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Human gut microbiome viewed across
age and geography
Tanya Yatsunenko1, Federico E. Rey1, Mark J. Manary2,3, Indi Trehan2,4, Maria Gloria Dominguez-Bello5, Monica Contreras6,
Magda Magris7, Glida Hidalgo7, Robert N. Baldassano8, Andrey P. Anokhin9, Andrew C. Heath9, Barbara Warner2, Jens Reeder10,
Justin Kuczynski10, J. Gregory Caporaso11, Catherine A. Lozupone10, Christian Lauber10, Jose Carlos Clemente10, Dan Knights10,
Rob Knight10,12 & Jeffrey I. Gordon1

Gut microbial communities represent one source of human genetic and metabolic diversity. To examine how gut
microbiomes differ among human populations, here we characterize bacterial species in fecal samples from 531
individuals, plus the gene content of 110 of them. The cohort encompassed healthy children and adults from the
Amazonas of Venezuela, rural Malawi and US metropolitan areas and included mono- and dizygotic twins. Shared
features of the functional maturation of the gut microbiome were identified during the first three years of life in all
three populations, including age-associated changes in the genes involved in vitamin biosynthesis and metabolism.
Pronounced differences in bacterial assemblages and functional gene repertoires were noted between US residents and
those in the other two countries. These distinctive features are evident in early infancy as well as adulthood. Our findings
underscore the need to consider the microbiome when evaluating human development, nutritional needs, physiological
variations and the impact of westernization.

Genetic variation between human populations is typically viewed as
differences in the allele frequencies of shared Homo sapiens genes.
Another source of genetic and metabolic diversity resides in differ-
ences in the representation of the millions of genes and myriad gene
functions within our gut microbial communities1–3. Sampling a broad
population of healthy humans representing different ages and cultural
traditions offers an opportunity to discover how our gut microbiomes
evolve within a lifespan, vary between populations, and respond to
our changing lifestyles1,4–9. Therefore, we conducted a demonstration
project to address the question of whether there are discernible patterns
of functional maturation of the gut communities of healthy infants and
children living in geographically and culturally distinct settings.

Fecal samples were obtained from individuals in families of Guahibo
Amerindians residing in two villages (Platanillal and Coromoto), sepa-
rated by 10 miles, and located near Puerto Ayacucho in the Amazonas
State of Venezuela (see Supplementary Table 1a, b for information
about their diets). Fecal samples were also procured from members
of families living in four rural communities of Malawi located within
10–70 miles of one another (Chamba, Makwhira, Mayaka and Mbiza).
Lifestyles in these villages are very similar, and diets are relatively
monotonous, dominated by maize (Supplementary Table 1c). In addi-
tion, we sampled families distributed across the United States, includ-
ing the greater metropolitan areas of St Louis, Philadelphia and
Boulder. The sampled populations included parents and siblings,
and, in the United States and Malawi, monozygotic and dizygotic twin
pairs. A total of 531 individuals (151 families) were studied: 115 indi-
viduals (34 families) from Malawi; 100 individuals (19 families) from
Venezuela; and 316 individuals (98 families) from the United States
(see Supplementary Table 2 for subject characteristics; note that all

except 35 adults and one child from the United States were explicitly
recruited for this study).

DNA was extracted from a single fecal sample donated by each
person. Variable region 4 (V4) of bacterial 16S ribosomal RNA genes
present in each fecal community was amplified by PCR, and the
resulting amplicons were sequenced on an Illumina HiSeq 2000
instrument (n 5 1,803,250 6 562,877 (mean 6 s.d.) reads per fecal
sample; 1,093,740,274 total reads; Supplementary Table 2a) to define
the phylogenetic types (phylotypes) present. Species-level bacterial
phylotypes were defined as organisms sharing $97% nucleotide
sequence identity in the V4 regions of their 16S rRNA genes10. In
addition, we characterized functions encoded in community DNA
by performing multiplex shotgun 454 pyrosequencing of fecal DNA
from a subset of 110 fecal samples, encompassing 43 families with
members matched as closely as possible for age (155,890 6 87,083
reads per sample; total size of data set, 5.9 Gb; Supplementary Table
2b). The resulting shotgun reads were annotated with Kyoto
Encyclopedia of Genes and Genomes (KEGG) Orthology group
(KO) assignments and with Enzyme Commision (EC) numbers
(KEGG version 58).

