

كلية العلوم

قسم الفيزياء والفلك

College of Sciences

Department of Physics & Astronomy

Midterm Exam						
Academic Year 1444 H – 1 st Semester						
معلومات الامتحان Exam Information						
Course name:	General Physics*	فيزياء عامة	اسم المقرر:			
Course code:	PHYS 103	103 فيز	رمز المقرر:			
Exam date:	Sunday 09/10/2022G	الأحد ١٤٤٤/٠٣/١٣ هـ	تاريخ الامتحان:			
Exam time:	07:00 PM	۰۰:۷ مساءاً	وقت الامتحان:			
Exam duration:	Two Hours	ساعتان	مدة الامتحا <u>ن:</u>			

معلومات الطالب Student Information					
Student's name:		اسم الطالب:			
Student ID no.:		الرقم الجامع <u>ي:</u>			
Section no.:		رقم الشعبة:			
Classroom no.:		رقم قاعة الامتحان:			
Teacher's name:		اسم أستاذ المقرر:			

تعليمات الاختبار:

- إظهار بطاقة الطالب الجامعية.
- الجوالات والساعات الذكية يجب أن تكون خارج قاعة الاختبار.
- كتابة الإجابة لكل سؤال بالأحرف الكبيرة (CAPITAL LETTERS) في الجدول أدناه باستخدام قلم الحبر.
 - تسلم جميع صفحات الاختبار لأستاذ المادة / المراقب.

Write you final answer for each question (in CAPITAL LETTERS) in the following table:

			1	(-		,	· ·	8	
Q. 1		Q. 2		Q. 3		Q. 4		Q. 5	
	B		В		A		A		D
Q. 6		Q. 7		Q. 8		Q. 9		Q. 10	
	B		Α		С		D		С
Q. 11		Q. 12		Q. 13		Q. 14		Q. 15	
	С		D		B		С		B
Q. 16		Q. 17		Q. 18		Q. 19		Q. 20	
	D		Α		B		A		С

Name: _____

ID:_____

Take g = 9.8 ms⁻² wherever needed

Q	Multiple choice questions							
1	In the following equation $v = 2 B t + C R H$, where v represents the velocity, t represents the time, and (B, C, R, and H) represent some physics quantities. What is the dimension of the physics quantity "B" that makes this equation correct from the dimension prospect?							
			C) [L T]					
	If a ball is thrown upward, what are its velocity and acceleration at the highest point it reaches:							
2	A) $v = 9.8 \hat{j}$, $a = 9.8 \hat{j}$	B) v = 0, a = -9.8 \hat{j}	C) v = -9.8 \hat{j} , a = 0	D) $v = 0$, $a = 0$				
3	A car driver starts with a velocity of 30 km/h along a road and continues with the same velocity for 5 minutes before accelerating until reaching 60 km/h in 2 minutes and then continues with constant velocity of 60 km/h for 10 minutes . The total distance traveled is:							
	A) 14 km	B) 7 km	C) 28 km	D) 17 km				
4	A car initially moving with velocity 15 m/s, brakes at a constant rate of 3 m/s^2 . How far will it take to stop?							
	A) 37.5 m	B) 25 m	C) 50.0 m	D) 105 m				
5	Ali throws a ball straght up to Omar ,who is standing on a balacony 3.8 m above Ali. When Omar cathes the ball, it is still moving upward at a speed of 2.8 m/s . With what initial speed did Ali throw the ball ?							
	A) 7 m/s	B) 12.3 m/s	C) 10.6 m/s	D) 9.1 m/s				
6	Vector A directed with x- of A is 3 cm . The y-comp	-	f the magnitude y	×				
	A) 3	B) 0	C) √3	D) 9				
7	Vector A has y-compone positive y-axis. The x-com	•	kes an angle of 32° count	erclockwise from the				
	A) - 8.1 m	B) 6 m	C) 8.1 m	D) - 6 m				

