Application of Integration
(Arc Length and Surface of Revolution)

Bander Almutairi
King Saud University
December 1, 2015
1. Arc Length

2. Surface of Revolution
In this section, we will find the arc lengths of a given function on a closed interval by integrating.
In this section, we will find the arc lengths of a given function on a closed interval by integrating. Suppose \(y = f(x) \) (or equivalently \(x = g(y) \)) is a continuous function which has a derivative \(f' \) continuous on \([a, b]\).
In this section, we will find the arc lengths of a given function on a closed interval by integrating. Suppose \(y = f(x) \) (or equivalently \(x = g(y) \)) is a continuous function which has a derivative \(f' \) continuous on \([a, b]\).
In this section, we will Find the arc lengths of a given function on a closed interval by integrating. Suppose $y = f(x)$ (or equivalently $x = g(y)$) is a continuous function which has a derivative f' continuous on $[a, b]$.

Theorem

The arc length of the graph of f from (a, c) to (b, d) is

$$L_{b-a} = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} \, dx$$

or

$$L_{d-c} = \int_{c}^{d} \sqrt{1 + [g'(y)]^2} \, dy$$
In this section, we will find the arc lengths of a given function on a closed interval by integrating. Suppose \(y = f(x) \) (or equivalently \(x = g(y) \)) is a continuous function which has a derivative \(f' \) continuous on \([a, b]\).

The arc length of the graph of \(f \) from \((a, c)\) to \((b, d)\) is

\[
L_{a}^{b} = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} \, dx
\]
In this section, we will find the arc lengths of a given function on a closed interval by integrating. Suppose $y = f(x)$ (or equivalently $x = g(y)$) is a continuous function which has a derivative f' continuous on $[a, b]$.

Theorem

The arc length of the graph of f from (a, c) to (b, d) is

$$L_a^b = \int_a^b \sqrt{1 + [f'(x)]^2} \, dx \quad \text{or} \quad L_c^d = \int_c^d \sqrt{1 + [g'(y)]^2} \, dy$$
Examples (Swokowski, 335)

[1] If \(f(x) = 3x^{2/3} - 10 \), find the arc length of the graph of \(f \) from the point \(A(8, 2) \) to \(B(27, 17) \). (answer approx. 2.4)

[2] Set up an integral for finding the arc length of the graph of the equation \(y^3 - y - x = 0 \) from \(A(O, -1) \) to \(B(6, 2) \).
Definition

Suppose $f(x)$ is a non negative function on $[a, b]$.

If the graph of $f(x)$ is revolved about the x-axis, a surface of revolution is generated and the area is given by the formula:

$$S = \int_{a}^{b} 2\pi f(x) \sqrt{1 + \left(f'(x)\right)^2} \, dx.$$
Definition

Suppose $f(x)$ is a non negative function on $[a, b]$.

The surface of revolution is generated by revolving the graph of $f(x)$ about the x-axis, and the area is given by the formula:
Definition

Suppose $f(x)$ is a non-negative function on $[a, b]$. If the graph of f is revolved about the x-axis, a surface of revolution is generated and the area is given by the formula:

$$S = \int_{a}^{b} 2\pi f(x) \sqrt{1 + \left(f'(x)\right)^2} \, dx$$
Definition

Suppose $f(x)$ is a non negative function on $[a, b]$.

If the graph of f is revolved about the x-axis, a surface of revolution is generated and the area is given by the formula:

$$S = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^2} \, dx$$
Definition

Likewise if $g(y)$ is a non negative function on $[c, d]$.
Definition

Likewise if $g(y)$ is a non negative function on $[c, d]$.

\[
S = \int_{a}^{b} 2\pi f(x) \sqrt{1 + (f'(x))^2} \, dx
\]
Definition

Likewise if $g(y)$ is a non negative function on $[c, d]$.

If the graph of g is revolved about the y-axis from (a, c) to (b, d), a surface of revolution is generated and the area is given by the formula:

$$S = \int_{a}^{b} 2\pi f(x) \sqrt{1 + \left(f'(x)\right)^2} \, dx$$
Definition

Likewise if \(g(y) \) is a non negative function on \([c, d]\).

If the graph of \(g \) is revolved about the \(y \)-axis from \((a, c)\) to \((b, d)\), a surface of revolution is generated and the area is given by the formula:

\[
S = \int_a^b 2\pi f(x) \sqrt{1 + [f'(x)]^2} \, dx
\]
Example (1, Swokowski, 340)

The graph of $y = \sqrt{x}$ from (1, 1) to (4, 2) is revolved about the x-axis. Find the area of the resulting surface.
Example (1, Swokowskki, 340)

The graph of $y = \sqrt{x}$ from $(1, 1)$ to $(4, 2)$ is revolved about the x-axis. Find the area of the resulting surface.

Example (2, Swokowskki, exercises 342)

The graph of the equation from A to B is revolved about the x-axis. Find the area of the resulting surface.

a $4x = y^2; A(0, 0), B(1, 2)$.

b $y = x^3; A(1, 1), B(2, 8)$.

c $y = 2x + 1; A(0, 2), B(3, 4)$.
Example (1, Swokowsoki, 340)

The graph of \(y = \sqrt{x} \) from \((1, 1)\) to \((4, 2)\) is revolved about the x-axis. Find the area of the resulting surface.

Example (2, Swokowsoki, exercises 342)

The graph of the equation from \(A\) to \(B\) is revolved about the x-axis. Find the area of the resulting surface.

\(a \) \(4x = y^2; A(0, 0), B(1, 2). \)

\(b \) \(y = x^3; A(1, 1), B(2, 8). \)

\(c \) \(y = 2x + 1; A(0, 2), B(3, 4). \)

Example (3, Swokowsoki, exercises 342)

The graph of the equation from \(A\) to \(B\) is revolved about the y-axis. Find the area of the resulting surface.

\(a \) \(y = 2\sqrt[3]{x}; A(1, 2), B(8, 4). \)

\(b \) \(x = 4\sqrt{y}; A(4, 1), B(12, 9). \)