
1

Bassam Hammo

Transactions & Concurrency Transactions & Concurrency Transactions & Concurrency Transactions & Concurrency

ControlControlControlControl

Transactions

� A transaction is an action, or a series of actions, carried out by a
single user or an application program, which reads or updates
the contents of a database.

2

Transactions

� A transaction is a ‘logical unit
of work’ on a database
� Each transaction does something

in the database

� No part of it alone achieves
anything of use or interest

� Transactions are the unit of
recovery, consistency, and
integrity as well

� ACID properties
� Atomicity

� Consistency

� Isolation

� Durability

Atomicity and Consistency

� Atomicity
� Transactions are atomic – they

don’t have parts (conceptually)

� can’t be executed partially; it
should not be detectable that
they interleave with another
transaction

� Consistency
� Transactions take the database

from one consistent state into
another

� In the middle of a transaction
the database might not be
consistent

3

Atomicity

ConsistencyConsistencyConsistencyConsistency

Consistent Database Consistent Database

Ti

4

Isolation and Durability

� Isolation
� The effects of a transaction are

not visible to other transactions
until it has completed

� From outside the transaction has
either happened or not

� To me this actually sounds like a
consequence of atomicity…

� Durability
� Once a transaction has

completed, its changes are made
permanent

� Even if the system crashes, the
effects of a transaction must
remain in place

Isolation

5

Global Recovery

Example of a transaction

� Transfer 50 JD from account A to
account B
Read(A)

A = A - 50

Write(A)

Read(B)

B = B+50

Write(B)

Atomicity - shouldn’t take money
from A without giving it to B

Consistency - money isn’t lost or
gained

Isolation - other queries shouldn’t see
A or B change until completion

Durability - the money does not go
back to A

transaction

6

The Transaction Manager

� The transaction manager
enforces the ACID properties
� It schedules the operations of

transactions

� COMMIT and ROLLBACK are
used to ensure atomicity

� Locks or timestamps are used to
ensure consistency and isolation
for concurrent transactions
(next lectures)

� A log is kept to ensure durability
in the event of system failure
(discussed)

Concurrency

� Large databases are used by
many people
� Many transactions to be run on the

database

� It is desirable to let them run at the
same time as each other

� Need to preserve isolation

� If we don’t allow for
concurrency then
transactions are run
sequentially
� Have a queue of transactions

� Long transactions (e.g. backups)
will make others wait for long
periods

7

Concurrency Problems

� In order to run transactions
concurrently we interleave
their operations

� Each transaction gets a share
of the computing time

� This leads to several sorts of
problems
� Lost updates

� Uncommitted updates

� Incorrect analysis

� All arise because isolation is
broken

Lost Update

� T1 and T2 read X, both
modify it, then both write it
out
� The net effect of T1 and T2

should be no change on X

� Only T2’s change is seen,
however, so the final value of X
has increased by 5

T1 T2

Read(X)

X = X - 5

Read(X)

X = X + 5

Write(X)

Write(X)

COMMIT

COMMIT

8

Uncommitted Update

� T2 sees the change to X made
by T1, but T1 is rolled back
� The change made by T1 is

undone on rollback

� It should be as if that change
never happened

T1 T2

Read(X)

X = X - 5

Write(X)

Read(X)

X = X + 5

Write(X)

ROLLBACK

COMMIT

Inconsistent analysis

� T1 doesn’t change the sum of
X and Y, but T2 sees a change
� T1 consists of two parts – take 5

from X and then add 5 to Y

� T2 sees the effect of the first,
but not the second

T1 T2

Read(X)

X = X - 5

Write(X)

Read(X)

Read(Y)

Sum = X+Y

Read(Y)

Y = Y + 5

Write(Y)

9

Need for concurrency control

� Transactions running concurrently may interfere with each
other, causing various problems (lost updates etc.)

� Concurrency control: the process of managing simultaneous
operations on the database without having them interfere with
each other.

Schedules

� A schedule is a sequence of the operations by a set of concurrent
transactions that preserves the order of operations in each of
the individual transactions

� A serial schedule is a schedule where operations of each
transaction are executed consecutively without any interleaved
operations from other transactions (each transaction commits
before the next one is allowed to begin)

10

The Scheduler

� The scheduler component of a DBMS must ensure that the individual
steps of different transactions preserve consistency.