Taxonomic changes as a function of age and population
Many reports have examined the bacterial species content of the
gastrointestinal tracts of infants and children within one population
using culture-based methods. Far fewer studies have attempted to
compare the gut communities of humans living in markedly different
socio-economic, geographic and cultural settings11,12. Culture-
independent techniques have been used to define the gut microbiota
at various points in postnatal development6,13, but have been limited
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by the analytic methods used, by the low number of subjects examined,
or by the scope of the populations surveyed. These studies have
nonetheless provided important insights. Using 16S rRNA gene-based
microarrays14, a recent study found considerable intra- and inter-
personal variation in fecal bacterial community structures during the
first year of life in 12 unrelated children and 1 twin pair. Interpersonal
variation was less within the twin pair, and intrapersonal variation
decreased as a function of age. A quantitative PCR study of five
bacterial taxa in the fecal microbiota of 1,032 Dutch infants at 1 month
of age15 documented differences based on birth mode (Caesarian
versus vaginal; also see ref. 8).

We collected bacterial V4 16S rRNA data from 326 individuals aged
0–17 years (83 Malawian, 65 Amerindian and 178 US residents), plus
202 adults aged 18–70 years (31 Malawians, 35 Amerindians and 136
US residents). The 16S rRNA data sets were first analysed using
UniFrac, an algorithm that measures similarity among microbial
communities based on the degree to which their component taxa
share branch length on a bacterial tree of life16. There were several
notable findings. First, the phylogenetic composition of the bacterial
communities evolved towards an adult-like configuration within the
three-year period after birth in all three populations (Fig. 1a and
Supplementary Fig. 1). Second, interpersonal variation was signifi-
cantly greater among children than among adults; this finding was
robust to geography (Fig. 1b; see also ref. 4). Third, there were

significant differences in the phylogenetic composition of fecal micro-
biota between individuals living in the different countries, with espe-
cially pronounced separation occurring between the US and the
Malawian and Amerindian gut communities; this was true for indi-
viduals aged 0–3 years, 3–17 years, and for adults (Fig. 1b and
Supplementary Table 3). Unsupervised clustering using principal
coordinates analysis (PCoA) of UniFrac distance matrices indicated
that age and geography/cultural traditions primarily explain the vari-
ation in our data set, in which US microbiota clustered separately
from non-US microbiota along principal coordinate 1 (Fig. 1c and
Supplementary Fig. 2). However, within the non-US populations,
separation between Malawians and Amerindians was also observed
(along principal coordinate 3 in the case of adults; Supplementary Fig.
2f). We did not find any significant clustering by village for Malawians
and Amerindians or by region within the United States. Fourth,
bacterial diversity increased with age in all three populations
(Fig. 2a, b). The fecal microbiota of US adults was the least diverse
compared with the two other populations (Fig. 2c, P , 0.005, analysis
of variance (ANOVA) with Bonferroni post-hoc test): these differ-
ences were evident in children older than 3 years of age (P , 0.005,
ANOVA with Bonferroni post-hoc test), but not in younger subjects.

We next used the non-parametric Spearman rank correlation to
determine which bacterial taxa change monotonically with increasing
age within and between the three sampled populations. We only
considered children who were breastfed and used data sets obtained
from the V4 region of the 16S rRNA gene as well as data sets of
shotgun pyrosequencing reads from the fecal microbiomes of the
110 sampled individuals (24 babies (0.6–5 months old), 60 children
and adolescents (6 months to 17 years old) and 26 adults). Shotgun
reads were mapped to 126 sequenced human gut-derived microbial
species (Supplementary Table 4). The advantage of using these 126
gut microbes as a reference database is that spurious hits of shotgun
microbiome reads to taxa that are not present in the gut are minimized.
Nonetheless, when we repeated the entire analysis, blasting against
1,280 genomes in KEGG, the results were similar (Supplementary
Fig. 3). Phylotypes belonging to Bifidobacterium longum exhibited a
significant decline in proportional representation with increasing age
in all three populations (Supplementary Fig. 3a). Most (75 6 20%)
shotgun and 16S rRNA V4 sequences in all babies mapped to members
of the Bifidobacterium genus. Bifidobacteria continued to dominate
fecal communities throughout the first year of life, although their
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Figure 1 | Differences in the fecal microbial communities of Malawians,
Amerindians and US children and adults. a, UniFrac distances between
children and adults decrease with increasing age of children in each population.
Each point shows the average distance between a child and all adults unrelated
to that child but from the same country. Results are derived from bacterial V4
16S rRNA data sets. b, Large interpersonal variations are observed in the
phylogenetic configurations of fecal microbial communities at early ages.
Malawian and Amerindian (Amr) children and adults are more similar to one
another than to US children and adults. UniFrac distances were defined from
bacterial V4 16S rRNA data generated from the microbiota of 181 unrelated
adults ($18 years old) and 204 unrelated children (n 5 31 Malawians 0.03–3
years old, 21 3–17 years old; 30 Amerindians 0.08–3 years old, 29 3–17 years
old; 31 US residents 0.08–3 years old, 62 sampled at 3–17 years of age).
*P , 0.05, **P , 0.005 (Student’s t-test with 1,000 Monte Carlo simulations).
See Supplementary Table 3 for a complete description of the statistical
significance of all comparisons shown. c, PCoA of unweighted UniFrac
distances for the fecal microbiota of adults. PC, principal coordinate.
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Figure 2 | Bacterial diversity increases with age in each population. a–c, The
number of observed OTUs sharing $97% nucleotide sequence identity plotted
against age for all subjects (a), during the first 3 years of life (b), and adults
(c). Mean 6 s.e.m. are shown in c. *P , 0.05, **P , 0.005 (ANOVA with
Bonferroni post-hoc test).
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proportional representation diminished during this period, in agree-
ment with the results of several studies of small numbers of children4,6,7

