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Transactions

� A transaction is an action, or a series of actions, carried out by a 
single user or an application program, which reads or updates 
the contents of a database.
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Transactions

� A transaction is a ‘logical unit 
of work’ on a database
� Each transaction does something 

in the database

� No part of it alone achieves 
anything of use or interest

� Transactions are the unit of 
recovery, consistency, and 
integrity as well

� ACID properties
� Atomicity

� Consistency

� Isolation

� Durability

Atomicity and Consistency

� Atomicity
� Transactions are atomic – they 

don’t have parts (conceptually)

� can’t be executed partially; it 
should not be detectable that 
they interleave with another 
transaction 

� Consistency
� Transactions take the database 

from one consistent state into 
another

� In the middle of a transaction 
the database might not be 
consistent
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Atomicity

ConsistencyConsistencyConsistencyConsistency

Consistent Database Consistent Database

Ti
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Isolation and Durability

� Isolation
� The effects of a transaction are 

not visible to other transactions 
until it has completed

� From outside the transaction has 
either happened or not

� To me this actually sounds like a 
consequence of atomicity…

� Durability
� Once a transaction has 

completed, its changes are made 
permanent

� Even if the system crashes, the 
effects of a transaction must 
remain in place

Isolation
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Global Recovery

Example of a transaction

� Transfer 50 JD from account A to 
account B
Read(A)

A = A - 50

Write(A)

Read(B)

B = B+50

Write(B)

Atomicity - shouldn’t take money 
from A without giving it to B

Consistency - money isn’t lost or 
gained

Isolation - other queries shouldn’t see 
A or B change until completion

Durability - the money does not go 
back to A

transaction
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The Transaction Manager

� The transaction manager 
enforces the ACID properties
� It schedules the operations of 

transactions

� COMMIT and ROLLBACK are 
used to ensure atomicity

� Locks or timestamps are used to 
ensure consistency and isolation 
for concurrent transactions 
(next lectures)

� A log is kept to ensure durability 
in the event of system failure 
(discussed)

Concurrency

� Large databases are used by 
many people
� Many transactions to be run on the 

database

� It is desirable to let them run at the 
same time as each other

� Need to preserve isolation

� If we don’t allow for 
concurrency then 
transactions are run 
sequentially
� Have  a queue of transactions

� Long transactions (e.g. backups) 
will make others wait for long 
periods
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Concurrency Problems

� In order to run transactions 
concurrently we interleave 
their operations

� Each transaction gets a share 
of the computing time

� This leads to several sorts of 
problems
� Lost updates

� Uncommitted updates

� Incorrect analysis

� All arise because isolation is 
broken

Lost Update

� T1 and T2 read X, both 
modify it, then both write it 
out
� The net effect of T1 and T2 

should be no change on X

� Only T2’s change is seen, 
however, so the final value of X 
has increased by 5

T1 T2

Read(X)

X = X - 5

Read(X)

X = X + 5

Write(X)

Write(X)

COMMIT

COMMIT
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Uncommitted Update

� T2 sees the change to X made 
by T1, but T1 is rolled back 
� The change made by T1 is 

undone on rollback

� It should be as if that change 
never happened

T1 T2

Read(X)

X = X - 5

Write(X)

Read(X)

X = X + 5

Write(X)

ROLLBACK

COMMIT

Inconsistent analysis

� T1 doesn’t change the sum of 
X and Y, but T2 sees a change
� T1 consists of two parts – take 5 

from X and then add 5 to Y

� T2 sees the effect of the first, 
but not the second

T1 T2

Read(X)

X = X - 5

Write(X)

Read(X)

Read(Y)

Sum = X+Y

Read(Y)

Y = Y + 5

Write(Y)
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Need for concurrency control

� Transactions running concurrently may interfere with each 
other, causing various problems (lost updates etc.)

� Concurrency control: the process of managing simultaneous 
operations on the database without having them interfere with 
each other.

Schedules

� A schedule is a sequence of the operations by a set of concurrent 
transactions that preserves the order of operations in each of 
the individual transactions

� A serial schedule is a schedule where operations of each 
transaction are executed consecutively without any interleaved 
operations from other transactions (each transaction  commits 
before the next one is allowed to begin)
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The Scheduler

� The scheduler component of a DBMS must ensure that the individual 
steps of different transactions preserve consistency.

