Chapter 6: Polar Coordinates and applications

Section 6.1 Polar Coordinates

Definition: The polar coordinate system is a two-dimensional coordinate system in which each point P on a plane is determined by a distance r from a fixed point O that is called the pole (or origin) and an angle θ from a fixed direction. The point P is represented by the ordered pair $(r ; \theta)$ and $r ; \theta$ are called polar coordinates.

Remark: We extend the meaning of polar coordinates $(r ; \theta)$ to the case in which r is negative by agreeing that the points $(-r ; \theta)$ and $(r ; \theta)$ lie in the same line through O and at the same distance $|r|$ from O; but on opposite sides of O : If $r>0$; the point $(r ; \theta)$ lies in the same quadrant as θ; if $r<0$; it lies in the quadrant on the opposite side of the pole.

Example: Plot the points whose polar coordinates are given:
a) $\left.\left(1 ; \frac{5 \pi}{4}\right), b\right)(2 ; 3 \pi)$
c) $\left.\left(2 ;-\frac{2 \pi}{3}\right), d\right)\left(-3 ; \frac{3 \pi}{4}\right)$

Remark: In the Cartesian coordinate system every point has only one representation, but in the polar coordinate system each point has many representations. For instance, the point $\left(1 ; \frac{5 \pi}{4}\right)$ in the Example above could be written as $\left(1 ;-\frac{3 \pi}{4}\right)$ or $\left(1 ; \frac{13 \pi}{4}\right)$ or $\left(-1 ; \frac{\pi}{4}\right)$.

Relationship with Cartesian coordinates

The connection between polar and Cartesian coordinates can be seen from the figure below and described by the following formulas:

$$
\begin{gathered}
x=r \cos \theta ; y=r \sin \theta \text { and } \\
r^{2}=x^{2}+y^{2} ; \quad \theta=\tan ^{-1} \frac{y}{x} ; x \neq 0
\end{gathered}
$$

Example:
(a) Convert the point (2; $\frac{\pi}{3}$) from polar to Cartesian coordinates.
(b) Represent the point with Cartesian coordinates (1;-1) in terms of polar coordinates.

Section 6.2: Polar Curves

The graph of a polar equation $r=f(\theta)$; or more generally $F(r, \theta)=0$; consists of all points P that have at least one polar representation $(r ; \theta)$ whose coordinates satisfy the equation.

Example1: the curve $r=a$ is a circle with centre $(0 ; 0)$ and radius a.
Example2: Sketch the following polar curves:
a) $\theta=1$.
b) $r=2,0 \leq \theta \leq 2 \pi$.
c) $r=2 \cos \theta, 0 \leq \theta \leq \pi$.

Section 6.2: Area with Polar Coordinates

In this section we are going to look at areas enclosed by polar curves. These problems work a little differently in polar coordinates

We will be looking for the shaded area in the sketch above. The formula for finding this area is: $A=\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta=\int_{\alpha}^{\beta} \frac{1}{2} f(\theta)^{2} d \theta$

$$
A=\int_{\alpha}^{\beta} \frac{1}{2}\left[r_{0}{ }^{2}-r_{1}^{2}\right] d \theta=\int_{\alpha}^{\beta} \frac{1}{2}\left[g(\theta)^{2}-f(\theta)^{2}\right] d \theta
$$

Example1: Find the area of the circle with polar equation $r=1$.
Solution:

$$
A=\int_{0}^{2 \pi} \frac{1}{2} r^{2} d \theta=\int_{0}^{2 \pi} \frac{1}{2} d \theta=\frac{1}{2}[\theta]_{0}^{2 \pi}=\frac{1}{2}[2 \pi-0]=\pi u . a .
$$

Example2: Find the area of region lying inside the circle with polar equation $r=2$ and outside the circle with polar equation $r=1$.
Solution:

$$
A=\int_{\alpha}^{\beta} \frac{1}{2}\left[r_{2}{ }^{2}-r_{1}^{2}\right] d \theta=\int_{0}^{2 \pi} \frac{1}{2}\left[2^{2}-1^{2}\right] d \theta=\int_{0}^{2 \pi} \frac{3}{2} d \theta=\frac{3}{2}[\theta]_{0}^{2 \pi}=\frac{3}{2}[2 \pi-0]=3 \pi u . a .
$$

Example3: Find the area of region lying in the first quadrant and inside the circle with polar equation $r=2$.

Solution:

$$
A=\int_{\alpha}^{\beta} \frac{1}{2}\left[r^{2}\right] d \theta=\int_{0}^{\frac{\pi}{2}} \frac{1}{2}\left[2^{2}\right] d \theta=\int_{0}^{\frac{\pi}{2}} 2 d \theta=2[\theta]_{0}^{\frac{\pi}{2}}=2\left[\frac{\pi}{2}-0\right]=\pi u . a .
$$