Serial schedules

� Serial schedules are guaranteed to avoid interference and keep
the database consistent

� However databases need concurrent access which means
interleaving operations from different transactions

11

Serializability

� The objective of serializability is to find nonserial schedules that
allow transactions to execute concurrently without interfering
with one another.

� In other words, we want to find nonserial schedules that are
equivalent to some serial schedule. Such a schedule is called
serializable.

Uses of Serializability

� being serializable means
� the schedule is equivalent to some serial schedule
� Serial schedules are correct
� Therefore, serializable schedules are also correct schedules

� serializability is hard to test
� Use precedence graph (PG)

� Need the methods (or protocols) to enforce serializabilty
� Two phase locking(2PL)
� Time stamp ordering (TSO)

12

Conflict Serialisability

� Conflict serialisable schedules
are the main focus of
concurrency control

� They allow for interleaving
and at the same time they are
guaranteed to behave as a
serial schedule

� Important questions: how to
determine whether a
schedule is conflict
serialisable

� How to construct conflict
serialisable schedules

Conflicting Operations

No. Case Conflict Non-Conf

1 IIii & I& Ijj operate on different data operate on different data
itemsitems

X

2 IIii = = Read(Q)Read(Q) & I& Ijj = Read (Q)= Read (Q) X
3 IIii = = Read(Q)Read(Q) & I& Ijj = = Write (Q)Write (Q) X
4 IIii = = Write(Q)Write(Q) & I& Ijj = = Write (Q)Write (Q) X
5 IIii = = Write(Q)Write(Q) & I& Ijj = = Read (Q)Read (Q) X

The only conflicting operation is the Write operation

13

Precedence Graph (PG)

� Precedence graph
� Used to test for conflict serializability of a schedule

� A directed graph G=(V,E)
� V: a finite set of transactions

� E: a set of arcs from Ti to Tj if an action of Ti comes first and conflicts
with one of Tj’s actions

More on PG

� The serialization order is obtained through topological
sorting

� A schedule S is conflict serializable iff there is no cycle in the
precedence graph (acyclic)

14

Serialization Graph

� Consider the schedule S:

Time T1 T2

t1 Write(X)

t2 Read(Y)

t3 Read(Y)

t4 Read(X)

Thus, it is conflict equivalent to T1,T2

T1 T2

The precedence graph is

Serialization Graph
� Consider the schedule:

Time T1 T2 T3

t1 Read (X)

t2 Write (Y)

t3 Write (X)

t4 Read (X)

t5 Read (Y)

T1 T2

T3
There is a cycle.
Hence it is NOT conflict serializable

The precedence graph is

15

Serialization Graph
� Consider the schedule:

Time T1 T2

t1 read(balx)

t2 read(balx)

t3 write(balx)

t4 read(baly)

t5 write(baly)

t6 read(baly)

t7 write(baly)

T1 T2

There is a cycle.
Hence it is NOT conflict serializable

The precedence graph is

Serialization Graph

� Consider the following PG:

T1 T2

T3

16

Serialization Graph

� Consider the following PG:

T1 T2

T3

Cycle T1 ���� T2 ���� T1

Cycle T1 ���� T2 ���� T3 ���� T1

Concurrency Control Techniques

� How can the DBMS ensure serializability?

� Two basic concurrency control techniques:
� Locking methods

� Timestamping

17

Locking

� Transaction uses locks to deny access to other transactions
and so prevent incorrect updates.

� Generally, a transaction must claim a

� read (shared), or

�write (exclusive)
lock on a data item before read or write.

� Lock prevents another transaction from modifying item or
even reading it, in the case of a write lock.

Locking

Lock Table

Serializable Schedule

18

Two-Phase Locking Protocol

� Each transaction issues lock and unlock requests in 2 phases:

�Growing phase

�A transaction may obtain locks, but may not
release any lock

�Shrinking phase

� A transaction may release locks, but may not
obtain any new locks

2 PL Protocol
� Basics of locking:

� Each transaction T must obtain a S (shared) lock on object before reading,
and an X (exclusive) lock on object before writing.

� If an X lock is granted on object O, no other lock (X or S) might be
granted on O at the same time.

