Database Recovery

Dr. Bassam Hammo

Transaction Concept

® A transaction is a unit of execution

® Fither committed or aborted.

® After a transaction, the db must be consistent.
® Consistent — No violation of any constraint.

For example, if a transaction is supposed to raise the salaries of all

employees,

then the database should guarantee that when the transaction

finishes, all salaries should have been raised correctly.

Transaction State

partially
committed

aborted

ACID Properties

Each transaction should have:
° Atomicity. Either committed or aborted.
° Consistency. No violation of any constraint.

e [solation. Concurrent transactions are not aware of
each other.

® Each would think it was the only running transaction

® Durability. If the transaction is committed, its changes
to the db are permanent.

® Even if there is a system failure.

Example of Fund Transfer

® Transfer $50 from account 4 to B:

1. read(4)

2. A=A-50
3. write(A)
4. read(B)

5. B=B+50
6. write(B)

° Consistency — Assume there is a user constraint that A + B
should remain the same. Then the database should ensure this.

* Atomicity — If any step fails, then no change should be made to
the database.

Example of Fund Transfer (Cont.)

1. read(A)

2. A=A-50
3. write(A)
4. read(B)

5 B=B+ 50
6. write(B)

® Durability — once the transaction is complete, the money

transfer is permanent.

* Isolation —Assume after step 3, another transaction also needs to
access A, B. Neither transaction should affect the other.

Recovery Algorithms

* Recovery algorithms are techniques to ensure database

consistency, transaction atomicity, and durability despite failures.

* Recovery algorithms have two parts

1. Actions taken during normal transaction processing to ensure

enough information exists to recover from failures

2. Actions taken after a failure to recover the database contents

to a state that ensures atomicity, consistency and durability

Recovery and Atomicity

° Modifying the database without ensuring that the transaction will

commit may leave the database in an inconsistent state.

® Consider transaction T, that transters $50 from account 4 to

account B; our goal is either to
® perform all database modifications made by T,, or
® none at all.
® Operations in the transaction
® Deduct from A
¢ Add into B

® Either one may fail.

Recovery and Atomicity (Cont.)

® We will introduce two recovery methods:

° log-based recovery

° shadow—paging

® We first assume that transactions run serially, that is, one
after the other.

® And then address recovery for concurrent transactions.

10

Log-Based Recovery

o A log is kept on stable storage.

® Contains a sequence of log records, described as follows.

® When transaction T, starts, it registers itself by writing a

<T. start> log record

® Before T, executes write(X), a log record <T, X,V,,V,> is
written,
® V, is the value of X before the write

® V,is the value to be written to X.

® When T, finishes its last statement, the log record <T, commit>
1s written.

® Partial commit

11

Methods of Modifying the Database

® We assume all the log records are written immediately

to the disk.

® But as for moditying the database contents, we have:

® Deferred modification.

® The database simply records all modifications to the log, but
defers all the writes to the disk after partial commit.

® [mmediate modification.

® Change the content of the disk immediately (before partial
commit).

12

Deferred Database Modification

Transaction starts by writing <T, start> record to log.

A write(X) operation results in a log record <T,, X,I’>, where V

is the new value for X.
® Note: old value is not needed for this scheme

® The write is not performed on X at this time, but is deferred.
When T; partially commits, <T, commit> is written to the log

Finally, the log records are read and used to actually execute the

previously deferred writes.

13

Example

read (A)
A=A - 50
write (A)
read (B)
B= B+ 50
write (B)

read (C)
C=C- 100
write (C)

<Ty start>
<Tg, A, 950>
<Th, B, 2050
<Tp commit>
<T,; start>
<7y, C, 600>
<T7 commit=

14

Example With Crashes

T,: T, :
read (4) read (C)
A=A—-50 C=C- 100
write (A) write (C)
d (B
read (8) <T, start> <T, start> <T, start>
B= B+ 50 <Ty, A, 950> <T,, A, 950> <T,, A, 950>
. <T,, B, 2050> <T,, B, 2050> <T,, B, 2050>
write (B) <T, commit> <T, commit>

<T, start>
<T,, C, 600>

(b)

O Consider the following logs
In (a), for example, there is a crash before TO finishes.

<T, start>
<T;, C, 600>
<T; commit>

(c)

15

Deferred Database Modification

e During the recovery from a crash, a transaction is re-executed if
e both <7, start> and< 7commit> are present in the log.

e Redoing a transaction 7;sets the value of all data items
according to the log records.