(Supplementary Fig. 3). Supplementary Table 5 lists the species-level
bacterial taxa whose representation changes significantly with age in all
three populations, as well as species that change in a population-
specific manner as defined from analysis of the shotgun sequencing
data that were available from 110 of the 531 individuals.

We also used Random Forests, a supervised machine-learning
technique17, and the V4 16S rRNA data sets obtained from 528 indi-
viduals to identify bacterial species-level operational taxonomic units
(OTUs) that differentiate fecal community composition in children
and adults within and between the three populations. The purpose of a
classifier such as Random Forests is to learn a function that maps a set
of input values or predictors (here, relative OTU abundances in a
community) to a discrete output value (here, US versus non-US
microbiota). Random Forests is a particularly powerful classifier that
can exploit nonlinear relationships and complex dependencies
between OTUs. The measure of the success of the method is its ability
to classify unseen samples correctly, estimated by training it on a
subset of samples, and using it to classify the remaining samples
(cross-validation). The cross-validation error is compared with the
baseline error that would be achieved by always guessing the most
common category. As an added benefit, Random Forests assigns an
importance score to each OTU by estimating the increase in error
caused by removing that OTU from the set of predictors. In our
analysis, we considered an OTU to be highly predictive if its import-
ance score was at least 0.001; all error estimates and OTU importance
scores were averaged over 100 rarefactions at the same sample size for
each community (305,631 sequences) to control for sequencing effort.

Random Forests analysis confirmed the dominance of Bifido-
bacterium in the baby microbiota (Supplementary Table 6a). For
adults, Random Forests revealed distinct community signatures for
Western (US) and non-Western individuals (baseline error 5 0.289,
cross-validation error 5 0.011 6 0.000). Of the 92 highly predictive
species-level OTUs shown in Supplementary Table 6b, 73 were over-
represented in non-US adults, and 23 out of the 73 were assigned to
the Prevotella genus. Malawians and Amerindians could also be dis-
tinguished from each other, although the difference was less extreme
than the US versus non-US comparison (baseline error 5 0.407,
cross-validation error 5 0.018 6 0.009, 56 highly predictive OTUs;
Supplementary Table 6c). Only 28 OTUs distinguished US and
non-US infants (Supplementary Table 6d). Intriguingly, three
OTUs assigned to the Prevotella genus were overrepresented in the
US infant microbiota, unlike the result observed in adults (Supplemen-
tary Table 6d). Twenty-three OTUs discriminated Malawian and
Amerindian baby microbiomes, 20 of which were overrepresented in
the latter: most belonged to the Enterococcaceae family (Supplemen-
tary Table 6d). Thus, a Western (US) lifestyle seems to affect the
bacterial component of the gut microbiota systematically, although
this influence is subtle compared with the high degree of variability
observed in infants and children within each population (perhaps
analogous to human genetic variability, in which variation among
populations is small compared to variation within populations).