Serial schedules

� Serial schedules are guaranteed to avoid interference and keep 
the database consistent

� However databases need concurrent access which means 
interleaving operations from different transactions
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Serializability

� The objective of serializability is to find nonserial schedules that 
allow transactions to execute concurrently without interfering 
with one another.

� In other words, we want to find nonserial schedules that are 
equivalent to some serial schedule. Such a schedule is called 
serializable.

Uses of Serializability

� being serializable means 
� the schedule is equivalent to some serial schedule 
� Serial schedules are correct
� Therefore, serializable schedules are also correct schedules

� serializability is hard to test 
� Use precedence graph (PG)

� Need the methods (or protocols) to enforce serializabilty
� Two phase locking(2PL)
� Time stamp ordering (TSO)
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Conflict Serialisability

� Conflict serialisable schedules 
are the main focus of 
concurrency control

� They allow for interleaving 
and at the same time they are 
guaranteed to behave as a 
serial schedule

� Important questions: how to 
determine whether a 
schedule is conflict 
serialisable

� How to construct conflict 
serialisable schedules

Conflicting Operations

No. Case Conflict Non-Conf

1 IIii & I& Ijj operate on different data operate on different data 
itemsitems

X

2 IIii = = Read(Q)Read(Q) & I& Ijj = Read (Q)= Read (Q) X
3 IIii = = Read(Q)Read(Q) & I& Ijj = = Write (Q)Write (Q) X
4 IIii = = Write(Q)Write(Q) & I& Ijj = = Write (Q)Write (Q) X
5 IIii = = Write(Q)Write(Q) & I& Ijj = = Read (Q)Read (Q) X

The only conflicting operation is the Write operation
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Precedence Graph (PG)

� Precedence graph
� Used to test for conflict serializability of a schedule

� A directed graph G=(V,E)
� V: a finite set of  transactions

� E: a set of arcs from Ti to Tj if an action of Ti comes first and conflicts 
with one of Tj’s actions

More on PG

� The serialization order is obtained through topological 
sorting

� A schedule S is conflict serializable iff there is no cycle in the 
precedence graph (acyclic)
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Serialization Graph

� Consider the schedule S:

Time T1 T2

t1 Write(X)

t2 Read(Y)

t3 Read(Y)

t4 Read(X)

Thus, it is conflict equivalent to T1,T2

T1 T2

The precedence graph is

Serialization Graph
� Consider the schedule:

Time T1 T2 T3

t1 Read (X)

t2 Write (Y)

t3 Write (X)

t4 Read (X)

t5 Read (Y)

T1 T2

T3
There is a cycle. 
Hence it is NOT conflict serializable

The precedence graph is
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Serialization Graph
� Consider the schedule:

Time T1 T2

t1 read(balx)

t2 read(balx)

t3 write(balx)

t4 read(baly)

t5 write(baly)

t6 read(baly)

t7 write(baly)

T1 T2

There is a cycle. 
Hence it is NOT conflict serializable

The precedence graph is

Serialization Graph

� Consider the following PG:

T1 T2

T3
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Serialization Graph

� Consider the following PG:

T1 T2

T3

Cycle T1 ���� T2 ���� T1

Cycle T1 ���� T2 ���� T3 ���� T1

Concurrency Control Techniques

� How can the DBMS ensure serializability?

� Two basic concurrency control techniques:
� Locking methods

� Timestamping
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Locking

� Transaction uses locks to deny access to other transactions 
and so prevent incorrect updates.

� Generally, a transaction must claim a 

� read (shared), or

�write (exclusive)
lock on a data item before read or write.

� Lock prevents another transaction from modifying item or 
even reading it, in the case of a write lock.

Locking

Lock Table

Serializable Schedule
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Two-Phase Locking Protocol

� Each transaction issues lock and unlock requests in 2 phases:

�Growing phase 

�A transaction may obtain locks, but may not 
release any lock

�Shrinking phase

� A transaction may release locks, but may not 
obtain any new locks

2 PL Protocol
� Basics of locking:

� Each transaction T must obtain a S ( shared) lock on object before reading, 
and an X ( exclusive) lock on object before writing.

� If an X lock is granted on object O, no other lock (X or S) might be 
granted on O at the same time.

� If an S lock is granted on object O, no X lock might be granted on O at the 
same time.

