—[(e"=1]) =1.

t—o00

This integral is convergent.
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4 /m T gr = [ i = Tm L1 (1+1) = +
. xr = 1m xr = 1m —Iin = Q.
o 1+x? totoo Jo 1422 t—+o00 2

This integral is divergent.

+oo t
D. / e *dr = lim x"e *dx. By induction we prove that
0 t——+00 0

+o0
/ x"e “dxr = n!. This integral is convergent.

oo ] Inz)?]" Int)?
6. / B dx = lim i dr = lim [(nx) } = lim (In?) = +o00.
1

t—o0 1 €T t—+o0

1
Therefore, / 2 g diverges.
.

Definition 7.2

Let f be a continuous function on the interval |a, b], where
a € RU{—o0}, beR.

We say that the integral of f on the interval |a, b] is convergent if
b

the function G(x) = / f(t)dt defined on |a,b] has a finite limit

T
when z tends to a (x > a). This limit is called the improper

b
integral of f on ]a,b] and will be denoted by: / f(z)dz.

Examples 2 :
1 1 .

1. 1 dr = i 1 de = i 1 — = —1. Thi
/0 n(x)dx Jim t n(x)dx Jim [zIn(z) — 2], is
integral is convergent.

0 0 0
d d -1 1
2./ 2~ lim [ — = lim = — - This
o (=32 to- f, (x—3)? to- r—3], 3
integral is convergent.
Udx o .
3 —= = 2. This integral is convergent.

Jo VE
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1 1

d d

4. / A lim/ ’_— lim [In|In(x)|]; = —oc. This in-
o rln(x) =0t J, xln(z) ot

tegral is divergent.

Definition 7.3

Let f be a continuous function on the interval |a, b[, where

a € RU{—o0}, b € RU{+00}. We say that the integral of f on
the interval |a, b| is convergent if the integral of f is convergent on
la, c] and on [c, b[ for any c in ]a, b].

Examples 3 :

+00 etanfl(w) u=tan—1 () 5 T
1. /_oo de = /_ e'du = 2sinh(§). This integral is

convergent.

b . "n(1 — ¢
2. / igdx = 2/ Mdt = 2 — 21In2. This integral
o (1—2x)2 0 t
is convergent.

us
2

Il

.
|

~
M

+00
3. / edr = [¢]7% = +oo. This integral is divergent.

o0

oo dr . :
4. = 7. This integral is convergent.
oo L+ 22

“+o0o
5. Let € R and a € R7.. The integral / —f is convergent if and
e T

“d

only if &« > 1 and the integral / s convergent if and only if
0o ¢

a < 1.

+oo
6. The integral / sin(x)dz is divergent since
0

/ sin(t)dt = 1 — cos(z) doesn’t have a limit when z tends to +oc.
0
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1. .

sin(x sin(x

7. The integral / Ld:lc is convergent since the function (z)
0 x

can be considered as a continuous function on the interval [0, 1].

1
1

8. The integral / sin(—)dz is convergent since the function sin() is
0 T

continuous on the interval |0, 1] and bounded.

INE)

’ cos(z) In(tan(x))dz —/0 sin(z) In(tan(z))dz.

9. /2 cos(z) In(tan(z))dz :/
0 0
Using integration by parts, we have

us

/04 cos(z) In(tan(z))dz = — In(1 + v/2).

- /Z sin(z) In(tan(x))de = [(cos(z) — 1) In(sin(z)) + In(1 + cos(x))]§
0
= —gan—i—ln(l%—\/ﬁ).
2 2
Then /2 cos(x) In(tan(z))dx = —% In2.
0
10.
too rt+1 too 1 1 1 r+1
dr = (- +—=-— +
1 (e +1)(1 4 2?) 1 22 23 r+1 1422
™ 1 1
= 173 + 3 In 2.
11.

)dt

1

4

Foo 1 1 1
= ( +

S 2(—1) 20+1) 148

1 ™ 1/al
— — —tan” (2%).
2 Qi_1)+2 an”(2%)
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3 3 0
= 3 [(x+1)§ 13 [(:c+1)§]_1 =0
14 /1dx /de Vdx n
: — = — — =400
_g a2 _g a2 0 X2
15.
! x t x
der = i d
/0 (x2—1)3 o P o (22 —1)3 o
= lim —- [(22 - 1)%"
t—lglf [(a; ) ]0
1 L L 1
= lim —- -1 =-
s 4| (12— 1) >
! x
Therefore, /0 m dx diverges.
16.
e 1 ) e
/ dr = lim dx
1 xvVInzx t=1t Jy xvInx
= lim [2(1113:)%]
t—1+ t
— lim 2 [1 - \/1nt} =2,
t—1+
Therefore, / dx converges to 2.
1 zvVinzx
17.

2 1
/1 zvx? —1
li ! /t ! d
im —— dx
t—11t Jy xvx? —1 t—=oo Jo /a2 —1

lim [sec™'(2) —sec™'t] + lim [sec™' ¢ —sec™"(2)]

t—1+

s

ok

dx—i—/oo#dx
2 xVa2-—-1

dr + lim

t—o0

141
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Therefore, / d:c converges to g

x/ a:2

7.1 Exercises

3-7-1| Prove that the following improper integrals are convergent and
compute the value of these integrals.

+o0 1
o rlnz
1) A xre dl’, 7) \/0 mdﬂ?,
+oo
2) /o e *sin(z)dz, ) /1 Inx iz,
Yo +1 0o (I—2)
3) / dz,
0o VT 9) /+°° zt+1 Iy
4) /ﬁo dx 1 e+ )1 +a?)
g 213 o oy [
5) / - ldm VA
1 €r= —

6) /o de, 11) /OQCos(ar)ln(tan(a:))da:.

Determine whether the following integrals are convergent or diver-

gent:
o [T, 6) L4
—dz, x
0 \4/1+.'I7 1 \/3—1'
2) R R
—dx, +o0
o (1+x) 7) / wd%
0 1 xr
3) Qxdx
LS|
8) / dx,
cos(mz) 0 2—3

hg\\

]

8 4 +oo t —1
9)/ an (x)dx,
1

T2



CHAPTER 4

LAPPLICATIONS OF DEFINITE INTEGRALS

1 Area of Plane Regions

Definition 1.1

Let f: [a,b] — RT be a non nega-

tive continuous function, the integral
b

f(z)dx represents the area of the

rggion R, delimited by the graphs of
f, the axis of equations: © = a, x = b

and y = 0 (the z—axis).

Theorem 1.2

If f and g are two continuous functions
on [a,b] and f(z) > g(z), Vz € [a,b].
Then the area A of the region bounded
by the graphs of f,g, x = a and x = b
is

b
A= [ #(@) - gla)d.

143
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Example 1 :
Let f(z) =2* +1 and g(z) = .

The area of the shaded region is
3
2 13
A:/Q(q:Q—l—l—x)d:c:E.

1
2

[SIE /
£S)

[SIY

Example 2 :
Let f(z) = 2% — 2 and g(z) = = + 1 on the interval [0, 2].
The area of the region between the
graphs of the functions f and ¢ on v,
the interval [0, 2] is

A = /02(x+1)—(x2—2)dx 4

_ /02(x+3—x2)d$ yz\/

16
5
Remark 12 :

If f and g are two continuous functions on [a, b]. Then the area A of the

A y=ax2-2

[\CJ) [Sp——

b
region bounded by the graphs of f and g is A = / |f(z) — g(x)|dx.

For example if there is ¢ €]a, b] such that f(z) > g(z), Yz € [a, ] and
c b
(@) < glo). o € e then A= [ f(@) ~glaldo+ [ g(o) - f(o)de

Example 3 :

The area A of the region R bounded by the graphs of f(z) = x + 6,

1
g(z) = 2% and h(x) = — 5T
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f@) = h(z) <= == -4,
g(@) = hz) = z=0,
flz)=g(x) &= 22 —2-6=0.2=21is J@)=2+6
the unique solution of this equation.
We have f(—4) = h(—4) =2, 4
9(0) = h(0) =0 and
f(2) =9(2) =

The area of the reglon is equal to:

A= / (f(x) — h(x)) d + / (f(2) - gla)) d.

-4

A:/(j1 ((w+6)+%x> dx+/02((x+6)—x3)dx:22.

Example 4 :
The area of the region between the graphs of the functions:
f(x) = 3(2® — 4) and g(z) = 3(z + 2) if @ is restricted to the interval
[1,4].

yﬂ -
F@) = 32 - 4)
flz) =g(x) < 22 —2—-6=0.
The only solution of this equation on
the interval [1,4] is x = 3 and we

have f(3) = g(3) = 2.

We have f < g on the interval [1, 3]

g(z) = S (z+2)

and g < f on the interval [3,4]. T
Then i
3 4
A= [ @ -rende+ [ (@) - o)
3
= é/l ((x+2) (:z: —4))d9:+é ?;

Examples 5 :

1. The area bounded by the graphs of the curves y = 22 + 1, y = 2x
and z = O:
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y A y = 2z
y=a?+1
Note that y = z? + 1 is a parabola E
opens upward with vertex (0, 1), |
y = 2z is a straight line passing E
through the origin and x = 0 is the :
y—axis. |
! T
?+1=2r < z=1. 1 >
The desired area is
1 1 ~ 1y371
A:/[(x2+1)—23:]dx:/(a:—l)stc:[(I 1)} .
0 0 3 0 3

The area inside the graph of the curve 22 + y*> = 4 and above
y = 2 — x. The desired area is one fourth of the area of the circle
minus the area of the triangle which equals to m — 2. Note also
that 22 + y? = 4 is a circle with center =(0,0) and radius =2 and
y = 2 — x is a straight line.

y=2—x

4+ (2-2)?=4
— (2-2)?=(4-12?

Y

< rz=0o0rx=2

Note also that x
22yt =4 = y=+V1-22 X
where v4 — 22 represents the upper

half of the circle and —v/4 — 22 rep-

resents the lower half of the circle. 242 =4

2 2
The desired areaiSA:/ V4 — a2 dx—/ (2—x)de=1— I,
0 0
2 2
Wherellz/ V4 —a? dx andIQZ/ (2 —2) du.
0 0
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g, ") /2 4 — 4sin*(0) 2cos(d) df = /2 4cos®(0) df
o 0

2]
= 4/ —[1 + cos(20)] df = 2 [9 +
0o 2 0

]2:/2(2—x) dx:—{@_—x)zrzz

2
0 0
Hence, the desired area is I} — I, = 7 — 2.

3. The area bounded by the graphs of the curves of equations
r=9y*+1,2=0,y=—1and y =2.
Note that z = y? + 1 is a parabola Y,
opens to the right with vertex (1,0),
xr = 0 is the y—axis, y = 2 is a
straight line parallel to the xr—axis
and passing through the point (0, 2) >
also y = —1 is another straight line \
parallel to the r—axis and passing ~
through the point (0,—1). The de-
sired area is

2 Y3 2
AZ/ (y2+1)dy:l—+y] = 6.
- —1

r=y2+1

1 3

1.1 Exercises

Set up integrals to evaluate the areas bounded by the graphs of the

following curves

1) y=Inz,y=0and z =2,
2) y=¢€", x=1In4, x =0and y =0,
3) y=2*and y = —2% + 2,
4
4) y=—,2=0,y=1and y = 2.
x
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Find the area of the region between the graphs of the functions
y=¢e",y=4e " and y = 1.

Find the area of the region bounded by the curves x = y?, z+y = 6,

y=-4y=2
Find the area between the curves: y = cos(z),y = sin(z),
0<z< 3,

Sketch the region bounded by the curves and find its area

1) 4o =4y —y* 4o —y =0,
Q) y=e",y=e,y=x,2=0,
3) 4y =2 and y = w2§4,

)

4) The region in the first quadrant bounded by the x-axis, the
parabola y = ‘%2 and the circle 2% + y? = 4,

5) y =sin®(z), y = tan’z, z € [-F, Z].