<T, start> <T, start> <T, start>

<T,, A, 950> <Ty, A, 950> <T,, A, 950>

<T,, B, 2050> <T,, B, 2050> <T,, B, 2050>
<T, commit> <T, commit>

<T; start> <T; start>
<Ty, C, 600> <T;, C, 600>
<T, commit>

(b) ()

e What if there is a crash during the redoing?
e Say crashes in executing <TO0, B, 2050> for (c)?

16

Deferred Database Modification

® [t doesn’t matter.
® During recovery from this crash, re-do again.
® Logs are idempotent.

® That is, even if the operation is executed multiple times the effect

is the same as if it is executed once

<T, start> <T, start> <T, start>

<Ty, A, 950> <Ty, A, 950> <Ty, A, 950>

<T,, B, 2050> <T,, B, 2050> <T,, B, 2050>
<T, commit> <T, commit>

<T1 start> <T1 start>
<T,, C, 600> <T,, C, 600>
<T; commit>

(b) ()

Immediate Modification - Example

Log Update the variable

< /, start>
< /7y, A, 1000, 950>
<7, B, 2000, 2050>

A= 950
5£=2050
< /; commit>
< /; start>
<7/}, C, 700, 600>
C'=600

< /; commit>

e Update log record must be written before database
item is written.

18

Immediate Database Modification

e Recovery procedure has two operations instead of
one:

e undo(/)

e sets the items updated by /,to their old values,
e going backwards from the last log record for 7,

e redo(/)

e sets the items updated by /;to the new values,
e going forward from the first log record for 7;

e Both operations must be idempotent

19

Immediate Database Modification

e When recovering after failure:

e Transaction /;needs to be undone if the log contains
</;start >, but not </,commit.>.

e Transaction /;needs to be redone if the log contains
both </ start>and </.commit..

e Undo operations are performed first, then redo operations.

20

Example with Crashes

<T, start> <T, start> <T, start>

<T,, A, 1000, 950> <T,, A, 1000, 950> <T,, A, 1000, 950>

<Ty, B, 2000, 2050> <T,, B, 2000, 2050> <T,, B, 2000, 2050>
<TU commit> <T{} commit>

<T, start> <T, start>
<T;, C, 700, 600> <T,, C, 700, 600>
<T; commit>

(b) (c)

(a) undo (/): B is restored to 2000 and A to 1000.

(b) undo (7;) and redo (/): C is restored to 700, and then Aand Z
are
set to 950 and 2050 respectively.

(c) redo (/) and redo (/;): A and B are set to 950 and 2050
respectively. Then C'is set to 600

21

Checkpoints

e In the previous slides, when there are multiple
transactions to be executed, we first obtain the logs
of all of them, before physically executing the log
records.

e Problems:

e Averylong log list.

e Searching inside the log is time-consuming (e.g., for
start/commit records)

e We might unnecessarily redo transactions
multiple times.
e If a crash happens during redoing.

e Solution: checkpoints

22

Example

< /; start>

<71, A0,10>
< /; commit>
< 7, start>

</, £0,10>
<checkpoint > physically execute the above records
</, ¢ 0,10>
</, commit>
< /3 start>

< /3, A 10, 20>
<73, £ 0,10>
< /3 commit>
< 7, start>

<7, A 20, 30>
failure

23

Example of Checkpoints

T, T;
T
| T2 |
| 1 T3
7-4
|7
checkpoint system failure
e /, can be ignored (updates already output to disk due to
checkpoint)

e /,and /;redone.
e But for T2, redo only the part after the checkpoint.

e /,undone

24

Checkpoints

e At each checkpoint, physically execute the log
records before it.

e During recovery we need to consider only
e the most recent transaction that started before the
checkpoint
e E.g., T2 on the previous slide

e all transactions that started after.
e Eg. T3 T4

25

Data Access

e Physical blocks are those blocks residing on the
disk.

e Buffer blocks are the blocks residing temporarily in
main memory.

e Each transaction /;has its “private work-area”

e in which local copies of all data items accessed and
updated by it are kepit.

e /'s local copy of a data item Xis called x;

26

Data Access (Cont.)

buffer
Buffer Block A —— X 4 iInput(A)
\
Buffer Block B- ——#| Y\|-
[\
read(X) |
rite(Y)
I Tx
X1 /
Y1
work area work area
of T, of T,

memory

disk

27

Data Access (Cont.)

e Two levels of data access
e buffer blocks €= disk blocks
e fransaction work area €= buffer blocks

e buffer blocks €= disk blocks

e input(5 transfers the physical block £ to main
memory.

o output(5 transfers the buffer block Zto the disk,
and replaces the appropriate physical block there.

28

Data Access (Cont.)

e transaction work area €=> buffer blocks

e read(AJ: brings the value of buffered item Xto the
local variable x;

e write(A}: assigns the value of local variable x;to
buffered item .