� Conflicting locks are expressed by the compatibility matrix:

S X

S √ ----

X ---- ----
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Basics of Locking

� A transaction does not request the same lock twice.

� A transaction does not need to request a S lock on an object for 
which it already holds an X lock.

� If a transaction has an S lock and needs an X lock it must wait until 
all other S locks (except its own) are released

� After a transaction has released one of its lock (unlock) it may not 
request any further locks (2PL: growing phase / shrinking phase)

� Using strict two-phase locking (strict 2PL) a transactions releases 
all its lock at the end of its execution.

(strict) 2PL allows only serializable schedules.

Preventing Lost Update Problem Using 2PL

Time T1 T2

t1 start

t2 start lock-X(balx)

t3 lock-X(balx) read(balx)

t4 wait balx=balx + 100

t5 wait write(balx)

t6 wait commit/unlock(balx)

t7 read(balx)

t8 balx=balx -10

t9 write(balx)

t10 commit/unlock(balx)
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Preventing Uncommitted Dependency Problem using 2PL

Time T1 T2

t1 start

t2 lock-X(balx)

t3 read(balx)

t4 start balx=balx + 100

t5 lock-X(balx) write(balx)

t6 wait rollback/unlock(balx)

t7 read(balx)

t8 balx=balx -10

t9 write(balx)

t10 commit/unlock(balx)

Preventing Inconsistent Analysis Problem using 2PL

Time T1 T2

t1 start

t2 start sum=0

t3 lock-X(balx)

t4 read(balx) lock-S(balx)

t5 balx=balx -10 wait

t6 write (balx) wait

t7 lock-X(balz) wait

t8 read(balz) wait

t9 balz=balz+10 wait

t10 write(balz) wait

t11 commit/unlock(balx,balz) wait

t12 read(balx)

t13 sum=sum+balx

t14 lock-S(baly)

t15 read(baly)

t16 sum=sum+baly

t17 lock-S(balz)

t18 read (balz)

t19 sum=sum+balz

t20 commit/unlock(balx,baly,balz)
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Locking methods: problems

� Deadlock:May result when two (or more) transactions are 
each waiting for locks held by the other to be released.

Deadlock

consider the following partial schedule:

Time T1 T2

t1 lock-S(A)

t2 lock-S(B)

t3 read(B)

t4 read(A)

t5 lock-X(B)

t6 lock-X(A)

The transactions are now deadlocked
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Deadlock Example

Time T1 T2

t1 start

t2 lock-X(balx) start

t3 read(balx) lock-X(baly)

t4 balx=balx -10 read(baly)

t5 write (balx) baly=baly + 100

t6 lock-X(baly) write (baly)

t7 wait lock-X(balx)

t8 wait wait

t9 wait wait

t10 .. ..

Deadlock Detection

� Given a schedule, we can detect deadlocks which will 
happen in this schedule using a wait-for graph (WFG).
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Precedence/Wait-For Graphs

� Precedence graph
� Each transaction is a vertex
� Arcs from T1 to T2 if

� T1 reads X before T2 writes X
� T1 writes X before T2 reads X
� T1 writes X before T2 writes X

� Wait-for Graph
� Each transaction is a vertex
� Arcs from T2 to T1 if

� T1 read-locks X then T2 tries to 
write-lock it

� T1 write-locks X then T2 tries to 
read-lock it

� T1 write-locks X then T2 tries to 
write-lock it

Example

T1 Read(X) 

T2 Read(Y) 

T1 Write(X)

T2 Read(X) 

T3 Read(Z) 

T3 Write(Z) 

T1 Read(Y) 

T3 Read(X) 

T1 Write(Y) 

T1

T2 T3

Wait for graph

T1

T2 T3

Precedence graph
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Example

T1 Read(X) 

T2 Read(Y) 

T1 Write(X)

T2 Read(X)

T3 Read(Z) 

T3 Write(Z) 

T1 Read(Y) 

T3 Read(X) 

T1 Write(Y) 

T1

T2 T3

Wait for graph

T1

T2 T3

Precedence graph

Example

T1 Read(X) 

T2 Read(Y)

T1 Write(X)

T2 Read(X) 

T3 Read(Z) 

T3 Write(Z) 

T1 Read(Y) 

T3 Read(X)

