
Database RecoveryDatabase RecoveryDatabase RecoveryDatabase Recovery

Dr. Bassam Hammo

1

Transaction Concept

� A transaction is a unit of execution

� Either committed or aborted.

� After a transaction, the db must be consistent.
� Consistent – No violation of any constraint.

For example, if a transaction is supposed to raise the salaries of all

2

For example, if a transaction is supposed to raise the salaries of all
employees,

then the database should guarantee that when the transaction
finishes, all salaries should have been raised correctly.

Transaction State

3

ACID Properties

Each transaction should have:
� Atomicity. Either committed or aborted.
� Consistency. No violation of any constraint.
� Isolation. Concurrent transactions are not aware of

each other.

4

each other.
� Each would think it was the only running transaction

� Durability. If the transaction is committed, its changes
to the db are permanent.
� Even if there is a system failure.

Example of Fund Transfer

� Transfer $50 from account A to B:
1. read(A)
2. A = A – 50
3. write(A)
4. read(B)
5. B = B + 50

5

5. B = B + 50
6. write(B)

� Consistency –Assume there is a user constraint that A + B
should remain the same. Then the database should ensure this.

� Atomicity – If any step fails, then no change should be made to
the database.

Example of Fund Transfer (Cont.)

1. read(A)

2. A = A – 50

3. write(A)

4. read(B)

5. B = B + 50

6

5. B = B + 50

6. write(B)

� Durability – once the transaction is complete, the money
transfer is permanent.

� Isolation – Assume after step 3, another transaction also needs to
access A, B. Neither transaction should affect the other.

Recovery Algorithms

� Recovery algorithms are techniques to ensure database
consistency, transaction atomicity, and durability despite failures.

� Recovery algorithms have two parts

1. Actions taken during normal transaction processing to ensure

7

1. Actions taken during normal transaction processing to ensure
enough information exists to recover from failures

2. Actions taken after a failure to recover the database contents
to a state that ensures atomicity, consistency and durability

Recovery and Atomicity

� Modifying the database without ensuring that the transaction will
commit may leave the database in an inconsistent state.

� Consider transaction Ti that transfers $50 from account A to
account B; our goal is either to

� perform all database modifications made by Ti , or

8

perform all database modifications made by Ti , or

� none at all.

� Operations in the transaction

� Deduct from A

� Add into B

� Either one may fail.

Recovery and Atomicity (Cont.)

� We will introduce two recovery methods:
� log-based recovery

� shadow-paging

� We first assume that transactions run serially, that is, one

9

� We first assume that transactions run serially, that is, one
after the other.

� And then address recovery for concurrent transactions.

Log-Based Recovery

� A log is kept on stable storage.
� Contains a sequence of log records, described as follows.

� When transaction Ti starts, it registers itself by writing a

<Ti start> log record

10

� BeforeTi executes write(X), a log record <Ti, X, V1 , V2> is
written,
� V1 is the value of X before the write
� V2 is the value to be written to X.

� When Ti finishes its last statement, the log record <Ti commit>
is written.
� Partial commit

Methods of Modifying the Database

� We assume all the log records are written immediately
to the disk.

� But as for modifying the database contents, we have:

� Deferred modification.

11

Deferred modification.
� The database simply records all modifications to the log, but

defers all the writes to the disk after partial commit.

� Immediate modification.
� Change the content of the disk immediately (before partial

commit).

Deferred Database Modification

� Transaction starts by writing <Ti start> record to log.

� A write(X) operation results in a log record <Ti , X, V>, where V
is the new value for X.

� Note: old value is not needed for this scheme

� The write is not performed on X at this time, but is deferred.

12

� The write is not performed on X at this time, but is deferred.

� When Ti partially commits, <Ti commit> is written to the log

� Finally, the log records are read and used to actually execute the
previously deferred writes.

Example

T0 : T1 :

read (A) read (C)

A= A – 50 C=C- 100

write (A) write (C)

read (B)

13

read (B)

B= B + 50

write (B)

Example With Crashes

T0 : T1 :

read (A) read (C)

A= A – 50 C=C- 100

write (A) write (C)

read (B)

14

read (B)

B= B + 50

write (B)

� Consider the following logs

In (a), for example, there is a crash before T0 finishes.