Sketch the region bounded by the curves and find its area in the
following :

1) y=3 12 andy—2x—— 2,

2) y=—z and x = 3% + 2y.
Find the area of the shaded regions:

Y

= sin(z)

NIE

|

1) y = cos(x)
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y=(z—1)?
Y y=x+1
| a
2)
Yi
r=-y>+1 r=y>-1
1
‘ZL’
S
3)

Find the area of the region bounded by the graphs of the curves of
y=212%—4z and y =0

Find the area of the region bounded by the graphs of the curves
y=2>4+2r+1,y=1—xandy=0

4-1-10| Find the area of the region bounded by the graphs of the curves
y:x27y:x2—|—l,x:0andl’:1.

2  Volume of Solid of Revolution

2.1 The Disk Method

Let f: [a,b] — R* be a non negative continuous function and R, the
region delimited by the graph of f and the axis: * = a, * = b and the
x—axis. If the region R, is revolved around the z-axis, the resulting solid
is called: the solid of revolution generated by the region R,.

Examples 6 :

1. If f: [a,b] — R is a constant ¢ > 0, then the region under the
graph of f on the interval [a,b] is a rectangle. The solid gener-
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ated by revolving this region around the z-axis is a circular right

cylinder.

2. Consider the region under the graph of the function f(x) = v4 — 22
for x € [-2,2]. If we revolve the region R, around the z-axis, the
solid generated is a ball of radius r = 2.

Theorem 2.1

Let f: [a,b] — R* be a contin- g,
uous function. The volume V' of
the solid of revolution generated
by revolving the region bounded .
by the graphs of f, y =02 =a '
and z = b is given by

V&

V:/ 7f2(z)dx. (2.1)

Example 7 :
Yy / o
Let f be the function defined on the
interval [—1,2] by f(z) = 2® + 1.
The volume of the solid obtained by
revolving the region under the graph
of f around the z-axis is
2 |
78 |
7T/ (x2—|—1)2da::—7r. :
_1 5 |
: T
-1 2
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Remark 13 : .
Let g be a positive continuous func-

tion on the interval [c, d] and R, the
region bounded by: the graph of the
function z = ¢(y), the axis y = ¢,
y = d and y—axis. The volume of
the solid of revolution of the region >
R, around the y-axis is:

d
V= 7T/ g*(y)dy. (2.2)

= g(y)

Example 8 :

If g(y) = y* — 4 defined on the in- v,
terval [0, 2]. The volume of the solid 2
obtained by revolving the region un-

der the graph of g around the y-axis x

is: -
256

2
%4 7T/O(y ) dy 5

2.2 Washer Method

Theorem 2.2

Let f,g: [a,b] — Rt be two v,

continuous functions such that f(=)
f(z) > g(z) >0, Vx € [a,b]. If R

is the region between the graph of

f and the graph of g. The volume o(2)
of the solid obtained by revolving T

the region R around the z-axis is
equal to

7r/ (f*(z) — ¢*(z)) da. (2.3)
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This formula can be interpreted as:

Y,
If R is the region bounded by the

graphs of x = f(y) and = = g(y),
where f(y) and g(y) continuous
functions defined on the interval
[c, d] and satisfies 0 < g < f. The

X

b
V=n / (outer radius)® — (inner radius)?dz.

volume of the solid of revolution
generated by revolving the region
R around the y—axis is

9(y) f(y)
Y

V=n / [2) - )] dv.

(2.4)

(2.5)

Examples 9 :

If f(z) = cos(z) and g(x) = sin(x)
on the interval [0, §]. The volume of

1. the solid of revolving R between the
graph of f and g around the z-axis
is

v W/OZ (cos(x) — sin®(x)) dz = W/ cos(2z)dx = 2

Let f(x) = v/ defined on the inter-
val [0,4]. If R is the region under the

2. graph of f and S the solid of revo-
lution of R around the axis y = 2.
The volume of S is:

cos(x)

sin(z)

w&

Y,
2

s
4

0

™
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V:ﬂ/04(22—(2—\/§)2)da::—.

In this example, the outer radius is 2, the inner radius is

2—y=2— /.

Examples 10 :

Use disk or washer method to find the volume of the solid of revolution
generated by revolving the region bounded by the graphs of the following
curves

1
l.y=—, =1, =3 and y =0, around the r—axis.
x

yﬂ

Y

_ = —-——
w

2 around the z—axis.

2. y=aandy=4—x

Note that y = 22 is a parabola opens Y,
upward with vertex (0,0) and
y = 4—2? is a parabola opens down-
ward with vertex (0,4).
2 =4—22 < 1 =+2. The
points of intersection of y = x? and
y = 4—2? are (v/2,2) and (—v/2,2).
Using Washer Method

VvV = w/ﬁ[(él—x) —(x)]dx

0 3

.

xT V2 6402
3

V2
= 167r/ (2 —2?) do = 167 {2;::——
0
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3. y =4z — 2% and y = x, around the z—axis.
4r — 2> = 4 — (x — 2)? is a parabola y
opens downward with vertex (2,4) ‘
and y = z is a straight line passing y=ux
through the origin.
r=4r— v’ < =0, v=3. The
points of intersection of y = 4x — z*
and y = x are (0,0) and (3, 3). Using
Washer Method, we get

VH

Wk

Vo= W/OS[(A[;U_:E?)L:E?} dz

3
= 7T/ [x4 —8z% + 15x2} dr = —r.
0

4. v = /y, z =0 and y = 4, around the y—axis

=i

vy L

Using Disk Method, we get
4 274
Ve [ dy=n|L| —sn
0

1
1
1
1
1
1
I
1
1 T
2

5. y=2?>+1,y=0, 2z =0 and z = 1, around the y—axis.
Note that y = 2+ 1 is a parabola opens upward with vertex (0, 1),
x =1 is a straight line parallel to the y—axis and passing through
the point (1,0).

y=12>+1 < x=24+/y — 1, where Yy y=a?+1
x = 4/y — 1 is the right half of the parabola
and y = —+/y — 1 is the left half of the
parabola.

The point of intersection between y = x?+1 T
and z = 1 is (1,2). Using Washer Method ] 1
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2 2 9
V = 7r/ 1dy—7r/< y—l) dy
0 1
1 17 3
= 27r—7r{§(y—1)]1—§7r.

6. z = y? and x = 2y, around the y—axis.
Note that z = y? is a parabola opens to the right with vertex (0, 0)
and z = 2y is a straight line passing through the origin.

=2y <= > -2y=0 y o

< y =0, y = 2. The points
of intersection between x = y? and x

x =2y are (0,0) and (4,2). g
Using Washer Method, we get v =y

Vo= 7T/O [(29)* = (v*)*] dy

64

2
_ 42_4d:_.
7T/O(y y*) dy 5T

7. y = 2% and y = 4, around the line y = 5.
Note that y = 22 is a parabola opens upward with vertex (0, 0) and
y = 4 is a straight line parallel to the x—axis and passing through
(0,4).

7? =4 <= x = £2. The points

of intersection between y = 22 and
y = 4 are (2,4) and (—2,4). Using \ ;L
Washer Method, we get ‘ =1
2 ! !
vV = 7r/ [(5—2%)%—(5—4)%] dz ! !
—2 1 1
2 l l
= 7r/ (24 — 1022 + 2) do = 82 ! T
—92 15 _9 2'
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8 y+a?=3and y +x = 3, around the line z = 3.
Note that y = 3 — 22 is a parabola opens downward with vertex
(0,3) and = + y = 3 is a straight line.

y+a?=x+y <= =0, or z=1. The intersection points are
(0,3) and (1,2).

where z = /3 — vy is the right half
of the parabola and x = —/3 — y is
the left half of the parabola. Using

2

y=3-z\ Y,
y+a2? =3 < 1z =+/3—y, >

y=3—=x

Washer Method, we get

vo= n [ [6-6-0r-e-viu]

3—y=t* s 3 2 5
= 27 [ [Tt +6t°]dt = 5
0

2.3 The Cylindrical Shells Method

Theorem 2.3

Let f: [a,b] — R be a contin- Yy
uous function and R the region
under the graph of f on the in-
terval [a, b]. The volume V' of the
solid of revolution generated by
revolving the region R around the
y-axis is given by

© hmemam
=l

V= 27‘(’/ zf(z)dz. (2.6)
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Example 11 :

Let f: [2,11] — RT be the function defined by v/z — 2. The volume of
the solid of revolution generated by revolving the region under the graph
of f around the y-axis is

111
V = 27’(’/ rvaTr — dZL' 2: / (2t2 —I— t4)dt = 1271'?
2 0

Remark 14 :
Consider the region R bounded by

the graphs of the curves of g(y),
y =d, y = c and the y—axis. Using db--- 2 = g(y)
cylindrical shells method, the vol- R

ume of the solid of revolution gen-
erated by revolving the region R el .
around thi:l r—axis is >

V= 27?/ y g(y) dy.

Examples 12 :
We use cylindrical shells method to find the volume of the solid of rev-
olution generated by revolving the region bounded by the graphs of the
following curves:

1. y =2z — 2% and y = 0, around the y—axis.

y=2r—12>=—(2*—-2x+1)+1=1—(x—1)? is a parabola opens
downward with vertex (1,1).

2 —22 =0 <= =0, 2 =2, Y
then the points of intersection be-

=2z — a2
tween y = 2z — 2% and y = 0 are !
(0,0) and (2,0). Using Cylindrical T
shells method, we get | 1 5

2 2
V= 27r/ r(2r — %) dr = 27r/ (22?2 — %) dv = ~7.
0 0

2. y=cosx,y=2r+1and z = 7, around the y—axis.
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The line y = 2z + 1 passes through
the point (0,1). The desired region
is under the line y = 2z + 1 and
above the curve of y = cosz on the
interval [O, g]

Using Cylindrical shells method, we
get

y“ y=2ax+1

"H

[ME]

vV = 27r/ z[(2x+1) —cosz] dx

0

= 27r/ 23: + ) dr —
0

23
2
7T3 72
Y (NN (
W(12+8> "

y=+vx+4, y=0and z =0, around

y = vV + 4 is the upper half of the
parabola x = 3% — 4 which opens
to the right with vertex (—4,0).
y = v/ x + 4 intersects the r—axis at
the point (—4,0) and intersects the
y—axis at (0,2). Using Cylindrical
shells method, we get

2 2
V:27T/ y[4 — 7] dy:27r/ (4y — v*) dy = 8.
0 0

2

™

o / " (xcos(x)) dr

0

[z sin(z) + cos(:v)](?
57

the x—axis.

—4

.y = 2% and y = 2z, around the r—axis.

y = x° is a parabola open upward with vertex (0,0) and y = 2z is
a straight line passing through the origin.
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2 =20 <= x =0, =2 Y,
The points of intersection between
y = 2% and y = 2z are (0,0) and
(2,4).
y =1’ < & ==+,/y, where z =
/Y is the right half of the parabola
y =% and x = —+/Y is the left half
of the parabola. Using Cylindrical
shells method, we get

vV o= 27r/04y(\/'—%> dy:27r/04(y

4
[2y3 y3] 64
= 27 — | = —=m.
0

[S][e8)
|
OIS
N————
Q.
<

5 6| 15

.y =+/7 and y = 2%, around the line x = —2.
y = x? is a parabola opens upward with vertex (0,0), and y = \/x
is the upper half of the parabola # = 2. The points of intersection

between y = 2 and y = /.