� If an S lock is granted on object O, no X lock might be granted on O at the
same time.

� Conflicting locks are expressed by the compatibility matrix:

S X

S √ ----

X ---- ----

19

Basics of Locking

� A transaction does not request the same lock twice.

� A transaction does not need to request a S lock on an object for
which it already holds an X lock.

� If a transaction has an S lock and needs an X lock it must wait until
all other S locks (except its own) are released

� After a transaction has released one of its lock (unlock) it may not
request any further locks (2PL: growing phase / shrinking phase)

� Using strict two-phase locking (strict 2PL) a transactions releases
all its lock at the end of its execution.

(strict) 2PL allows only serializable schedules.

Preventing Lost Update Problem Using 2PL

Time T1 T2

t1 start

t2 start lock-X(balx)

t3 lock-X(balx) read(balx)

t4 wait balx=balx + 100

t5 wait write(balx)

t6 wait commit/unlock(balx)

t7 read(balx)

t8 balx=balx -10

t9 write(balx)

t10 commit/unlock(balx)

20

Preventing Uncommitted Dependency Problem using 2PL

Time T1 T2

t1 start

t2 lock-X(balx)

t3 read(balx)

t4 start balx=balx + 100

t5 lock-X(balx) write(balx)

t6 wait rollback/unlock(balx)

t7 read(balx)

t8 balx=balx -10

t9 write(balx)

t10 commit/unlock(balx)

Preventing Inconsistent Analysis Problem using 2PL

Time T1 T2

t1 start

t2 start sum=0

t3 lock-X(balx)

t4 read(balx) lock-S(balx)

t5 balx=balx -10 wait

t6 write (balx) wait

t7 lock-X(balz) wait

t8 read(balz) wait

t9 balz=balz+10 wait

t10 write(balz) wait

t11 commit/unlock(balx,balz) wait

t12 read(balx)

t13 sum=sum+balx

t14 lock-S(baly)

t15 read(baly)

t16 sum=sum+baly

t17 lock-S(balz)

t18 read (balz)

t19 sum=sum+balz

t20 commit/unlock(balx,baly,balz)

21

Locking methods: problems

� Deadlock:May result when two (or more) transactions are
each waiting for locks held by the other to be released.

Deadlock

consider the following partial schedule:

Time T1 T2

t1 lock-S(A)

t2 lock-S(B)

t3 read(B)

t4 read(A)

t5 lock-X(B)

t6 lock-X(A)

The transactions are now deadlocked

22

Deadlock Example

Time T1 T2

t1 start

t2 lock-X(balx) start

t3 read(balx) lock-X(baly)

t4 balx=balx -10 read(baly)

t5 write (balx) baly=baly + 100

t6 lock-X(baly) write (baly)

t7 wait lock-X(balx)

t8 wait wait

t9 wait wait

t10

Deadlock Detection

� Given a schedule, we can detect deadlocks which will
happen in this schedule using a wait-for graph (WFG).

23

Precedence/Wait-For Graphs

� Precedence graph
� Each transaction is a vertex
� Arcs from T1 to T2 if

� T1 reads X before T2 writes X
� T1 writes X before T2 reads X
� T1 writes X before T2 writes X

� Wait-for Graph
� Each transaction is a vertex
� Arcs from T2 to T1 if

� T1 read-locks X then T2 tries to
write-lock it

� T1 write-locks X then T2 tries to
read-lock it

� T1 write-locks X then T2 tries to
write-lock it

Example

T1 Read(X)

T2 Read(Y)

T1 Write(X)

T2 Read(X)

T3 Read(Z)

T3 Write(Z)

T1 Read(Y)

T3 Read(X)

T1 Write(Y)

T1

T2 T3

Wait for graph

T1

T2 T3

Precedence graph

24

Example

T1 Read(X)

T2 Read(Y)

T1 Write(X)

T2 Read(X)

T3 Read(Z)

T3 Write(Z)

T1 Read(Y)

T3 Read(X)

T1 Write(Y)

T1

T2 T3

Wait for graph

T1

T2 T3

Precedence graph

Example

T1 Read(X)

T2 Read(Y)

T1 Write(X)

T2 Read(X)

