PHYS 454

HANDOUT 1-Basic Concepts

1. In the theory of relativity the relation between energy-momentum is $E^{2}=c^{2} p^{2}+m^{2} c^{4}$. Writhe down the one-dimensional free wave equation for this case.
2. A statistical quantity A has only two possible values $a_{1}=4$ and $a_{2}=8$, which appear with probabilities $P_{1}=1 / 4$ and $P_{2}=3 / 4$ respectively. Calculate the uncertainty ΔA of this quantity.
3. Why we have chosen the quantity $|\psi(x, t)|^{2}$ as the probability density and not the quantity $|\psi(x, t)|$?
4. Show that if two wave-functions ψ and ψ^{\prime} differ by a constant phase then they represent the same physical state. What happens if the phase depends on position?
5. Calculate the average value $\langle x\rangle$ and the position uncertainty Δx for a particle the state of which, is described, at a certain moment, from the function: $\psi(x)=N e^{-\lambda x^{2} / 2}$. It is given that

$$
\int_{-\infty}^{+\infty} x^{2 n} e^{-\lambda x^{2}} d x=\frac{1 \cdot 3 \cdots(2 n-1)}{(2 \lambda)^{n}} \sqrt{\frac{\pi}{\lambda}}
$$

6. Is it possible the function $\psi(x)=N e^{\lambda x}$, to describe the wavefunction of a particle? Explain.
7. The state of a particle is given by

$$
\psi=N\left(\psi_{1}+2 \psi_{2}+\psi_{3}\right)
$$

where $\psi_{1}, \psi_{2}, \psi_{3}$ are normalized eigenfunctions of some physical quantity (observable) A with eigenvalues $a_{1}=-1, a_{2}=0, a_{3}=1$ respectively. Find the normalization constant N and calculate the average value $\langle A\rangle$ and the uncertainty ΔA of this quantity.
8. Write down the form of the quantum-mechanical operator of the angular momentum component along z.
9. What is the average position of a particle which is described from the wave function $\psi(x)=N x e^{-\lambda x^{2}+i k x}$?
10. At time $t=0$ a particle is represented by the wave function

$$
\Psi(x, 0)=\left\{\begin{array}{cc}
A \frac{x}{a} & 0 \leq x \leq a \\
A \frac{(b-x)}{(b-a)} & a \leq x \leq b \\
0 & \text { otherwise }
\end{array}\right.
$$

where A is an unknown constant and a and b are known constants. A) Normalize the wavefunction. B) What is the probability of finding the particle to the left of a ?
11. Show with the help of the operators $A=x$ and $B=d / d x$ that $A B \neq B A$.
12. Somebody insists that the time-dependent wavefunction of the electron in the hydrogen atom is given by

$$
\psi(\mathbf{r}, t)=e^{-r / a_{0}} \cos \omega t
$$

Is this possible? Explain.
13. Why the quantity $|\psi(x, t)|^{2}$ preserves the probability?
14. Derive Schrödinger's equation.
15. Compare the de Broglie wavelength of an electron, which moves at $5 \times 10^{3} \mathrm{~m} / \mathrm{s}$ with the de Broglie wavelength of a car of mass 1000 kg moving at a speed of $36 \mathrm{~km} / \mathrm{h}$.
16. Determine where a particle is most likely to be found whose wave function is given by $\Psi(x)=(1+i x) /\left(1+i x^{2}\right)$