12 =\r < =0, r=1. Using Y y = a2
Cylindrical shells method, we get
Y=z
V:27T/1(x+2)(\/§—x2)d:v:§7r 7
0 30 -2 1

. y=1—2?and y = 0, around the line y = 2.
y = 1 — 22 is a parabola opens downward with vertex (0,1) and
y = 0 is the z—axis. y = 1 — 22 intersects y = 0 at x = £1.

y=1-22 = 1= 41—y, Yy,
where y = /1 —y represents the
right half of the parabola and

y = —y/1—y represents the left

half. / \ .

Note that the region is symmetric 7 N
with respect to the y—axis. Using
Cylindrical shells method, we get
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voo- 2(2w/1<2—y>mdy)

0

1
u2=1— 64
1y 87?/ (u? + Dudu = =™
0

2.4 Exercises
Find the volume of a ball of radius R.

Find the volume between the sphere of center (0,0,0) and radius
R and the sphere of center (0,0,0) and radius R + r.

Find the volume of the solid obtained by rotating the region bounded
by y =36 — 22, y = 0,2 = 2,2 = 4, about the z-axis.

Sketch the region bounded by the curves and find the volume of
the solid generated by revolving the region about the x- or y- axis,
as specified below.

1) y=1—|z|, y =0, revolved around the z-axis,

2) y=12% y=2—x, revolved around the r-axis,

3) y=|z|, y =2 — 2% revolved around the z-axis,

4) f(x) =cos(5z), y =0, z € [0,1], revolved around the z-axis,
5) x = \/W , x = 0, revolved around the y-axis.

Find the volume of the solid obtained by rotating the region bounded
by y = 1+ sec(x), y = 3, about the line y = 1.

Set up an integration to find the volume and draw an illustration
each of the solid obtained by rotating the region bounded by
y=0y=cos’s, —3 <z <3

1) About the z-axis,
2) About the line y = 1.
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Find the volume of the solid obtained by rotating the region bounded
by the given curves about the specific axis

1) y = cos(x?), y =0, z = 0, z = /5 about the y-axis.
2) y=2% y=4—x% about the y-axis.

3) z=y*+ 1, x = 2, about the line y = —2.

4) 2* —y?* =1, x = 2, about the line y = 3.

5) y=2*+1 and y = 4 — 2% about the line y = —2

6) 2?2 —y? =5, x = 4 about the y-axis,

7) y = +/x, y = 2% about the line y = 2,

8) y = /z, the z-axis for 0 < x < 4 about the line y = 2.

Let R = {(z,y) € R% @ + % < 1; y > 0}. This region
is bounded by z = 1, x = 5, y = 0 and the graph of the function
(r —3)

flx) =3y/1 -

half of the ellipse with center (3,0) and its left vertex is (1, 0), right
vertex is (5,0) and upper vertex is (3, 3)).

. (R is also the region included in the upper

1) Find the volume of the solid of revolution of R around the
T-axis.

2) Find the volume of the solid of revolution of R around the
y-axis.

3) Find the volume of the solid of revolution of R around the
r =1

4) Find the volume of the solid of revolution of R around the

r =6.
5) Find the volume of the solid of revolution of R around the
y =4

6) Find the volume of the solid of revolution of R around the
y=—2.
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3 Arc Length and Surfaces of Revolution

3.1 Arc Length

Definition 3.1

Let f: I — R be a function. We say that f is continuously
differentiable if f is differentiable and f’ is itself continuous on 1.

Definition 3.2

Let f: [a,b] — R™ be a continuously differentiable function. The
length of the curve (z, f(z)), for = € [a, b] is defined by:

i = / V1 + (f(x))2dz. (3.7)

Example 13 :
Let f:[0,Z] — R defined by: f(z) = In(cos(x)). The length of the

» 4
curve defined by f is given by:

L= /4 1+ tan?(x)dz = /4 sec(z)dr = In(v/2 + 1).
oV i ( (

Let f: [a,b] — R* be a continuously differentiable function.
Then the arc length function “s” for the graph of f on [a,b] is
defined by:

5(z) = / APt (3.8)

We have ds = /1 + (f'(z))%dx.
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Examples 14 :

1

1. The arc length of the curve defined by the function f(z) = D + -

on the interval [1,2] is given by:

L—/\/1+ T2 /\/Fdx
- /,/ ‘”2 dx—/ P) d:c—i‘;)

2. The arc length of the curve defined by the function f(z) = cosh(z)
on the interval [0, 2] is given by:

= /02 \/ 1+ sinh?(z) dx = /02 cosh(z) dx = sinh(2).

3. Let g be the function defined by: g(y) = /25 — y? on the interval
[—5,5]. The arc length of the curve defined by the function g is
equal to half of the perimeter of the circle z? + y?> = 25, the arc
length is equal to 5.

Y Then the arc length of the curve defined by the

J(y) = \/25:—3/2

function ¢ on the interval [—5,5] is given by:

b / \/H%— /W

= [sm

5—5

4. The arc length of the curve defined by the function f(x) =

on the interval [0, 3] is:

Wl N
&
Vlw
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3.2 Surfaces of Revolution

Theorem 3.4

Let f: [a,b] — RT be a con- y

tinuously differentiable function. / v

The area of the surface generated . !

by revolving the curve y = f(x) ! E

around the z-axis denoted by S : B

is given by | b

b
5= [ 2nls @I+ F@)P da. (39
Example 15 :

3
Let f be the function defined on the interval [0,1] by: f(z) = % The

surface of revolution of the graph of f around the r—axis is

1,3 V2
S = 27r/ %\/1 T atds TR g/ 2dt = g(zx/ﬁ —1).
0 1

Remark 15 :

If 2 =g(y), y € [¢,d] and g continu-
ously differentiable, the surface area
generated by revolving the curve of
g around the y-axis is given by

d d d
S:/ 27r|ﬂc|ds:/ 27r|g(y)|d8=/ 27lg(y) V1 + (9'(y))?dy.

c c
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Examples 16 :

1. Consider the function f(z) = 2v/z defined on the interval [0, 1].

The surface area generated by re-
volving the curve defined by the
graph of the function f around the
r—axis is:

2 1
1—|—{L} dx:47r/ vVao+1dx
VT 0

:8%(2\/5—1).

0

2. Consider the function f(z) = V4 —2? defined on the interval

[—2,2].
2 Y
The surface area generated by re- y=vi-a?
volving the curve defined by the
graph of the function f around the
r—axis is: T
-2 2

2
S = 27'('/ \/ —132\/ 2) d.fl'
Va4 — 22
—J/’Q +l‘2
= 27r/ V4 —
4—x
- 2“/ ” ”Q_fxz
= 47r/ dr = 4 [z]°, = 167.
)
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Note: It is the surface area of the sphere with radius 2, and it is
equal to 4m(2)? = 167

3. Let the curve defined on the interval [1,8] by : y = 2z

3

y =21 < \%:% — x:%.
y3 / 32

Let g(y):§,g(y):§y and y € [2,4].

The surface area generated by revolving the curve around the y—axis

is:
4 y?
S = 27r/ 1 + dy

t2—1+9 4 R 13
t2dt — (=
9 NiE 27 2)

w\w
(I

).

4. Let the curve defined on the interval [0,2] by: y = 2%

y=21a° < x=,/y, since0<a <2
1
Let g(y) = \/y for y € [0,4], ¢'(y) = ﬁ Then the surface area
Y
generated by revolving the curve defined by y = 22, for z € [0, 2]
around the y—axis is given by:

1
S = 27r/ \/_Hl—i— 2\/_ dy—27r Ul—l—@dy

374
A 2(y+l)§ 1717 — 1
7T/0 y—|—4 Y ™ 3 6 ™
3.3 Exercises

Find the arc length of the following graphs.
1) f(z)=i2*—3Inz, z € [1,5]
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2) f(z) =In(sinz), v € [, 5]
3) f(x) = coshx on the interval [0, In 2]

1 1
4) f(z) = ZxQ —5 Inz on the interval [1, 2]

2
5) flx) =7+ gzc\/f on the interval [0, 8]

6) f(z)=In|secz| on the interval [O, ﬂ

1 3
7 f(x)= 3 (* + 2)g on the interval [0, 1]
2x —2x
8) f(z) = % on the interval [0, 1]
3 1
9) f(x) = — + — on the interval [1, 3]

T
6 2z
1

10) f(z) = gx% — v/ on the interval [1, 4]
4-3-2| Find the length of the following curves
4-3-2] g g

1
f(z )—emfromx:Otox:n—g.

—_

2) x =1In(cos(y)), 0 <y < %

)
)
) v
) ©

3) y =V — a2 +sin"(V7),
Ha=l-ev,0<y<?2

Find the area of the surface obtained by revolving the following
curves about the z-axis:

1) y=+v1+er,0<2 <1,

1
2)y=—,1<z<2

x’

23
4) y=+r,0<x <4
5 y=v9—-122,0<x <4
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6) y:%(3\/5—x3>,1<$<3
$3

7) y:E—i—— 1<x<?2
{E4

8) y:Z—%@,lngS

Find the area of the surface obtained by revolving the following
curves about the y-axis:

1)y:1—l’2,0§$§1,
2> In(z)
2 = — — 1< <2




CHAPTER b

LPARAMETRIC EQUATIONS AND POLAR
COORDINATES

1 Parametric Equations of Plane Curves

1.1 Introduction

The graph of a function f: I — R (I an interval) is an example of
plane curve but it is not general enough to represent all types of plane
curves, for example a circle or a vertical line segment are not the graph of
functions because two distinct points of a graph have different abscissa.
In this section we study the trajectory of a point in the plane whose
coordinates (z(t), y(t)) depend on a parameter ¢, these are the parametric
curves, or curves verifying a Cartesian equation.

1.2 Parametric Equations

Definition 1.1: [Plane Curve]

If f and g are continuous functions on an interval I, the set of
ordered pairs (f(t),g(t)), t € I is called a plane curve C.

169
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The equations z = f(t) and y = ¢(t) are called parametric equa-
tions of the curve C and ¢ is called the parameter.
We can also interpret the curve as the vectorial function

v: I — R? defined by v(t) = (f(t),g(t)), t € I. In this case C is
called the support of the curve ~.

Definition 1.2

1. The curve v: I — R? is called respectively continuous, dif-
ferentiable, k-times differentiable, of class C*, if f and ¢ are
continuous, differentiable, k-times differentiable, of class C*.

2. The Orientation of the curve of the parametric equations
v = (f,g) is the direction of movement of the vector +, for
tel

Remark 16 :

1. If C ={(x = f(t),y = g(t)); t € I} is a curve and the function
f: I —> Jis bijective, then t = f~!(z) and the curve is represented
by the equation y = g(t) = go f~'(x) and the curve is the graph
of the function y = go f~1(z), for z € J.

2.1t C = {(z = f(t),y = g(t)); t € I} is a curve an the function
g: I — J is bijective, then t = g~1(y) and the curve is represented
by the equation z = f(t) = f o g7'(x) and the curve is the graph
of the function x = f o g7!(y), for y € J.

Examples 1 :

1. The graph of a function y = f(x) is a parametric curve of equation
V() = (x(t), (1) = (¢, f(1))-

2. A line of equation y = ax +b is the geometric curve of the mapping
v(t) = (t,at +b), t € R, therefore it is parameterizable as in 1).
The parametrization (z(t),y(t)) = (a,t), t € Ris a parametrization
of the vertical line z = a.
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3. The circle in R? of center (a,b) and of radius r > 0 is the curve
defined by {(x,y) € R?; (x—a)?*+(y—b)* = r*} and it is parameter-
ized by: ~v: [0,27] — R?, where ¥(t) = (a + 7 cos(t),b+ rsin(t)).