Confirming the importance of Prevotella as a discriminatory taxon, a
recent study also showed that this genus was present in higher abund-
ance in the fecal microbiota of children living in West Africa (Burkina
Faso) compared with children living in Europe (Italy)11. Furthermore, a
member of this genus is one of three bacterial species that, in European
adults, distinguishes strongly among three clusters, or enterotypes, of
gut microbiota configurations that are claimed to be reproducible
across Western adult populations18. Therefore, we asked whether the
fecal microbiota of infants and adults in each of our three geographically
distinct populations fell into natural discrete clusters19. We did not find
strong evidence for discrete clustering (see Methods), but rather for
variation driven in adults by a trade-off between Prevotella and
Bacteroides (Supplementary Fig. 4a). Including infants introduces a

new, strongly supported gradient driven by Bifidobacteria, generally
orthogonal to the Bacteroides/Prevotella trade-off (Supplementary
Fig. 4b). Clustering of sub-populations of increasing minimum age
indicates that adult cluster membership is generally consistent, but that
children between 0.6 and 1 year of age may be clustered with adults or
with younger children, depending on whether the younger children are
included in the analysis (Supplementary Fig. 4c).

This clustering analysis suggests that some features of normal vari-
ation in the bacterial composition of the gut microbiota, such as the
Prevotella/Bacteroides trade-off, are highly reproducible even in
human population subsets of reduced variability. However, a com-
plete description of variation in the human gut microbiota will require
a substantially broader cross-cultural and cross-age sampling.
Importantly, the observed age-related and geographic patterns were
also detected with lower sequencing coverage (see Supplementary
Results for a discussion of the influence of sequencing depth on the
performance of Random Forests and PCoA analyses (Supplementary
Figs 5 and 6), and our analysis of non-bacterial taxa that vary with age
and population (Supplementary Fig. 7)).

Shared functional changes over time
Few studies have described changes in the gene content of the gut
microbiome as a function of age: the largest study reported so far was
carried out in 13 healthy Japanese individuals (5 children, the youngest
3 months old, plus 8 adults)4. Our shotgun sequencing data set from
110 individuals allowed us to characterize the representation of func-
tional gene groups (KEGG KO annotations and EC numbers) in
microbiomes representing broader age groups (youngest 3 weeks),
and several distinct geographic locations and cultural traditions. We
used Hellinger distance measurements to show that just as children are
significantly more different from one another than are adults in terms
of their fecal bacterial community phylogenetic structure, they are also
more different in terms of their repertoires of microbiome-encoded
functions, as defined by the proportional representation of EC and KO
assignments. Moreover, as with UniFrac distances, Hellinger distances
were greater between the US and the other two populations at all ages
sampled (Supplementary Fig. 8). Of interest is the concordance of
patterns of covariance between the two data types: Procrustes analysis
disclosed that the goodness of fit was significant (P , 0.001 with 1,000
iterations) whether UniFrac (the most appropriate metric for 16S
rRNA data) or Hellinger distances (for consistency with the method
used on the KEGG EC and KEGG Orthology data) were used to reduce
the OTU table (Supplementary Fig. 9a, b and data not shown).
Annotation of shotgun reads from the microbiomes using the
Clusters of Orthologous Groups (COG) database produced similar
concordance with 16S rRNA data sets (Supplementary Fig. 9c).

When examining KEGG EC profiles across 110 fecal microbiomes,
we obtained the remarkable result that there were no ECs identified as
being unique to adults (n 5 26) or babies (less than 6 months old,
n 5 24). Moreover, the total number of ECs found in adults was not
significantly different than the total number of ECs scored in babies
(sampling normalized to coverage in Supplementary Fig. 10a). This
finding was robust to geography. The fraction of sequences with
assignable KEGG EC annotations declined with increasing age in all
three populations (Supplementary Fig. 10b). This may be due to the
increased complexity of the adult microbiome, with fewer represent-
ative species characterized by genome sequencing, genetic manipula-
tion or biochemically (also see Supplementary Results and
Supplementary Figs 11 and 12 for a comparison of our data set to a
published data set of fecal microbiomes sampled from 124 adults
living in Denmark and Spain2).