Name: _____

ID:_____

8	If $\vec{A} = 12\hat{i} - 16\hat{j}$ and $\vec{B} = -24\hat{i} + 20\hat{j}$ are two vectors. The magnitude of the new vector $\vec{C} = 2A - B$ is:								
0	A) 30	B) 84	C) 71	D) 63					
9	A particle starts from the origin at $t = 0$ with a velocity of 6.0i m/s and moves in the x-y plane with a constant acceleration of $(-2.0i + 4.0j)$ m/s ² . At the instant the particle achieves its maximum positive x coordinate, how far is it from the origin?								
	A) 45.5 m	B) 36.4 m	C) 27.8 m	D) 20.1 m					
10	The initial speed of a cannon ball is 0.30 km/s . If the ball is to strike a target that is at a horizon distance of 3.0 km from the cannon, what is the time of flight for the ball?								
	A) 23.3 s	B) 18.5 s	C) 10.1 s	D) 8.1 s					
 A rock is projected from the edge of the top of a building with an initial velocity of 12. angle of 53° above the horizontal. The rock strikes the ground a horizontal distance of the base of the building. Assume that the ground is level and that the side of the building How tall is the building?: 									
	A) 15.5m	B) 18.3m	C) 23.5m	D) 29.6m					
12	and acceleration vec	n upward follow the parabol tors are perpendicular to each	h other?	on of the path the velocit					
	A) no where	B) launching point	C) while hitting the ground	D) at the maximum height					
13	A car travels in an easily shown in the figure $v_B = 20$ m/s, North.	B) launching point Hiptical path (مسار بيضاوي) re. $v_A = 25$ m/s, West, and The ratio of the magnitude relevation at B to that at A,	ground <i>v</i> _A 500 m	D) at the maximum height					
13	A car travels in an e as shown in the figure $v_B = 20$ m/s, North, of the centripetal acc	elliptical path (مسار بيضاوي) re. $v_A = 25$ m/s, West, and The ratio of the magnitude	ground <i>v</i> _A 500 m	height					
13	A car travels in an e as shown in the figur $v_B = 20$ m/s, North. of the centripetal acc (a_B / a_A) is: A) 0.23 A particle is moving	elliptical path (مسار بيضاوي) re. $v_A = 25$ m/s, West, and The ratio of the magnitude relevation at B to that at A ,	ground v_A 500 m C) 0.12 lius. If the tangential ac	height A v_B B D0 m D) 1					

Name: _____

	The horizontal surface on frictionless. If $F = 20$ N a		20° F	
15	magnitude of the resulting block?	g acceleration of the	-1	$M \xrightarrow{F}$
			MEXAN	
	A) 13.4 m/s ²	B) 7.5 m/s ²	C) 18.1 m/s ²	D) 29.8 m/s ²
16	applied force as shown. It	frictionless 30° incline b f $F = 25$ N and $M = 3$ kg, resulting acceleration o	what	M F 30°
	A) 4.2 m/s ²	B) 3.4 m/s ²	C) 1.6 m/s ²	D) 2.3 m/s ²
17	If the only forces acting o magnitude of the accelera	n a 2.0 kg mass are F ₁ =(3) tion of the particle?	i-8j)N and F ₂ =(5i+3	j)N , what is the
	A) 4.7 m/s ²	B) 1.3 m/s ²	C) 5.8 m/s ²	D) 2.9 m/s ²
18	on: A) upwards on the chair	ir. Then a laptop is placedB) only on the chair		oor exerts a normal force book D) on all three
	and downwards on the book			
19		ng at a constant rate of 2.0	-	hat is moving upward with . What is the tension in
	A) 39 N	B) 27 N	C) 19 N	D) 44 N
20	-	ased from rest and moves ? All surfaces are frictionle		3.0 kg
	A) 0.85 kg	B) 0.14 kg	C) 0.34 kg	D) 0.62 kg

The End