Remark 17 :
There are infinitely many ways to parametrize a curve.

1. (x(t),y(t)) = (¢, f(t)) is a parametrization of the graph of the
function y = f(x). But (z(t),y(t)) = (t —a, f(t — a)) is also a
parametrization of this curve.

2. (a+rcos(t),b+rsin(t), t € [0,27] is also a parametrization of the
circle of center (a,b) and radius r.

Examples 2 :

L z(t)=t+1,y(t) =2t+3,t € [-1,2]. Theny =2x+1, z €0,3].
The parametric equation represents a straight line.

2. z(t)=t—1,y(t)=1t*t € [-1,3]. Theny = (x +1)% = € [-2,1].
The parametric equation represents a parabola opens upwards with
vertex (—1,0).

3. x(t) =2+ 2cost, y(t) = —1 + 2sin(t), t € [0,27]. Then
(r — 2)? + (y + 1)> = 4. The parametric equation represents a
circle with center (2, —1) and radius 2. It is a closed curve and its
direction is counter-clockwise.

4. z(t) =14 3cost, y(t) = —1 + 2sin(t), t € [0,27]. Then
@1 (i)

= 1. The parametric equation represents an

ellipse with center (1,—1), the endpoints of the major axis are
(4,-1), (—2,—1) (its length is 6) and the endpoints of the minor
axis are (1,—3), (1,1) (its length is 4). It is a closed curve and its
direction is counter-clockwise.
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1.3 Tangent to Parametric Curve

Definition 1.3

Let v = (f,9): I — R? be a parametric curve and let a € I (I
an open interval). We assume that v(t) # ~y(a) for ¢ close to a. We
say that this curve has tangent at the point My = (f(a), g(a)) if
the direction of the vector MyM; = ~v(t) — v(a), (M; = ~(t)) has
a limit when ¢ tends to a. This means that for ¢ € I close to a
(t # a), there exists a vector V(¢) collinear to the vector MyM;
such that tli_r>naV(t) =V # 0. The tangent at My = 7(a) to the

curve is the line passing through M, and parallel to the vector V.

Example 3 :

If v(t) = (t%,¢%) for t € R. The tangent to the curve ¢t — 7(t) at
(0,0) = v(0) is the real axis. Indeed, v(t) — v(0) = #*(1,t) which is
parallel to the vector V(¢) = (1,¢) and has the limit (1,0) when ¢ tends
to 0.

Theorem 1.4

1. Let v: I — R? be a plane curve. If v is differentiable at a
and 7/ (a) # 0, the curve has a tangent at My = y(a) parallel
to the vector 7/(a).

2. In general if v is k-times differentiable at a and

v (a) = v'(a) = ... = ¥*V(a) = 0 and y*)(a) # 0, then
the curve has a tangent at My = 7(a) parallel to the vector
¥ (a).

Remark 18 :

1. The slope of the tangent line to a parametric curve if it exists is

y), (1.1)
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2. The tangent line to the parametric curve is horizontal if the slope

d
is equal to zero. In particular if d_ZtJ =0 and d_:tU =+ 0.

3. The tangent line to the parametric curve is vertical if the slope is

d d
equal to oco. In particular if d—f =0 and d_?z £ 0.

Definition 1.5

Let v = (f(t),g(t)) be a parametric curve defined on the interval

1. If v is injective, the parametric curve is called simple.

2. If v(a) = v(b), the parametric curve is called closed.

Examples 4 :

1. z(t) =1+ 3cost, y(t) = =1+ 3sin(t), ¢t € [0,27]. Then
(x—1)2+(y+1)>=9. Since 2/(t) = —3sin(t) and ¥/ (t) = 3 cos(t),
the tangent to the curve is parallel to the z—axis at the point (1, 2)

for t = 2 and at the point (1, —4) for ¢t = 3.
The tangent to the curve is parallel to the y—axis at the point

(4,—1) for t = 0 and at the point (—2,—1) for t = 7.

2. z(t) =3+ 3cost, y(t) =2+ 2sin(t), t € [0,27]. Then

(z —3)? + (y—42)2 = 1. Since 2/(t) = —3sin(t) and y'(t) =

2 cos(t), the tangent to the curve is parallel to the z—axis at the
point (3,5) for t = 5 and at the point (3,0) for ¢ = 2.

The tangent to the curve is parallel to the y—axis at the point (6, 2)
for t = 0 and at the point (0,2) for t = 7.

Examples 5 :

1. The slope of the tangent line to the curve (x(t) = t3+1, y(t) = t*—1)
y(1) _4

(1) 3

att=11ism =
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2. Let x(t) =3 = 3t,y(t) =t* —t — 1, t € R.

Y
The slope of the curve at t = —1 is \

oo. The tangent line to the curve at
(2,1) is parallel to the y— axis. The
slope of the curve at (0, —1) fort =0

is =. The equation of the tangent
S ' / t
line to the curve at (0,—1) is
1
=-z—1
Y 373

(3 —3t,t2 —t—1)

3. Let x(t) =2+ 2cost, y(t) = —1 +sin(t), t € [0, 27].

The slope of the curve is
t
= &.(). The points of the y
—2sin(t)

curve at which the tangent line is
vertical are (4, —1) and (0, —1). The
points of the curve at which the tan-
gent line is horizontal are (2,0) and (2 H2cos(t), —1 + sin(t))
(2,-2).

Example 6 :
(x(t),y(t)) = (sin(2t), cos(3t)), for t € R. The curve is periodic of period
2m.
x(—t) = —x(t), y(—t) = —y(t), thus we study the curve on the interval
[0, 7] and we take a symmetry with respect to the origin.
z(m—t) = z(—t) = —x(t), y
y(m —t) = y(t), thus we study the
curve on [0, 7] and we take a sym-
metry with respect to the axis (oy)
and a symmetry with respect to the
origin. My = (0,0), f'(0) = (2,3),
f7(0) = (0,0) and
f®(0) = (=8, -27). (0,0) is an in-
flection point.

(z(t),y(t)) = (sin(2t), cos(3t))
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1.4 Arc Length of Parametric Curve

Definition 1.6

Let v: [a,b] — R? be a smooth curve. The arc length of the curve
v is defined by:

Lo)= [ Il = [ VEOr T GorE 12

Remark 19 :

The expression of L(7y) is invariant by change of parametrization of
class C! of the curve. Indeed if ¢: [a, 3] —> [a,b] is a strictly increas-
ing function of class C'. Set ¥(s) = v(p(s)), ¥'(s) = ¥(¢(s)).¢'(s),
N ()| = |17 (e(s)]|¢'(s). (¢'(s) > 0). Thus from the change of vari-
ables formula (p(a) = a, ¢(f) = b) we have:

B b
[ s = [yl

The same result if ¢ is strictly decreasing.

Examples 7 :

1. If the curve is defined in Cartesian coordinates v: [a,b] — R?
with v(t) = (t,y(t)), t € [a,b] and y of class C.

Liy) = / VIt ).

For example, if y = tan(t), ¢t € [0, 7], then L(vy) = In(1 + V2).

2. If 4(t) = (cos(t),sin(t)), t € [0,47]. L(y) = 4.

Example 8 :
Find the arc length of the following parametric curves:
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1. Consider the parametric curve z(t) = 3t° + 1, y(t) = 3¢ + 2,
t € [0,2]. The arc length of this curve is

L = /\/ﬁidt / (2 +1)2(2t) dt

- ; E(ﬁﬂ)ihz s (5v5-1).

2. Consider the parametric curve z(t) = e'cos(t), y(t) = e'sin(t),
t € [0,7]. The arc length of this curve is

L = /07r \/[et(cost — sin(t))]* + [et(cos(t) + sin(t)))” dt
_ /O " et /Teosld) = sim(0))? + (cos(E) + sin(E)2dt
= /7r V2et dt = v2(e™ - 1).

1.5 Surface Area Generated by Revolving a Para-
metric Curves

Theorem 1.7
If v(t) = (x(t),y(t)), t € [a,b] is a smooth parametric curve:

1. The surface area generated by revolving the curve v around
the x—axis is

§=2n / MO OPdt. (13)

2. The surface area generated by revolving ~ around the y—axis
is

—27r/ lz(t) [/ (2! (t))2dt. (1.4)
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Examples 9 :
The surface area generated by revolving the following parametric curves:
A | :
1.ox(t) =t, y(t) = 3 + yre t € [1,2], around the zr—axis.

[\

N
7/ N7 N 7N 7 N N

el

N—— —0
Q
—
_I_
N
)
|
%/ -
N——
)
&

wn
Il
[\
3
w|
_|_

—_

I
[\
N
~

N
+
|
+
QU
~

— T

w| &
+
)=

1 1\?
= 9 (=) d
W/l 3+4t) ( +4t2>
2 3
$# 1 1
= 2 —+— ) [+ =) dt
7r/1 3+4t)( +4t2>
2 5
£t 1 5097
_ i) dat=2
7r/1 3+3+16t3) 64

2. z(t) =4Vt y(t) = 12 + 1 ¢ € [1,4], around the y—axis.

S = zw/144ﬂ\/(%)2+<t—t%>2dt
= zw/144x/2 (t+t12)2dt

4
1 2
= 27T/ 4\/E<t+t—2) dt:ﬁ
1

5

Example 10 :
Find the surface area generated by revolving the following parametric
curves:

1. z(t) = 3t, y = 4t, t € [0, 2], around the z—axis.

2. x(t) =t, y=2t,t€|0,4], around the y—axis.
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1.6 Exercises

Explain when a differentiable parametric curve v(t) = (z(t), y(t))
has a

1) horizontal tangent at 7y(a),
2) vertical tangent at y(a).

Find the length of the following curves:

1) © =2+3t,y =cosh(3t), 0 <t <1,
2 z=e+ety=5-—2tfor 0 <t <3,

Find the area of the surface obtained by rotating the curve
=13 y=1t>for 0 <t <1 around the z—axis.

Find the area of the surface obtained by rotating the curve about
the z-axis:

1) E={(z,y) € R% x_2+y_2:1 y >0}
Y 7a2 b2 Y — )

2) C={(z,y) €ER% 22+ (y— b2 =a%},0<a<b.

2 Polar Coordinates

In the rectangular coordinates system the ordered pair (a,b) represents
a point, where "a” is the x—coordinate and ”b” is the y—coordinate.
The polar coordinates system can be used also to represents points
in the plane. The pole in the polar coordinates system is the origin in
the rectangular coordinates system, and the polar axis is the directed
half-line (the non-negative part of the x—axis).
If P is any point in the plane different from the origin, then its polar
coordinates consists of two components r and €, where r is the algebraic
distance between P and the pole O, and 6 is the measure of an angle
determined by the polar axis and OP.
Note: The polar coordinates of a point is not unique, if P = (r, ) then
other representations are:

1. P=(r,0+2nm), where n € Z.
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2. P=(—r,0 4+ 7+ 2nn), where n € Z.

Remark 20 :
The polar coordinates (r,#) and the rectangular coordinates (x,y) of a
point P are related by:

x=rcosf, y=rsin(0)
Examples 11 :
1. If (r, 0) = <2, g), then its other polar coordinates are <2, g + 2k7r>

or <—2, 3; + 2n7r), k,n € Z.

) 5)
2. If (r,0) = <—3, ZW) then its other polar coordinates are <—3, Zﬁ + 2k7r>
and <3, % + 2n7r), k,n e Z.

