## KINETICS ANALYSIS OF B-FRUCTOFURANOSIDASE ENZYME

# 2-The effects of PH value on the rate of a reaction catalyzed by B- fructofuranosidase.

- Enzymes are affected by changes in pH. The most favorable pH value - the point where the enzyme is most active is known as the optimum pH.
- Extremely high or low pH values generally result in complete loss of activity for most enzymes. pH is also a factor in the stability of enzymes. As with activity, for each enzyme there is also a region of pH optimal stability.



## Optimum pH:is the pH at which the rate of reaction is maximum.

- At higher or lower pH, the rate of an enzymatic reaction decrease.
- For most enzymes, the optimum pH lies in the range from pH 5 to pH 9

The bell shape of pH curve is resulted from the following factors:

- •Enzyme denaturation at extremely high or low pH
- •Effects on the charged state of the substrate or enzyme.





For the majority of enzymes, the relationship between the rate of an enzymatic reaction and pH takes form of a **bell-shape**.



a)To establish the relationship between pH and the rate of an enzyme catalyzed reaction.

b) To determine the optimum pH for  $\beta$ -Fructofuranosidase enzyme.

## Principle

Within acidic environment using acetate buffer (PH= 4.7) β-fructofuranosidase enzyme cleavage its substrate (Sucrose) non reducing sugar to mixture of reducing sugar glucose and fructose, using 3,5,dinitrocylislic acid.



## **Material**

#### Solutions :-

- $\square$  0.05M Sodium Acetate buffer , pH 4.7 .
- □ 0.18 M Sucrose ,
- Reducing sugar (0.005M glucose + 0.005M fructose)
- Beta Fructofuranosidase (Invertase ) enzyme extract from yeast.
- DNS (dinitrosalicylicacid )Reagent .
- Sodium Bicarbonate .

### Method:

1- Prepare 6 tubes of different by following the table provided. (1):

| Tube    | Buffer 1.0 (ml) | Sucrose (ml) |
|---------|-----------------|--------------|
| Α       | pH 3.0          | 2.0          |
| Blank A | pH 3.0          | 2.0          |
| В       | pH 4.7          | 2.0          |
| Blank B | pH 4.7          | 2.0          |
| С       | pH 7.0          | 2.0          |
| Blank C | pH 7.0          | 2.0          |
| D       | pH 8.0          | 2.0          |
| Blank D | pH 8.0          | 2.0          |
| E       | pH 12.0         | 2.0          |
| Blank E | pH12.0          | 2.0          |

- $\square$  2- Mix each tube properly then incubate all tubes at 40°C for 5min.
- 3- Start the reaction by adding 0.05ml of diluted enzyme to all test tubes tubes except for the blanks add 0.05ml of distilled water instead , mix and start the stop clock immediately , incubate each tube for 10min , then stop the reaction by adding 2.0ml of the DNS reagent to each tube and mix well .(follow table 2 for adding enzyme and DNS to tubes).
- □ Note : Mix each tube frequently during the incubation time .



| Tube    | Start Time (min) | Stop by adding 2.0ml DNS . (min) |
|---------|------------------|----------------------------------|
| Blank A | 0                | 10                               |
| Blank B | 1.0              | 11                               |
| Blank C | 2.0              | 12                               |
| Blank D | 3.0              | 13                               |
| Blank E | 4.0              | 14                               |
| A       | 5.0              | 15                               |
| В       | 6.0              | 16                               |
| С       | 7.0              | 17                               |
| D       | 8.0              | 18                               |
| E       | 9.0              | 19                               |

Table(2)

### Method:

- □ 4- Mix properly , cover each tube by aluminum foil and place in a boiling water bath for 5min to allow the color to develop .
- □ 5- Remove from water bath cool under tap water , add 20ml of distilled water to each tube , mix properly then measure the absorbance at 540nm .
- $\square$  6- Record the absorbance of each test tube in the following table ( 3),
- 7- Convert the Absorbance reading obtained to micromoles of sucrose hydrolyzed making use of the standard reducing sugars calibration curve, determine the initial velocity v<sub>i</sub> for each tube and record all in table 3 .
- 8- Obtain the relationship between the initial velocity v<sub>i</sub> and pH , by drawing a graph between the initial velocity v<sub>i</sub> and pH. Determine the optimum pH for your enzymatic reaction reaction.

## Result

## Plot velocity against PH value. Describe the shape of this curve and discuss the reasons for its shape.

| Tube | Absorbance 540nm | µmoles of sucrose<br>hydrolyzed | µmoles of sucrose<br>hydrolyzed/min(vi) |
|------|------------------|---------------------------------|-----------------------------------------|
| Α    |                  |                                 |                                         |
| В    |                  |                                 |                                         |
| С    |                  |                                 |                                         |
| D    |                  |                                 |                                         |
| E    |                  |                                 |                                         |



Comment on the curve shape and conclude the relationship between PH value and the rate of an enzyme catalyzed reaction.