Deferred Database Modification

� During the recovery from a crash, a transaction is re-executed if
� both <Ti start> and<Ti commit> are present in the log.

� Redoing a transaction Ti sets the value of all data items
according to the log records.

15

� What if there is a crash during the redoing?
� Say crashes in executing <T0, B, 2050> for (c)?

Deferred Database Modification

� It doesn’t matter.
� During recovery from this crash, re-do again.
� Logs are idempotent.
� That is, even if the operation is executed multiple times the effect

is the same as if it is executed once

16

Immediate Modification – Example

Log Update the variable

<T0 start>

<T0, A, 1000, 950>
<To, B, 2000, 2050>

A = 950
B = 2050

17

B = 2050
<T0 commit>

<T1 start>
<T1, C, 700, 600>

C = 600

<T1 commit>

� Update log record must be written before database
item is written.

Immediate Database Modification

� Recovery procedure has two operations instead of
one:

� undo(Ti)
� sets the items updated by Ti to their old values,

� going backwards from the last log record for Ti

� redo(Ti)

18

� redo(Ti)
� sets the items updated by Ti to the new values,

� going forward from the first log record for Ti

� Both operations must be idempotent

Immediate Database Modification

� When recovering after failure:

� Transaction Ti needs to be undone if the log contains
<Ti start>, but not <Ti commit>.

� Transaction Ti needs to be redone if the log contains
both <Ti start> and <Ti commit>.

19

both <Ti start> and <Ti commit>.

� Undo operations are performed first, then redo operations.

Example with Crashes

20

(a) undo (T0): B is restored to 2000 and A to 1000.

(b) undo (T1) and redo (T0): C is restored to 700, and then A and B
are

set to 950 and 2050 respectively.
(c) redo (T0) and redo (T1): A and B are set to 950 and 2050

respectively. Then C is set to 600

Checkpoints

� In the previous slides, when there are multiple
transactions to be executed, we first obtain the logs
of all of them, before physically executing the log
records.

� Problems:

� A very long log list.

21

� A very long log list.
� Searching inside the log is time-consuming (e.g., for

start/commit records)

� We might unnecessarily redo transactions
multiple times.
� If a crash happens during redoing.

� Solution: checkpoints

Example

<T1 start>

<T1, A, 0, 10>

<T1 commit>

<T2 start>

<T2, B, 0, 10>

<checkpoint > physically execute the above records

<T2, C, 0, 10>

22

<T2, C, 0, 10>

<T2 commit>

<T3 start>

<T3, A, 10, 20>

<T3, D, 0, 10>

<T3 commit>

<T4 start>

<T4, A, 20, 30>

failure

Example of Checkpoints

Tc
Tf

T1

T2

T3

T4

23

� T1 can be ignored (updates already output to disk due to

checkpoint)

� T2 and T3 redone.

� But for T2, redo only the part after the checkpoint.

� T4 undone

checkpoint system failure

Checkpoints

� At each checkpoint, physically execute the log

records before it.

� During recovery we need to consider only

24

� During recovery we need to consider only

� the most recent transaction that started before the

checkpoint

� E.g., T2 on the previous slide

� all transactions that started after.

� E.g., T3, T4

Data Access

� Physical blocks are those blocks residing on the
disk.

� Buffer blocks are the blocks residing temporarily in
main memory.

� Each transaction T has its “private work-area”

25

� Each transaction Ti has its “private work-area”

� in which local copies of all data items accessed and
updated by it are kept.

� Ti 's local copy of a data item X is called xi.

Data Access (Cont.)

x

Y A

B

buffer

Buffer Block A

Buffer Block B

input(A)

output(B)
read(X)

write(Y)

26

x1

y1

disk

work area
of T1

work area
of T2

memory

x2

Data Access (Cont.)

� Two levels of data access

� buffer blocks �� disk blocks

� transaction work area �� buffer blocks

� buffer blocks �� disk blocks

27

� buffer blocks �� disk blocks

� input(B) transfers the physical block B to main

memory.

� output(B) transfers the buffer block B to the disk,

and replaces the appropriate physical block there.

Data Access (Cont.)

� transaction work area �� buffer blocks

� read(X): brings the value of buffered item X to the

local variable xi.

� write(X): assigns the value of local variable xi to

buffered item X.

28