3. The rectangular coordinates (z,y) of the point (r,0)= (-5, r) are
(z,y)=(5,0).

4. The polar coordinates of the point (2\/5, —2) are
)
(4, —% 4 2k7), k€ Z or (—4, % +o%kn), ke Z
5. The rectangular coordinates of the point (r,0) = (2, g) are
(z,y) = (0,2).
6. The polar coordinates of the point (\/5, \/5) are (2, % + 2/<:7r>,

k € 7Z or (—2,¥+2kﬂ>,k€Z.
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2.1 Exercises

Find the rectangular coordinates of the following points
3T T 8T

1) (B’I)’ 3) (277), 5) (-2, ?)
) (-3,77) Y (-2

Find the polar coordinates of the following points with 0 < 0 < 27
and r > 0

1) (_3a _3)a 2) (1,—\/5)’ 3) (3a3)7 4) (_\/ga 1)'

Find the polar coordinates of the following points with 0 < 0 < 27
and r <0

1) (_3’ _3)’ 2) (1’_\/3)’ 3) (373)7 4) (_\/gv 1)'

3 Polar Curves

Definition 3.1

A parametric curve t — 7y(¢), (t € I) is called a polar curve if for
any t € I, y(t) is determined by a polar coordinates (r(t), 0(t)).
In which follows, we study the polar curves with equation r = f(6).

A curve in polar coordinates can be studied in Cartesian coordinates
by the change of coordinates x(t) = r(t) cos(0(t)), y(t) = r(t) sin(6(t)).

Examples 12 :

1. The straight lines:
e Lines passing through the pole:

Any straight line passing through the pole has the form 6 = 6,
where 6 is the angle between the straight line and the polar axis.

0 = 0y = tan(f) = tan(6y) = % = tan(fy) = y = tan(fy) x.
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The straight line §# = 6, is passing through the pole with a slope
equals to tan(fp).

70
For example the equation 0 = 1 is the equation of a straight line

passing through the pole with a slope equals to tan (%) = 1. There-
fore its equation in zy—form is y = x.

e Lines perpendicular to the polar axis:

Any straight line perpendicular to the polar axis has the form

r =a sec(f), where a € R* and 0 € (—g,g)
r=a SGC(Q):>7“:CL:>T’COS(9):CL=>$:G.

os(0)

The straight line r = a sec(f) is perpendicular to the polar axis at
the point (r,0) = (a,0)
For example the equation r = 3sec(f) is a straight line perpendic-

ular to the polar axis and passing through the point (r,0) = (3,0).
Therefore its equation in xy—form is x = 3.

The equation r = —2csc(f) is a straight line parallel to the polar
axis and passing through the point (r,0) = (—2, g) Therefore its
equation in the zy—form is y = —2.

e Lines parallel to the polar axis:

Any straight line parallel to the polar axis has the form r = a csc(f),
where a € R* and 6 € (0, 7).

r=a CSC(Q)#T:ﬁ

The straight line r = a sec(f) is parallel to the polar axis and

= rsin(fd) =a =y =a.

passing through the point (r,0) = (a, g)

2. Circles:

e Circles of the form r = a, where a € R*.
The equation r = a represents a circle with center (0,0) and
radius equals |al.

e Circles of the form r = asin(f), where a € R* and 0 < 6 < 7.
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x = asin(f) cos(f) = gsin(%) y = asin®(9) = % - = Cos( 0).
Then the equation r = asin(f), where a € R* and 0 <6<

a
represents a circle with center (O, 5) and radius equals to —
r = 2sin(f) represents a circle with center (0,1) and radlus

equals to 1

Circles of the form r = acos(f), where a € R* and

Top< T
2 = 2

r = acos’(f) = %—l— g cos(20), y = asin(f) cos(f) = gsin(%).
Then the equation r = acos(f), where a € R* and

a
—g <6< 5 represents a circle with center <§, O) and radius
la|

equals to —.
d 2

r = 2cos(f) represents a circle with center (1,0) and radius
equals to 1

3. The Limagon curves:

e Cardioid (Heart-shaped). It has the form r(¢

The general form of a Limagon curve is 7(f) = a + bsin(f) or
r(0) = a+ bcos(f), where a,b € R* and 0 < 0 < 27

) = asin(@)
or r(0) = a £ acos(f), where a € R* and 0 < 0 §

Yy y
/\‘x /\ x

—)

r =2+ 2cos(9)

=12 — 2cos(0)
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r =2+ 2cos(f) r=2—2cos(f)

e Limacon with inner loop:
It has the form () = a+bsin(0) or 7(6) = a+bcos(6), where
a,b e R* |a] < |b] and 0 < 0 < 27
Note: Note that |a| < |b] in this case.

y A y A
/\ ] /\ ,
r =2+ 2cos(9) r=2—2cos(h)
Yy
Yy
EC
r =2+ 2cos(h) r=2—2cos(h)

e Dimpled Limagon:
It has the form r(#) = a+bsin(f) or r() = a+0bcos(6), where
a,b e R* |a] > |bl and 0 < 6 < 27
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y

3

(Y
N,

r =2+ 2cos(f)

v,
N g

r =2+ 2cos(9)

4. Rose curves:

J

r=2—2cos(f)

-y
g

Yy

r=2—2cos(f)

It has the form 7(6) = a cos(nf) or r(0) = asin(nd), where a € R*,

neNandn > 2

e n is even: In this case the number of loops (or leaves) is 2n.
For example: r(6)=2cos(26) or r(f) =2sin(20), 0 <6 < 27.
The number of loops (or leaves) equals 4.

Yy

r =2+ 2cos(9)

Y

r=2—2cos(f)

e n is odd: In this case the number of loops (or leaves) is n.
For example: r(0) = 2cos(30) or r(f) =2sin(360) , 0<O <=
The number of loops (or leaves) equals 3.
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O

r =2+ 2cos(9)

Yy

r=2—2cos(9)

Tests of Symmetry

. If r(0) = r(—0), the curve is symmetric with respect to the polar

axis (the z—axis).

For example, the circle r = 4 cos(f) and the cardioid r = 2+2 cos(#)
are both symmetric with respect to the polar axis.

If r(0) = —r(—0) or r(0) = r(w — @), the curve is symmetric with
respect to the y— axis.

For example the circle 7 = 4sin(f) and the cardioid r = 2+ 2sin(#)
are both symmetric with respect to the y— axis.

If () = r(m +0), the curve is symmetric with respect to the pole.

For example the rose curve r = sin(26) is symmetric with respect
to the pole.
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3.2 Slope of the Tangent Line for Polar Curves

Definition 3.2

If r = r(0) is a smooth polar curve, then the slope of the tangent
line to the curve () at the point r(«) (if it exists) is

r(6) cos() + r'(0) sin(0)

= li = lim : 35
~ 6a dr dx 6va —r(0) sin(0) 4 r'(6) cos(6) (3:5)
Notes:
dy
1. If —= i =0 and — 7é 0, the tangent line to r = r(6) is horizontal,
dx dy . . .
2. If — =0and — # 0, the tangent line to r = r(#) is vertical.
df df
Example 13 :

1. Let r(0) = 2sin(d), 6 € [0, 7].
x(6) = sin(26) and % = 2cos(20), y(0) = 2sin*(#) and

d
dg = 2sin(20).
The tangent line to the curve is vertical if and only if d_z =0 and
3
7A0 Thu SH—ZorQ— I

The points of the curve r(f) = 2sin(f) , 0 < 6 < 7 at which the

3
tangent line to r is vertical are (v/2, %) and (v/2, ZW)
d d
The tangent line to r = r(f) is horizontal if d—z = 0 and d—z # 0.

ThustO,ngorezw.

The points of the curve r(f) = 2sin(d) , 0 < § < m at which the
tangent line to r is horizontal are (0,0), and (0, 2).
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2. Consider the polar curve r(6) = 1 + cos(f), 6 € [0, 2.
z(0) = (1 4 cos ) cos(h), Z—z = —sin(0)(1 + 2cos(h)),
y(0) = (1 + cos(f)) sin(#) and

Z_‘Z = cos(f) + cos(20) = (2cos(f) — 1)(cos() + 1).
dr 2m Arw

0 =0« 0=0,7,2m, — 503

dy T oT

@_0 — 9—71',5,?-

The slope at the point () is

o — lim y'(0) — lim (2cos(0) — 1)(cos(f) + 1)

o—m x'(0)  o-r  —sin(0)(1 4 2cos(6))
(2cos(f) — 1)(cos(8) + 1)

6—r  —sin(0)(1 + 2 cos(h))

=0.

The tangent line to the curve r = r(6) is horizontal at the points

(0,0), (3,¥3) and (3, —¥2)

The tangent line to the curve 7 = r(f) is vertical at the points
(2,0), (—5,*) and (=}, =)

171 1
Y,

O\
e/

r=1+4cosf
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3.3 Area Between Polar Curves

Theorem 3.3

Let r: [a, ] — R be a continu- y,
ous function, where 0 < a < 8 < 2r

(generally 0 < g —a < 27). Then

the area of the region bounded by

the curve r(6), where 6 € [«, ],

is equal to

81 >
A / S (O)b.

r=r(0)

Examples 14 :

1. Let r = sec(f). The area of the region bounded by the curve and
the straight lines 6 = 0 and 6 = % is

2
(The area is the area of the triangle of base 1 and height 1).

A=l /0 * (sec(6))2d0 — % fran(0)]F = %

Note that r = sec(f) is a straight

line perpendicular to the polar axis

at the point (r,0) = (1,0) , § = 0
T

is the polar axis and § = — is a

sec(0)

T =
>
I
I

straight line passing the pole with a
slope equals 1 (in fact it is the line x

y=x).

2. Let r =2cos(f), -5 <0 <

ol
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The polar curve r = 2 cos(6) is a cir-
cle with center (1,0) and radius 1.
The area inside the curve is: Y.

>

™

1 %
A = 3 / 4 cos*(6) db /\
21
= 2/ B [1 4 cos(20)] do u
= [9 + Sln(220):| % = Tr. = 2COS

3. Let r =4cos(f) and r = 2 cos(6).

Note that r = 4cos(f) is a circle
with center (2,0) and radius 2 and
the curve r = 2cos(#) is a the circle
with center (1,0) and radius 1. The " = 2eos®)

area inside the curve r = 4cos(6) W

and outside the curve r = 2cos(f)

is: r = 4 cos(0)
1 1 (2 )
A = A (4 cos(6))*do — 5 (2cos(0))*do
1 [2 2]
= 5/ 12 cos®(6) df = 6/ 3 1+ cos(20)] df

wm

I
w

o4 2 } e

w\:

4. Let r = 4 and r = 2sec(f). Note that r = 4 is a circle with
center (0,0) and radius equals 4 and r = 2sec(0) is a straight line
perpendicular to the polar axis (it is the line of equation z = 2).
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1
2sec(f) =4 <= cos(f) = 3 then

6= T orf = —z. The area A inside

the curve r = 4 and at the right of
the curve r = 2sec(f) is symmetric
with respect to the polar axis, then

\ r = 2sec|0)

A = / " 4246 — / " (25ec(h))2dd
0 0

S~

16 16
= 2T 4ftan(0)]§ = L — 43,
3 3
Consider the polar curves r = 2 and r = — csc(6).
The curve r = 2 is the circle with center (0,0) and radius 2,
r = —csc(f) is the straight line parallel to the polar axis and of
equation y = —1.
1
—csc(f) = 2 < sin(d) = —5 Y,
r=2
then § = ——. The angle of intersec-
tion between r = 2 and r = — csc(6) /\
)
is 0 = —g. The area A inside the \ S
polar curve r = 2 and above the
curve r = — csc(f) is symmetric with \ !

respect to the line § = 7 and

s
2

= /6CSC2(6)d9—|—4/

. Let r = v/3cos(f) and r = sin(f). The curve r = v/3cos(f) is a

/
"= —csc(8
A = 2(% /_ (—csc(@))2d(9+%/2 (2)%19)

_
6

2d9:\/§+2§.

us
6

3 3
circle with center (g, 0) and radius g The curve r = sin(6)

1 1
is a circle with center (0, 5) and radius 5

)



V3 cos(f) =sin(f) <= tan(@):\%,
then 6 = %, which is the angle of
intersection between r = /3 cos(6)
and r = sin(#). The area of the com-
mon region between r = /3 cos(6)

and r = sin(0) is

{Q_MF+Z{9+

2 Jo

2+ 2cos(f) =3 <= cos(f) = %,
then § = Z. The angles of intersec-
tion between r = 3 and
r = 2+ 2cos(f) are § = 2 or
—%. Since the desired the area inside
r = 3 and outside r = 2 + 2 cos(#) is
symmetric with respect to the polar
axis, then this area is equal to:
(2o
A = 2 §/r (3)°df — =
3

2 )z
3

8. Let r =3+ 3cos(f) and r = 3 + 3sin(6).

r = sin()

191

y

31

Y
N/

r = /3 cos(0)

: (V3 cos(6))?db

/073Y %[1 ~ cos(20)] dO + %/

ﬂy:ﬁ_ﬁ
2

5 [1 + cos(26)] db

N

24 4

ol

Let r =3 and r = 2 4 2cos(f). (r =2+ 2cos(f) is a cardioid.)