T1 Write(Y) 

T1

T2 T3

Wait for graph

T1

T2 T3

Precedence graph
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Example

T1 Read(X) 

T2 Read(Y)

T1 Write(X)

T2 Read(X) 

T3 Read(Z) 

T3 Write(Z) 

T1 Read(Y) 

T3 Read(X) 

T1 Write(Y)

T1

T2 T3

Wait for graph

T1

T2 T3

Precedence graph

Example

T1 Read(X) S-lock(X)

T2 Read(Y) S-lock(Y)

T1 Write(X) X-lock(X)

T2 Read(X) tries S-lock(X)

T3 Read(Z) 

T3 Write(Z) 

T1 Read(Y) 

T3 Read(X) 

T1 Write(Y) 

T1

T2 T3

Wait for graph

T1

T2 T3

Precedence graph
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Example

T1 Read(X) S-lock(X)

T2 Read(Y) S-lock(Y)

T1 Write(X) X-lock(X)

T2 Read(X) tries S-lock(X)

T3 Read(Z) S-lock(Z)

T3 Write(Z) X-lock(Z)

T1 Read(Y) S-lock(Y)

T3 Read(X) tries S-lock(X)

T1 Write(Y) 

T1

T2 T3

Wait for graph

T1

T2 T3

Precedence graph

Example

T1 Read(X) S-lock(X)

T2 Read(Y) S-lock(Y)

T1 Write(X) X-lock(X)

T2 Read(X) tries S-lock(X)

T3 Read(Z) S-lock(Z)

T3 Write(Z) X-lock(Z)

T1 Read(Y) S-lock(Y)

T3 Read(X) tries S-lock(X)

T1 Write(Y) tries X-lock(Y)

T1

T2 T3

Wait for graph

T1

T2 T3

Precedence graph
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Solution

� Only one way to break deadlock: abort one or more of the 
transactions.

� Deadlock should be transparent to user, so DBMS should 
restart transaction(s).

Deadlock Prevention

� Deadlocks can arise with 2PL
� Deadlock is less of a problem 

than an inconsistent DB

� We can detect and recover from 
deadlock

� It would be nice to avoid it 
altogether

� Conservative 2PL
� All locks must be acquired 

before the transaction starts

� Hard to predict what locks are 
needed

� Low ‘lock utilisation’ -
transactions can hold on to locks 
for a long time, but not use 
them much
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Deadlock Prevention

� We impose an ordering on 
the resources
� Transactions must acquire locks 

in this order

� Transactions can be ordered on 
the last resource they locked

� This prevents deadlock
� If T1 is waiting for a resource 

from T2 then that resource must 
come after all of T1’s current 
locks

� All the arcs in the wait-for graph 
point ‘forwards’ - no cycles

Example of resource ordering

� Suppose resource order is: X < Y

� This means, if you need locks on X 
and Y, you first acquire a lock on X 
and only after that a lock on Y
� (even if you want to write to Y 

before doing anything to X)

� It is impossible to end up in a 
situation when T1 is waiting for a 
lock on X held by T2, and T2 is 
waiting for a lock on Y held by T1.
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Timestamp

� Transactions can be run 
concurrently using a variety 
of techniques

� We looked at using locks to 
prevent interference

� An alternative is timestamping
� Requires less overhead in terms of 

tracking locks or detecting 
deadlock

� Determines the order of 
transactions before they are 
executed

Timestamp

� Each transaction has a 
timestamp, TS, and if T1 
starts before T2 then TS(T1) 
< TS(T2)
� Can use the system clock or an 

incrementing counter to 
generate timestamps

� Each resource has two 
timestamps
� R(X), the largest timestamp of 

any transaction that has read X

� W(X), the largest timestamp of 
any transaction that has written 
X
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Timestamp Protocol

� If  T tries to read X
� If TS(T) < W(X) T is rolled back 

and restarted with a later 
timestamp

� If TS(T) ≥W(X) then the read 
succeeds and we set R(X) to be 
max(R(X), TS(T))

� T tries to write X
� If TS(T) < W(X) or TS(T) < 

R(X) then T is rolled back and 
restarted with a later timestamp

� Otherwise the write succeeds 
and we set W(X) to TS(T)