T3 Read(Z)

T3 Write(Z)

T1 Read(Y)

T3 Read(X)

T1 Write(Y)

T1

T2 T3

Wait for graph

T1

T2 T3

Precedence graph

25

Example

T1 Read(X)

T2 Read(Y)

T1 Write(X)

T2 Read(X)

T3 Read(Z)

T3 Write(Z)

T1 Read(Y)

T3 Read(X)

T1 Write(Y)

T1

T2 T3

Wait for graph

T1

T2 T3

Precedence graph

Example

T1 Read(X) S-lock(X)

T2 Read(Y) S-lock(Y)

T1 Write(X) X-lock(X)

T2 Read(X) tries S-lock(X)

T3 Read(Z)

T3 Write(Z)

T1 Read(Y)

T3 Read(X)

T1 Write(Y)

T1

T2 T3

Wait for graph

T1

T2 T3

Precedence graph

26

Example

T1 Read(X) S-lock(X)

T2 Read(Y) S-lock(Y)

T1 Write(X) X-lock(X)

T2 Read(X) tries S-lock(X)

T3 Read(Z) S-lock(Z)

T3 Write(Z) X-lock(Z)

T1 Read(Y) S-lock(Y)

T3 Read(X) tries S-lock(X)

T1 Write(Y)

T1

T2 T3

Wait for graph

T1

T2 T3

Precedence graph

Example

T1 Read(X) S-lock(X)

T2 Read(Y) S-lock(Y)

T1 Write(X) X-lock(X)

T2 Read(X) tries S-lock(X)

T3 Read(Z) S-lock(Z)

T3 Write(Z) X-lock(Z)

T1 Read(Y) S-lock(Y)

T3 Read(X) tries S-lock(X)

T1 Write(Y) tries X-lock(Y)

T1

T2 T3

Wait for graph

T1

T2 T3

Precedence graph

27

Solution

� Only one way to break deadlock: abort one or more of the
transactions.

� Deadlock should be transparent to user, so DBMS should
restart transaction(s).

Deadlock Prevention

� Deadlocks can arise with 2PL
� Deadlock is less of a problem

than an inconsistent DB

� We can detect and recover from
deadlock

� It would be nice to avoid it
altogether

� Conservative 2PL
� All locks must be acquired

before the transaction starts

� Hard to predict what locks are
needed

� Low ‘lock utilisation’ -
transactions can hold on to locks
for a long time, but not use
them much

28

Deadlock Prevention

� We impose an ordering on
the resources
� Transactions must acquire locks

in this order

� Transactions can be ordered on
the last resource they locked

� This prevents deadlock
� If T1 is waiting for a resource

from T2 then that resource must
come after all of T1’s current
locks

� All the arcs in the wait-for graph
point ‘forwards’ - no cycles

Example of resource ordering

� Suppose resource order is: X < Y

� This means, if you need locks on X
and Y, you first acquire a lock on X
and only after that a lock on Y
� (even if you want to write to Y

before doing anything to X)

� It is impossible to end up in a
situation when T1 is waiting for a
lock on X held by T2, and T2 is
waiting for a lock on Y held by T1.

29

Timestamp

� Transactions can be run
concurrently using a variety
of techniques

� We looked at using locks to
prevent interference

� An alternative is timestamping
� Requires less overhead in terms of

tracking locks or detecting
deadlock

� Determines the order of
transactions before they are
executed

Timestamp

� Each transaction has a
timestamp, TS, and if T1
starts before T2 then TS(T1)
< TS(T2)
� Can use the system clock or an

incrementing counter to
generate timestamps

� Each resource has two
timestamps
� R(X), the largest timestamp of

any transaction that has read X

� W(X), the largest timestamp of
any transaction that has written
X

30

Timestamp Protocol

� If T tries to read X
� If TS(T) < W(X) T is rolled back

and restarted with a later
timestamp

� If TS(T) ≥W(X) then the read
succeeds and we set R(X) to be
max(R(X), TS(T))

� T tries to write X
� If TS(T) < W(X) or TS(T) <

R(X) then T is rolled back and
restarted with a later timestamp

� Otherwise the write succeeds
and we set W(X) to TS(T)