Y
r=3
X

N

r =2+ 2cos(0)

L /W (2+ 2008(&))2610)

[9 — (4 + 8cos(f) + 4cos*(0))] df

9v/3

[3 — 8cos(f) — 2cos(20)] df = 2m + :

2
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Y,y

0 = % is the solution of the qua- r =3+ 3sin(0)

tion 3 + 3cos(d) = 3 + 3sin(d). The

other angle of intersection between
r =3+ 3cos(d) and r = 3 + 3sin(h) is
¢ = 3=. The area inside r = 343 cos(),
outside r = 3+3sin(¢) and at the first \J

quadrant is:

A

r =3+ 3cos(f

! / (3 + 3cos(0))2d0 — — / (3 + 3sin(0))2d0

2 Jo 2 Jo

%/4 [18 cos(6) — 18sin(f) + 9 cos®(0) — 9sin*(6)] db
0

1 18 27

5/0 [18 cos(f) — 18sin(f) + 9 cos(26)] df = VR

9. Let 7 =2+ 2cos(f) and r = 2.
Note that » = 2 is a circle with center (0,0) and radius 2 and
r =2+ 2cos(f) is a cardioid.

24+ 2cos(f) = 2 <= cos(f) = v,

0, then 0 = g The other angle of , _,
. 3m ﬁ x
r=2+2cos(f)is 6 = - The area d‘

intersection between r = 2 and

inside 7 = 2 + 2cos(f) and outside
r = 2 is symmetric with respect to

the polar axis and equal to =2+ 2cos(0)

A

5 (; /0 (2 + 2 cos(6))2d0 — ;/0 (2)%;9)

(4 + 8cos(f) + 4cos?(0) —4) df

[N

Il
S~ \wo\

(8 cos(0) + 2(1 + cos(20))) do

m\:!

(24 8cos(f) + 2 cos(20)) df) = m + 8.
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Consider the curve r = 2 cos(36).
The rose curve r = 2 cos(360), 0 < 0 < 7 starts at (r,0) = (2,0) and
reaches the pole when r = 0.

yﬂ
r =0 <= 2cos(30) = 0, then
¢ = %. The area inside one leaf of
the rose curve r = 2cos(36) is sym- z
metric with respect to the polar axis,
then r = 2cos(30)

oy

(2 cos(39))2d9> = 4/ cos?(36) db

O\
ol

DN =

oo
:4/0’

Consider the curve r = 1 + 2 cos(0).

St

M| —

ol

(1+ cos(66)) db — 2/ (1-+ cos(66)) db = =
0

r=0 < 1+ 2COS(9) = 0, then Y r =1+ 2cos(6)
0 = %’r or = %’r. The interior loop

T 4m x
starts at 0 = 3 and ends at 6 = 5 .
The area between the loops of the w
curve r = 1 + 2 cos(f) is:

A = 2 (2 /ng' (1+2cos(6))%dh — ;/2; (1+ 2cos(9))2d6‘>

s

(14 4cos(f) + 4cos?(0)) df — / (1+ 4cos(f) + 4cos?(6)) db

27
3

2 ™

-/ (34 dcos(8) + 2cos(20)) db — [ 6 acos(o) + 2cos(20)) a9

27
3

2

= [30+4sin(0) + sin(20)],” — [30 + 4sin(0) + sin(20)]5. = 7+ 3V3.
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3.4 Arc Length for Polar Curves

Definition 3.4

The arc length of a smooth polar curve r = r(6) from 6, to 605 is

/0 N \/ ﬂ o, (3.6)

Examples 15 :
Find the arc length of the following polar curves :

1. r=1+cos(f), 0 <60 < 2.
The curve is symmetric with respect to the polar axis then the arc
length of the curve is

L = 2/W I T cos(@)) + (= sm(8))? do

= /\/1+2cos ) + cos?(0 —l—sm

= /\/2+2COS d0—2/ “40082 d0
= COoS df = 8.
o e (3)

2. r=2cos(0), -5 <0< 3.
The arc length of the curve is

VE]

L = /_ v/ (2cos(0))2 + (—2sin(6))2 do

[NERNIE

= / \/4(:052 () + 4sin*(0) df = 2.

wu
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3.r=e? 0<0<m.
The arc length of the curve is

L = /OW\/(e—@)H(—e—@)2 d
= [ Ve a =i [ ta=vi(-e).

3.5 Surface Area Generated by Revolving Polar Curves

Definition 3.5

The surface area generated by revolving the smooth polar curve
r =r(0), 0; <0 < 60, around the polar axis is

S = 27‘(’ ) sin(6) \/ @ do (3.7)

The surface area generated by revolving the smooth polar curve
m
r=r(0), 01 < 0 < 0y around the line 0 =

2
A= 27‘(’/ ) cos ()] \/ do (3.8)
01

Examples 16 :

1. Let r = eg, 0 < 0 < 7. The surface area generated by revolving
the smooth polar curve around the polar axis is

, 2
e2 sin(f ‘ 5 —62) do

= ’/T\/g/o e’ sin(9) do = /57 [ﬁea(sm(e) - COS(Q))]

= \/Sw(e”—i—l).

S=27T

T

0
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(We use integration by parts).

2. Let 7 =24 2cos(f), 0 <0 < g, The surface area generated by

revolving the smooth polar curve around the polar axis is

iy

S = 27r/02 (2 + 2 cos(6)) sin(0)| /(2 + 2cos(8))? + (—2sin(6))2 db

us

2
= 4%/ (24 2cos(0)) sin(f)/2 + 2 cos(#) db
0

s

(SIS

= 47r/ (2+2cos(9)) sin(6) df

= —2r E(Q + 2cos(9))g]: = MTW(S - V2).

3. Let r = cos(f), —g <6< g, The surface area generated by

revolving the smooth polar curve around the line § = 7 is

S = 27r/ |cos(0) cos(0)| v/ (cos(6))2 + (—sin(h))2 df

:QW/_

= 7T|:9+

jus

cos?(6) df = 7r/2 (14 cos(20)) db

jus

2

N ERVTH

Wl

sin(29)} 2 )

9 =T .

(NE]

4. Let r = 2sin(#), 0 < 6 < I The surface area generated by revolv-

2’
T
ing the smooth polar curve around the line 6 = 5 is

jus

S = 27r/2 125in(6) cos(A)| v/ (2sin(#))2 + (2 cos(6))? db
0

us

— 4r / " sin(26) do = 4.
0

(The surface area of a sphere of radius 1.)
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3.6 Exercises
Sketch the curve with the given polar equation:

1) r=142cos(f) 2) r=3+sin(h) 3) r = 2cos(40)

Find the polar equations of the following Cartesian equations:

y =z, 3) zy =4.
2) 4y =, 4) (2*+y°)* = 2zy

1) r=2; 6) r = 2csc(20);

2) r=-3; 7) r = 4sec(6);

3) r = 2cos(20); P

4) r = 25in(26); R

5) r = 2sec(h); 9) r = tan(0) sec(h).

Find the area of the region bounded by the curve

1) r=tan(6), 0 € 2, 5; 1) 72 = 9sin(20), 0 € [0, 7;
™
2) r=1-sin(8), 6 € [0, 7; 5) r=2tanf, 6 € [0, J;
3) r=1-—sin(h), 6 € [0, 27]; 6) r=2(4cosf —sech), 6 € [0, Z]

Find the area of the region that lies inside both curves:
r=3-—2cos(f), r=3— 2sin(h).

Find the area of the region that lies inside the curve r = 2 + sin 6
and outside the curve r = 3sin6.

1) Sketch the region inside the curve r = 3 and outside the curve
r = 2 and find its area;

2) Sketch the region inside the curve r = 2 and over the straight
line r = —csc O and find its area;
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3) Sketch the region inside the curve r = 4 and outside the curve
r = 4sinf and find its area;

4) Sketch the region inside the curve r = 4 cos § and outside the
curve r = 2cos 6 and find its area;

5) Sketch the region inside the curve r = 1 and outside the curve
r =1 — cosf and find its area;

6) Sketch the region inside the curve r = 2 4+ 2 cos # and outside
the curve r = 3 and find its area;

7) Sketch the region inside the curve r = 3sin 6 and outside the
curve r = 1 + sin @ and find its area:

8) Sketch the region inside the curve r = 1 + cos# and outside
the curve r = 1 — cosf and find its area;

9) Sketch the region inside the curve r = 1 + cos# and outside
the curve r = 3cosf and find its area;

10) Sketch the region inside the curve r = cos(f) and outside the
curve = 1 — cos(f#) and find its area;

11) Sketch the region inside the curve r = 1 and outside the curve
r =1—cos(f) and find its area;

12) Sketch the common region between the curves r = 2sin(6)
and r = 2cos() and find its area;

Find the area enclosed the curve r = 1 — 2sin(0).

Set up the integral that gives the area of the region that lies inside
the curve r = 2 + cos(26) and outside the curve r = 2 + sin(0).

Find the length of the polar curves
1) r=5%0¢€0,2n];
2) r= sin3(g), 6 € [0, 7];
3) r=2(1+cos(d)), 0 € [0,2n].

5-3-11| Find the surface area of the curve r = € rotated around the line
ngfromOtof



5-3-12| Find the surface area of the revolution of the curve
revolved around the polar axis (the z—axis) from 0 to

5-3-13| Find the surface area of the curve r = —3 — 3 sin 8 revolved around
the line 6 = % from —g to %

5-3-14| Find the surface area of the curve r = sin 8 rotated about the line
ngfromﬁzomé’:g

5-3-15| Find the surface area of the curve r = cos @ rotated about the line
Hzgfrom9:0t09:7r.

5-3-16| Find the surface area of the curve r = ¢’ rotated about the line
0z§ff0m920t09:§

5-3-17| Find the surface area of the curve » = 1 + cos 8 rotated about the
r—axis from 6 =0 to § = %

5-3-18| Set up, but do not evaluate, an integral that gives the surface area
of the curve rotated about the given axis.

1) r =2+ 2sin# rotated about the z—axis from 6 = 0 to § = m;

2) r = cosfsin 0 rotated about the z—axis from 6 =0 to 6 = 7;

3) r = sin(20) rotated about the line 6 = 7 from 6 =0 to 6 = %;

4) = cos 0sin(20) rotated about the hne 0 =% from 0 = 0 to

=%

5) r = 5 — 4cosf rotated about the line § = 7 from 6 = 0 to
0=73;

6) r = 0 cos0 rotated about the z—axis from § = § to 0 = 7.






