Dr. Vasileios Lempesis 1-1

PHYS 454 HANDOUT 1-Basic Concepts

- **1.** In the theory of relativity the relation between energy-momentum is $E^2 = c^2 p^2 + m^2 c^4$. Writhe down the one-dimensional free wave equation for this case.
- **2.** A statistical quantity A has only two possible values $a_1 = 4$ and $a_2 = 8$, which appear with probabilities $P_1 = 1/4$ and $P_2 = 3/4$ respectively. Calculate the uncertainty ΔA of this quantity.
- **3.** Why we have chosen the quantity $|\psi(x,t)|^2$ as the probability density and not the quantity $|\psi(x,t)|^2$?
- **4.** Show that if two wave-functions ψ and ψ' differ by a constant phase then they represent the same physical state. What happens if the phase depends on position?
- 5. Calculate the average value $\langle x \rangle$ and the position uncertainty Δx for a particle the state of which, is described, at a certain moment, from the function: $\psi(x) = Ne^{-\lambda x^2/2}$. It is given that

$$\int_{-\infty}^{+\infty} x^{2n} e^{-\lambda x^2} dx = \frac{1 \cdot 3 \cdots (2n-1)}{(2\lambda)^n} \sqrt{\frac{\pi}{\lambda}}$$

- **6.** Is it possible the function $\psi(x) = Ne^{\lambda x}$, to describe the wavefunction of a particle? Explain.
- 7. The state of a particle is given by

$$\psi = N(\psi_1 + 2\psi_2 + \psi_3)$$

where ψ_1 , ψ_2 , ψ_3 are normalized eigenfunctions of some physical quantity (observable) A with eigenvalues $a_1 = -1$, $a_2 = 0$, $a_3 = 1$ respectively. Find the normalization constant N and calculate the average value $\langle A \rangle$ and the uncertainty ΔA of this quantity.

- **8.** Write down the form of the quantum-mechanical operator of the angular momentum component along *z*.
- 9. What is the average position of a particle which is described from the wave function $\psi(x) = Nxe^{-\lambda x^2 + ikx}$?
- **10.** At time t=0 a particle is represented by the wave function

Dr. Vasileios Lempesis

$$\Psi(x,0) = \begin{cases} A\frac{x}{a} & 0 \le x \le a \\ A\frac{(b-x)}{(b-a)} & a \le x \le b \\ 0 & otherwise \end{cases}$$

where *A* is an unknown constant and *a* and *b* are known constants. A) Normalize the wavefunction. B) What is the probability of finding the particle to the left of *a*?

- **11.** Show with the help of the operators A = x and B = d/dx that $AB \neq BA$.
- **12.** Somebody insists that the time-dependent wavefunction of the electron in the hydrogen atom is given by

$$\psi\left(\mathbf{r},t\right) = e^{-r/a_0}\cos\omega t$$

Is this possible? Explain.

- **13.** Why the quantity $|\psi(x,t)|^2$ preserves the probability?
- 14. Derive Schrödinger's equation.
- 15. Compare the de Broglie wavelength of an electron, which moves at 5×10^3 m/s with the de Broglie wavelength of a car of mass 1000 kg moving at a speed of 36 km/h.
- **16.** Determine where a particle is most likely to be found whose wave function is given by $\Psi(x)=(1+ix)/(1+ix^2)$