Timestamp Example 1

� Given T1 and T2 we will
assume
� The transactions make
alternate operations

� Timestamps are allocated
from a counter starting at 1

� T1 goes first

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

31

Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

YX

R

W

Z

T2T1

TS

Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

1

YX

R

W

Z

1

T2T1

TS

32

Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

2

YX

R

W

Z

1 2

T2T1

TS

Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

2 1

YX

R

W

Z

1 2

T2T1

TS

33

Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

2 2

YX

R

W

Z

1 2

T2T1

TS

Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

2 2

YX

R

W

Z

1 2

T2T1

TS

34

Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

2 2

YX

R

W

Z

1 2

T2T1

TS

Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

2 2

YX

R

W

Z

1 2

T2T1

TS

35

Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

2 2

YX

R

W

Z

3 2

T2T1

TS

Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

2 2

2

YX

R

W

Z

3 2

T2T1

TS

36

Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

3 2

2

YX

R

W

Z

3 2

T2T1

TS

Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

3 3

2

YX

R

W

Z

3 2

T2T1

TS

37

Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

3 3

2

YX

R

W

Z

3 2

T2T1

TS

Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

3 3

23

YX

R

W

Z

3 2

T2T1

TS

38

Timestamp ordering – example 2

� Consider the following concurrent schedule

1. Read(X)
2. X = X * 1.01
3. Write(X)

4. Read(Y)
5. Y = Y * 1.01
6. Write(Y)

1. Read(X)
2. X = X – k
3. Write(X)

4. Read(Y)
5. Y = Y + k
6. Write(Y)

T1 (TS = 10) T2 (TS = 20)

TS(T1) > (WTS(X) = 0), read allowed;

RTS(X) ← 10

RTS(X) :
WTS(X):
RTS(Y) :
WTS(Y):

TS(T1) > WTS(X) = 0;

TS(T1) = RTS(X) = 10; write allowed;
WTS(X) ← 10

0
0
0
0

10
0
0
0

10
10
0
0

TS(T2) > WTS(X) = 10, read allowed;
RTS(X) ← 20

20
10
0
0

TS(T2) > WTS(X) = 10;

TS(T2) = RTS(X) = 20; write allowed;
WTS(X) ← 20

20
20
0
0

TS(T1) > WTS(Y) = 0, read allowed;
RTS(Y) ← 10

20
20
10
0

TS(T1) > WTS(Y) = 0;

TS(T1) = RTS(Y) = 10; write allowed;
WTS(Y) ← 10

20
20
10
10 TS(T2) > WTS(Y) = 10, read allowed;

RTS(Y) ← 20

20
20
20
10

TS(T2) > WTS(Y) = 10;

TS(T2) = RTS(Y) = 20; write allowed;

WTS(Y) ← 20

20
20
20
20

Thomas’ write rule

� Write-write conflict may be acceptable in many cases

� Suppose T1 do a write(X) and then T2 do a write(X) and
there is no transaction accessing X in between

� Then T2 only overwrite a value that is never being used

� In such case, it can be argued that such a write is acceptable

39

Thomas’ write rule

� In timestamp ordering, it is referred as the Thomas write rule:

� If a transaction T issue a write(X):

� If TS(T) < RTS(X) then write is rejected, T has to abort

� Else If TS(T) < WTS(X) then write is ignored

� Else, allow the write, and update WTS(X) accordingly

Timestamp

� The protocol means that
transactions with higher times
take precedence
� Equivalent to running

transactions in order of their
final time values

� Transactions don’t wait - no
deadlock

� Problems
� Long transactions might keep

getting restarted by new
transactions - starvation

� Rolls back old transactions,
which may have done a lot of
work

40

Optimistic concurrency control

� 2PL & TSO are pessimistic protocols
� They assume transactions will have problems

� Most optimistic point-of-view:
� Assume no problem and let transaction execute

� But before commit, do a final check

� Only when a problem is discovered, then one aborts

� Basis for optimistic concurrency control

Optimistic concurrency control

� Each transaction T is divided into 3 phases:
1. Read and execution: T reads from the database and

execute. However, T only writes to temporary location (not
to the database itself)

2. Validation: T checks whether there is conflict with other
transaction, abort if necessary

3. Write : T actually write the values in temporary location to
the database

� Each transaction must follow the same order