Appendices

201






APPENDIX A

CONSTRUCTION OF GRAPHS OF FUNCTIONS

Let f: I — R be a smooth function (continuously differentiable). The
equation of the tangent at a point (a, f(a)) is

y = [fla)+ fi(a)(z — a).

Definition 0.1

Let ¢ € RU {—00,4+00} be a cluster point of the interval I. (i.e

there is a sequence in I with limit ¢). We say that the function f

has an infinite branch when x tends to c if tlim |(z, f(x))]| = +oo,
—C

where [[(z, f(2))[| = /22 + f?(z).

Definition 0.2

Assume that the function f has an infinite branch when z tends
to c.

1. If ¢ € R, the line of equation x = ¢ is the equation of the
asymptote to the curve of f.

If ¢ = 400 and liIJP f(z) = £, the line of equation y = /¢
T—r+00

203
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is the equation of the asymptote to the curve of f when
t — +o00.

. If lim M = 400, we say that f presents a parabolic

Tx—+o00 I
branch parallel to the y—axis.

If lim @) =aand lim f(z)— ax = +oo, we say that

Tr——+00 €T T——+00
f presents a parabolic branch parallel to the line of equation

Yy = ax.

f(z)

If lim ——~* =aand lim f(z) — ax = b, we say that the

Tx—+o00 I T—r—+00

line of equation y = ax + b is the asymptote to the graph of
f when x — +o0.

Examples 17 :

1. Let f(z) =

when x tends to 1. The line of equation x = 1 is an asymptote to
the graph of f. hril f(z) = 1, the y = 1 is the equation of the
T—>1T00

1
T | defined for = # 1. f has an infinite branch
’I —

—2
asymptote to the curve of f. f'(z) = W < 0.
x _
z —00 1 +00
f'(x) - -
1 +00
~
() I e
Y\
|
\ ;’L‘
n\ n >
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2
3
2. Let f(z) = 4?—+1> defined for x # 1. f has an infinite branch
‘T JR—
when x tends to 1. The line of equation x = 1 is an asymptote to
_f(x) 1 . 11
the graph of f. xgrinoo —~ =1 and xl—l>r:?oof<x> —E= 7 Then
y = 1(z + 1) is the equation of the asymptote to the curve of f.
(x+1)(z—3)
() = < 0.
x —00 -1 1 3 ~+00
f'() + 0 - - +
_1 +00 +00
f(:l,’) _— 2~ ~ 3 _—
—00 —00 2
Y
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APPENDIX B

LCONSTRUCTION OF CURVES IN CARTESIAN
COORDINATES

1 Tangent to Parametric Curve

Definition 1.1

Let f: I — R? be a parametric curve and let a € I (I an open
interval). We assume that for ¢ close to a we have: f(t) # f(a).
We say that this curve has a tangent at A = f(a) if the direction
of the vector AM = f(t) — f(a), (M = f(t)) has a limit when ¢
tends to a. This means that for t € I close to a (t # a), there
exists a vector V(t) collinear to the vector AM such that

lim V(t) =V # 0. The tangent to the curve at A = f(a) is the

t—a

line passing through A and parallel to V.
If f(t) = (x(t),y(t)), the slop of the tangent to the curve at A is

() ()
Pt — e

Examples 18 :
1. Let f(t) = (¢*,¢®) for t € R. The tangent to the curve t — f(¢) at
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(0,0) = f(0) is the real axis. Indeed, f(t)— f(0) = t?(1,t) which is
parallel to the vector V (t) = (1,t) and hm V(t) = (1,0). The slope
. t?
isp= 11_{11 2= 0.
2. Let f(t) = (tIn(t),sin(nt)) for ¢ €]0,+o0[. The tangent to the
curve t — f(t) at f(1) = (0, O) is the line passing through the
) =

HIn(t), sm(mﬁ)).

), im V' (¢) = (0, —).

t—1

point y—axis. Indeed f(t) —

sin(7rt)

If V(t) = (In(t),

Theorem 1.2

1. If f is differentiable at a and f’(a) # 0, the curve has a
tangent at A = f(a) parallel to the vector f'(a).

2. In general if f is k-times differentiable at a and

fl(a) = f'(a) = ... = f*V(a) = 0 and f®(a) # 0, then
the curve has a tangent at A = f(a) parallel to the vector
f®(a). (We use the L'Hopital rule)

2 Local Study of Curves

2.1 Taylor Formulas

Theorem 2.1: (Taylor-Young Formula)

Let f: I — R? be a curve n-times differentiable at a € I, we have:

n Nk
1) = 3 T f0a) 1| — ae(a); with lim [e(z)]| = 0.

k=0
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Theorem 2.2: (Taylor Formula with integral remainder)

Let f: I — R? be a curve of class C"™! on a neighborhood I of
a. If the interval [a,x] C I or [x,a] C I, we have:

f@ =3 Eo 0@ + @ —ayt [ 0 g ie - apar
k=0

k! 0 n!

Moreover if ||f™*)(a +t(z —a))|| < M V t € [0, 1], we have

“ (z —a)* _, M|z — a|*t!
17 =3 CE e < HETA

Remark 21 :

Let f: I — R? be a curve of class C" on a neighborhood I of a. If
f®(a)=0,for1 <k <m—1<n-1and f(™(a) # 0, then the tangent
to the curve at M, = f(a) is f'™(a).

2.2 Local Study of Curves

Let a € I. Assume that there exists two integers p and ¢, 1 < p < ¢ and
f is q times differentiable at a and we have the following:

f®(a) =0, forany 1 <k <p—1, fP(a) # 0, f™(t,) is collinear to
f®(ty) for p<m < ¢—1 and f9(a) is not collinear to f@(a).

It results that the vectors (f®)(a), f@(a)) form a basis of R?. The curve
in a neighborhood of M, = f(a) has the following aspect form which
depends to the parity of p and ¢q. (The arrows indicate the direction
when ¢ increases).
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p odd 9 (a) @ (a) @ (a)
q even
p odd p even
q odd q odd
A 0 A 0 AN (a)
ordinary point inflection point cusp of first kind

(or a simple cusp)

f@(a) @ (a)
p and g even

A F®)(a) /A F®)(a)

cusp of second kind

Indeed by Taylor-Young formula in a neighborhood of a:

0= = e 3 L e
m=p+1 ’
(t—ay

lim () = 0. The vector ¢ =4 £m) () is collinear to the vector

—Sa m=p+1 m!

f®(a). Therefore for (t—a) small enough the sign of the two components
of M,M, in the basis (f®)(a), f@(a)) have the same sign that those of
(t —a)? and (t — a)? respectively.
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3 Infinite Branches

Definition 3.1

Let a € RU {—00, 400} be a cluster point of the interval I. (i.e
there is a sequence in I with limit a). We say that the parametric
curve f has an infinite branch when ¢ tends to a if

Jim [|f()]] = +oo, where f(t) = (a(t).u(®)) and (1) =
22(0) + (0.

Definition 3.2

Assume that the parametric curve f has an infinite branch when
t tends to ty. If the direction of the vector f(t) has a limit when
t — tg, this direction is called the asymptotic direction of the
curve.

Examples 19 :

11
1. Let f(t) = (;, t_2) defined for t # 0. f has an infinite branch when ¢
tends to 0. The asymptotic direction is parallel to the vector (0, 1)
1
because f(t) = t_Q(t’ 1).
1 1
2. f(t) = (—, ——
() = (s 1
tends to 1 or —1. tliml(l—t)f(t) = (1, 5) The asymptotic direction
H
(when t — 1) is the line passing through the origin and parallel to

the vector (1,1). The slope is 3.
Ift — -1, thml(l —1%)f(t) = (0, 1), thus the asymptotic direction
H_

is the y—axis.

). The curve has an infinite branch when ¢
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3.1 Asymptotes

Definition 3.3

1. Assume that the parametric curve t — f(¢) has an infinite
branch when ¢ tends a and has an asymptotic direction. We
say that this branch has an asymptote if there exists a line
D parallel to the asymptotic direction such that the distance
of f(t) to this line D tends to 0 when ¢ — a. The line D is
called the asymptote of the curve when ¢ tends to a.

2. We say that the infinite branch is parabolic if the distance of
f(t) to any parallel line to the asymptotic direction tends to
oo when t — a.

3.2 Determination of Asymptotes

Let p be the slope of the asymptotic direction of the curve

f(t) = (x(t),y(t)) at a.

First case: p=20:

The curve has an asymptote if and only if y(¢) has a limit A when ¢ tends
to a. In this case the asymptote is the line of equation y = A. The sign
of y(t) — A allows to place the curve with respect to the asymptote.
Second case p = +o0.

The parametric curve has an asymptote if and only if z(¢) has a limit A
when t — a. The equation of the asymptote is x = A and the sign of
z(t) — X allows to place the curve with respect to the asymptote.
Third case p € R.

We have an asymptote if and only if tli_r}r%o y(t) —px(t) = X\, A € R. The

equation of the asymptote is y = pz + A. The sign of y(t) — px(t) — A
allows to place the curve with respect to the asymptote.
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4 Construction of Curves in Cartesian Co-

ordinates
Example 20 : . .
ft) = (z(t),y(t)) = (1 T 752) The functions z(¢) and y(t) are
defined on B\ {~1.1}, (1) = 7 lt) and 1/ (£) = ﬁ

Infinite branches:
In a neighborhood of t = —1, lim y(t) = —oco and lim y(t) = co.

t—s—17+ t—s—1—

1 1
Also lim z(t) = 5 Then the line of equation x = 5 is an asymptote to

t—s—1
the curve.
In a neighborhood of ¢ = 1, lim ﬂ = 1, thus the curve has an asymp-
t—1x(t) 2
totic direction parallel to the vector (2,1). In this case the slope is p = l
x(t) 1 1 1 -1 1

The equation of the

o> T1-# 21—t 20+t 4
asymptote is y = %x + }l.

If t < 1 the curve is above the asymptote. If £ > 1 the curve is under the
asymptote.

Tangents:
M_ooM; = (5, 1 1t2) lim (—tM_oM;) = (1,0). The tangent at the

point (0, 0) is parallel to the x—axis. The same result when ¢ — +00.

t —00 -1 0 1 +00
' (t) + +
"  + +00 s 0
0 —00
y’(t) — — 0 + +
y 0 - +o0 - . +oo . 0
—00 1 —00
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L
1

Example 21 :

f(t) = (z(t),y(t)) = (sin(2t),sin(3t)). f is 2r—periodic.

x(—t) = —a(t), y(—t) = —y(t), thus we study the curve on [0, 7] and we
take a symmetry with respect to the origin.

z(m —t) = x(—t) = —z(t), y(mr —t) = y(t), thus we study the curve on
[0, 7] and we take a symmetry with respect to the y—axis and a symmetry
with respect to the origin.

Mo = (0,0), f'(0) = (2,3), f"(0) = (0,0) and f*(0) = (-8, -27). (0,0)
is an inflexion point.

x'(t) = 2cos(2t), y'(t) = 3 cos(3t)

t 0 5 c z
x'(t) + 0 —
|y LT
y'(t) + 0 -
vt | g——
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Example 22 :

1) = (2(6),y(0) = (¢ — 1% 22).

xz(—t) = —xz(t), y(—t) = y(t), thus we study the curve on the interval
[0, +00[ and one take a symmetry with respect to the axis (oy).

The double points: ¢ — § =5 — % and s2 = t2 = t = v/3. The double
point is (0, 3).