Timestamp Example 1

� Given T1 and T2 we will 
assume
� The transactions make 
alternate operations

� Timestamps are allocated 
from a counter starting at 1

� T1 goes first

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)
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Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

YX

R

W

Z

T2T1

TS

Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

1

YX

R

W

Z

1

T2T1

TS
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Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

2

YX

R

W

Z

1 2

T2T1

TS

Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

2 1

YX

R

W

Z

1 2

T2T1

TS
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Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

2 2

YX

R

W

Z

1 2

T2T1

TS

Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

2 2

YX

R

W

Z

1 2

T2T1

TS
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Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

2 2

YX

R

W

Z

1 2

T2T1

TS

Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

2 2

YX

R

W

Z

1 2

T2T1

TS
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Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

2 2

YX

R

W

Z

3 2

T2T1

TS

Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

2 2

2

YX

R

W

Z

3 2

T2T1

TS
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Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

3 2

2

YX

R

W

Z

3 2

T2T1

TS

Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

3 3

2

YX

R

W

Z

3 2

T2T1

TS
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Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

3 3

2

YX

R

W

Z

3 2

T2T1

TS

Timestamp Example 1

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

Y = Y + X Z = Y - X

Write(Y) Write(Z)

3 3

23

YX

R

W

Z

3 2

T2T1

TS
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Timestamp ordering – example 2

� Consider the following concurrent schedule

1. Read(X)
2. X = X * 1.01
3. Write(X)

4. Read(Y)
5. Y = Y * 1.01
6. Write(Y)

1. Read(X)
2. X = X – k
3. Write(X)

4. Read(Y)
5. Y = Y + k
6. Write(Y)

T1 (TS = 10) T2 (TS = 20)

TS(T1) > (WTS(X) = 0), read allowed;

RTS(X) ← 10

RTS(X) :
WTS(X):
RTS(Y) :
WTS(Y):

TS(T1) > WTS(X) = 0;

TS(T1) = RTS(X) = 10; write allowed;
WTS(X) ← 10

0
0
0
0

10
0
0
0

10
10
0
0

TS(T2) > WTS(X) = 10, read allowed;
RTS(X) ← 20

20
10
0
0

TS(T2) > WTS(X) = 10;

TS(T2) = RTS(X) = 20; write allowed;
WTS(X) ← 20

20
20
0
0

TS(T1) > WTS(Y) = 0, read allowed;
RTS(Y) ← 10

20
20
10
0

TS(T1) > WTS(Y) = 0;

TS(T1) = RTS(Y) = 10; write allowed;
WTS(Y) ← 10

20
20
10
10 TS(T2) > WTS(Y) = 10, read allowed;

RTS(Y) ← 20

20
20
20
10

TS(T2) > WTS(Y) = 10;

TS(T2) = RTS(Y) = 20; write allowed;

WTS(Y) ← 20

20
20
20
20

Thomas’ write rule

� Write-write conflict may be acceptable in many cases

� Suppose T1 do a write(X) and then T2 do a write(X) and 
there is no transaction accessing X in between

� Then T2 only overwrite a value that is never being used

� In such case, it can be argued that such a write is acceptable
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Thomas’ write rule

� In timestamp ordering, it is referred as the Thomas write rule:

� If a transaction T issue a write(X):

� If TS(T) < RTS(X) then write is rejected, T has to abort

� Else If TS(T) < WTS(X) then write is ignored

� Else, allow the write, and update WTS(X) accordingly

Timestamp

� The protocol means that 
transactions with higher times 
take precedence
� Equivalent to running 

transactions in order of their 
final time values

� Transactions don’t wait - no 
deadlock

� Problems
� Long transactions might keep 

getting restarted by new 
transactions - starvation

� Rolls back old transactions, 
which may have done a lot of 
work
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Optimistic concurrency control

� 2PL & TSO are pessimistic protocols
� They assume transactions will have problems

� Most optimistic point-of-view:
� Assume no problem and let transaction execute

� But before commit, do a final check

� Only when a problem is discovered, then one aborts

� Basis for optimistic concurrency control

Optimistic concurrency control

� Each transaction T is divided into 3 phases:
1. Read and execution: T reads from the database and 

execute. However, T only writes to temporary location (not 
to the database itself)

2. Validation: T checks whether there is conflict with other 
transaction, abort if necessary

3. Write : T actually write the values in temporary location to 
the database

� Each transaction must follow the same order