2(t) =1—t* y/(t) = 2t. lim Y — 0, thus the axis (oz) is an asymptotic

t—+oo I
direction. 2/(t) =1 — 2, y/(t) = 2t
t 0 1 +00
@' (t) + 0 —
) | g ————— 53—
y(t) | 0 +
y(t) 0 - oo

W&
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APPENDIX C

LCONSTRUCTION OF CURVES IN POLAR
COORDINATES

1 Local Study of Curves in Polar Coordi-
nates

Consider the Euclidean plane R? equipped with an orthonormal basis
(e1,e2) and the system of axes (oz, oy).

Definition 1.1

Let M be a point of the plane of coordinates (z,y). A polar co-
ordinate system of M is any pair of real numbers (r,8) such that
x =rcos(f) and y = rsin(0).

Remark 22 :

A point M have an infinite polar coordinates. For example, the origin 0
has (0,0) as polar coordinates for all 6 € R.

If M # (0,0) and (r, 6) is a polar coordinates of M, then (1, 6’) is a polar
coordinates of M if and only if r =" and 0 = 0'+2kn, k € Z or r = —r'
and 0 =0+ 2k + V)7, k € Z.
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Definition 1.2

A parametric curve t — f(t), (t € I) is called in polar coordi-
nates if for any ¢ € I, f(¢) is determined by a polar coordinates

(r(),6(2))-

A curve in polar coordinates can be studied in Cartesian coordinates
by the change of coordinates x(t) = r(t) cos(0(t)), y(t) = r(t) sin(0(t)).
Notations
For any 6 € R we define the vectors

up = cos(f)e; +sin(f)es and vy = —sin(f)e; + cos(f)es.
Remark 23 :
Vg = ugyx, this which yields that (ug,v) is a basis of R? positively
d
oriented. Moreover Mo _ vy and % = —up.

In which follows we shall limit our study to the case 6(t) = t.
f(0) = (r(0) cos(0),r(0)sin(f)) = r(0)uy, where r(0) is a real function.

Examples 23 :
1. If r(0) = 1, (0 € R). The support of this parametric curve is the

unit circle.

2. Let I = [-%,0[U]0, 3] and r(f) = Wl(o)‘ The support of the para-

metric curve is the line of equation y = 1.

Let f(6) = r(f)ug be a parametric curve given in polar coordinates
defined on an interval I. If r is differentiable, f is differentiable and

1(0) =71 (0)ug + r(0)vy.

The coordinates of f’ in the basis (ugy, vg) are (r'(6),r(0)).

If f(a) # (0,0), the vector f'(«) is non zero. The curve has a tangent
at the point f(«a). If '(a) =0, f'(a) = r(a)vs. Thus the tangent at the
point f(«) is orthogonal to the line which passes through 0 and f(«).

If f(a) = 0, we assume that r(6) # 0 for 6 close to a. The slope
of the line which passes through 0 and f(#) is tan(f). The curve has a
tangent at the origin of slope equal to 91i_n)1a tan(6).
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2 Infinite Branches

We have an infinite branch in a neighborhood of « if 6?lim |7(0)] = 4o0.
—a

The asymptotic direction is the direction of the line # = «a. (if « is finite.)
Let H be the projection of M on the line parallel to the vector v, and
passing through 0. OH = r(f)sin(8 — «). If r(8) sin(f — «) has a limit
when [ tends to «, then the curve has the asymptote, the line paral-
lel to u, and passing through the point K in the system of coordinates
(Oas U, Vo). OK = ﬁli_rr)l r(a)sin(f — «) = d, the equation of this asymp-
d

tote is r = m.

3 Asymptotic Point , Asymptotic Circle,
Spiral

If elim r7(f) = 0. 0 is an asymptotic point. (Example r = ).
—00

If elim r(f) =t > 0, the circle of equation r = t is an asymptotic circle.
—00

(Example r =1 — 3).

If elim r(f) = 400, we have a spiral. (Example r = €’).
—00

4 Symmetries and Reduction of Interval

Periodical Curves
Let f be a T—periodic function. We consider the parametric curve
r = f(0), with § € R. (We assume that T is the smallest positive period

of f).

1. If T = 2km, with k£ € Z, then we study the curve on an interval of
length T

2. If T = 2’“7“, with k,n € N and % irreducible. We study the curve
on an interval of length T and we do n rotations of angle T
(nT = 2km).

3. If T'=2am, with a € Q. We construct the curve on an interval of
length 7" and we do an infinite rotations of angle 7'
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L. If r(a —0) = r(0), we study the curve on the interval [, +oo[ and

we do symmetry with respect to the polar axis (%).

If r(a — ) = —r(0), we study the curve on the interval [§, +oo]

and we do a symmetry with respect to the polar axis (§ + 7).

Construction of curves in polar coordi-
nates

Examples 24 :

cos(26)

L. 7(0) = =——————. The curve is defined on R\ {£% +2km, k € Z}.

~ 2cos(f) — 1
r(—60) = r(0) and r is 2r—periodic. It suffices to study the curve
on [0, £[U]5, 7] and we do a symmetry with respect to the real axis.

3
lim r(f) = —oo, ggr}urr(&) = 400, Ohl>n1 r(0) sin( — z) = —L. Thus
3 3

3 2V3
the line of equation y = zv/3 + \/?3 is an asymptote in a neighbor-
hood of %.

—25in(6)(1 — 2 cos(6) + 2 cos?(6))

r(6) = (2cos(f) —1)?
/{
0 0 3 7
Yo | o - — 0
r(6) 1r— o +00 — _%




221

<
I
8
S
+
5

V&

y=—x 37§

2. 7(0) = sin(Z). r is 3r—periodic and (0 + 37) = r(f), thus it

3
suffices to study the curve on an interval of length 37 and make a

symmetry with respect to O.

Moreover r(—0) = r(f), we study the curve on [0, 37] and we make
in order a symmetry with respect to the real axis and a symmetry
with respect the origin 0.

r(3 —60) = r(f). We study the curve on [0, 2] and we do in order

a symmetry with respect to the polar axis § = 7, a symmetry with
respect to the real axis and a symmetry with respect to the origin

0. 7'(0) = 2 cos(%2), :,((?) = 2 tan(%).
0 0 3
(@) | 1 + 0

r@) | ¢ —— 1
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APPENDIX D

LDIFFERENTIAL GEOMETRY OF PLANE
CURVES

1 Length of Plane Curves

Let v: [a,b] — R? be a curve piecewise continuously differentiable. The
length of v is defined by:

o) = [ I @l

Remark 24 :
The expression of L(7) is invariant by change of parametrization of
class C! of the curve. indeed let ¢: [a, 3] — [a,]] is a strictly increas-

ing function of class C'. Set ¥(s) = v(p(s)), ¥'(s) = v (¢(s)).¢'(s),
N ()| = |17 (e(s)]|¢'(s). (¢'(s) > 0). Thus from the change of vari-
ables formula , (¢(«) = a, p(8) = b) and we have:

B b
[ wlias = [

The same result if ¢ is strictly decreasing.

Examples 25 :
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. If the curve is defined in Cartesian coordinates by a mapping

[ a,b) — R?, with f(t) = (¢,y(t)), t € [a,b] and y of class C*.

b
L) = [ VT

For example, if y = tan(t), t € [0, F]. L(f) = In(1 + V2).

If the curve is defined in Cartesian coordinates by a mapping
f(t) = (z(t),y(t)), t € [a,b], with x and y of class C'.

L(f) = / NCZOERTInr

For example, z(t) = cos(t) and y(t) = sin(t), t € [0,4n]|. L(f) = 4.

If the curve is defined in polar coordinates by a mapping
[ ]a,b] — R? with f(0) = r(0)ug, then f'(0) = 1'(0)ug + r(0)vy
and ||f(9)||*> = r*(0) + 7"*(§). Thus

L(f):/ 2(0) + 2(0)do.

For example if r(0) = e*’, k € R* and 6 € [a, b].

L() = Y o oy

Curvilinear Abscissa and Normal Parametriza-
tion

Definition 2.1

Let v be a plane curve of class C* defined on the interval [a, b]. If
to € [a,b] and +'(tg) = 0, we say that y(¢y) is a singular point. The
point v(y) is said a regular point if +/(¢o) # 0.

The curve 7 is called regular if 7/(t) # 0 for all ¢ € [a, b].
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Definition 2.2

Let v be a plane curve of class C! defined on the interval [a, b]. We
assume that v regular on [a, b]. For ¢y € [a, b], we set

o(t) = / 17(6)] 6.

¢ is a function of class C! strictly increasing, then ¢ =1 is of class
C! and (o V)o(t) = (¢'(t))"!. By definition ¢(t) is called the
curvilinear abscissa of 7.

If g(s) = v(¢7'(s)), |lg'(s)|| = 1. g is a parametrization of the
same curve 7, g is called the normal parametrization of the curve

(I ()l = 1)

3 Curvature of Plane Curves

We consider a regular curve v of class C? on an interval 1. We denote s
the curvilinear abscissa of ~.

d '(t
as _ [|7/(t)|]. Let T be the unitary tangent vector T = ||’yl8||
~

o and N

the unitary vector defined by the rotation of center 0 and of angle 7 of
the vector T'. (If (a, b) are the components of 7" in the basis (ey, e3), then
(—b,a) are those of the vector N.) By definition N is called the normal

vector of the curve.
Remark 25 :
T is a unitary vector, thus < T, T', >=1, this which yields that (‘fl—f, T)=0.
ar
Thus the vector N is collinear to the vector o ((,) is the Cartesian
s

inner product on R?.)

Definition 3.1

T
It Ocll_ = C'N, the real number C' is called the algebraic curvature
s
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of the curve 7. ]
Remark 26 : T d
If  is the polar angle of T'. (T = (cos(y),sin(p)), 2 = d—f(—sin(ap),cos(go))).

d
Then the algebraic curvature of - is d_go) because N = (—sin(p), cos(¢)).
s

We have also % =-CT.

Definition 3.2

At any point where C' # 0, we define the radius of curvature and
1
denoted by R the real rok

Definition 3.3

The point K such that M K = RN is called the center of curvature
of v at M.

4 Curvature in Cartesian Coordinates

V(t) dT dT 1

S G
oy G ——
V2 4y a4 y?
d_T = ( Y v x’y" — ylxﬂ ). Thus
ds \/x’2 + yxz’ \/5512 + oy \/(x/2 + )3 '
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"

In particular if z(t) = ¢t. C = Y We get the notion of

(1+y2)3
convexity of the functions of class C2. The curve is convex if and only if
x'C' is positive and concave if and only if 2’C' is non negative.

5 Curvature in Polar Coordinates

OM = r(0)uy, —d(gé\/[) = 7" (0)ug + 7(0)vy.
- —7" vo > N = T
0o _dH<0;g><9>H e e
AT —rug +1r've 7% 4 202 — rr”
ds 2o oe (2 + r2)3
r2 4+ 2r% —
B (r2 +7r2)3

6 Exercises

Study the following parametric curves:

1) x(t) = cos(3t), y(t) = sin(2t),

2) z(t) = 3cos(t) — cos(3t), y(t) = 3sin(t) — sin(3t),
3) z(t) = cos(2t),y(t) = sin(3t),

9w 1jt3’y(t):ﬁ’

5) z(t) =t —sin(t),y(t) = 1 — cos(t),

—~
~+
~—
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Study the following curves in polar coordinates:

1) r(f) =1+ cos(0) 6) r(6) = sec(6) + csc(h)

2) r(0) = cos(26), 7) r(0) = 2+ sec(0)

3) r(#) = sin(f) cos(20), 8) r(f) = +/cos(20)
sin?(9)

4) r(0) = cos (g) + \/75, 9) r(0) = cos(6)

5) r(0) = sin?’(g), 10) r(0) = sirllg = csc( =)
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