We used ShotgunFunctionalizerR20, a software tool designed for
metagenomic analysis and based on a Poisson model, to identify 1,008
ECs whose proportional representation in fecal microbiomes differed
significantly between all sampled breastfed babies and all adults
irrespective of their geographic location; 530 were significantly higher
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in adults (P , 0.0001, Supplementary Table 7). A prominent example
of these shared age-related changes involves the metabolism of
vitamins B12 (cobalamin) and folate. In contrast to folate, which is
synthesized by microbes and plants, cobalamin is primarily produced
by microbes21. The gut microbiomes of babies are enriched in genes
involved in the de novo biosynthesis of folate, whereas those of adults
have a significantly higher representation of genes that metabolize
dietary folate and its reduced form tetrahydrofolate (THF; Sup-
plementary Fig. 13 and Supplementary Table 7). Unlike de novo folate
biosynthetic pathway components, which decrease with age, the pro-
portional representation of genes encoding most enzymes involved in
cobalamin biosynthesis increases with age (Supplementary Figs 14, 15
and Supplementary Table 7). The folate and cobalamin pathways are
linked functionally by methionine synthase (EC2.1.1.13), which cata-
lyses the formation of THF from 5-methyl-THF and L-homocysteine,
requiring cobalamin as a cofactor; the representation of this enzyme
also increases with age (Supplementary Fig. 13).

The low relative abundance of ECs involved in cobalamin bio-
synthesis in the fecal microbiomes of babies correlates with the lower
representation of members of Bacteroidetes, Firmicutes and Archaea
in their microbiota (see Supplementary Fig. 16 for Spearman correla-
tion coefficients). Although the biosynthetic pathway for cobalamin is
well represented in the genomes of these organisms (Supplementary
Fig. 16), Bifidobacterium, Streptococcus, Lactococcus and Lactobacillus,
which dominate the baby gut microbiota (Supplementary Table 5
and Supplementary Fig. 3), are deficient in these genes (Supplemen-
tary Fig. 16). By contrast, several of these early gut colonizers contain
ECs involved in folate biosynthesis and metabolism (Supplementary
Fig. 16). The conventional view of the developing infant gut is that the
main change is in the representation of Bifidobacteria. Although dif-
ferences in the representation of Bifidobacteria contribute to this effect,
differences in vitamin metabolism among the rest of the bacteria
remain even when all Bifidobacteria reads were excluded (data not
shown). These changes in vitamin biosynthetic pathway representa-
tion in the microbiome correlate with published reports indicating that
blood levels of folate decrease and cobalamin increase with age22.

Besides cobalamin and folate, the relative abundance of ECs
involved in the biosynthesis of vitamins B7 (biotin) (biotin synthase,
EC2.8.16) and B1 (thiamine) (thiamine-phosphate diphosphorylase,
EC2.5.1.3) are significantly higher in adult microbiomes than the
microbiomes of babies (Supplementary Fig. 17 and Supplementary
Table 7). Together, these findings suggest that the microbiota should
be considered when assessing the nutritional needs of humans at
various stages of development.

Random Forests analysis asks a different statistical question from
ShotgunFunctionalizeR: that is, which genes or species are most
discriminatory among different class labels, rather than which are
most over/underrepresented, and tends to identify fewer features than
ShotgunFunctionalizeR when applied to the same data. Random
Forests analysis yielded 107 ECs that best discriminate the adult
and baby microbiomes (Supplementary Table 7). These predictive
ECs were among the most significantly different ECs determined by
ShotgunFunctionalizeR and included ECs involved in the metabolism
of cobalamin and folate (Supplementary Table 7). In addition,
Random Forests showed that ECs involved in fermentation,
methanogenesis and the metabolism of arginine, glutamate, aspartate
and lysine were higher in the adult microbiomes, whereas ECs
involved in the metabolism of cysteine and fermentation pathways
found in lactic acid bacteria (acetolactate decarboxylase (EC4.1.1.5)
and 6-phosphogluconate dehydrogenase (EC1.1.1.44)) were mainly
represented in baby microbiomes (Supplementary Fig. 17).

Comparison of the representation of KEGG KOs between baby and
adult microbiomes yielded essentially the same results as those
reported with ECs. The only new finding was the overrepresentation
of KEGG KOs assigned to a wide variety of ATP-binding cassette
(ABC) transporters in baby microbiomes (Supplementary Table 7b).

Population- and age-specific differences
ShotgunFunctionalizeR, Random Forests and Spearman rank correla-
tion analyses were all used to compare EC representation in fecal
microbiomes as a function of predefined categories of geographic
location and age. A total of 476 ECs were identified as being signifi-
cantly different in US versus Malawian and Amerindian breastfed
babies (P , 0.0001, ShotgunFunctionalizeR; Supplementary Table 8).
The most prominent differences involved pathways related to
vitamin biosynthesis and carbohydrate metabolism. Malawian and
Amerindian babies had higher representation of ECs that were com-
ponents of the vitamin B2 (riboflavin) biosynthetic pathway (Fig. 3a
and Supplementary Fig. 18). These differences were not evident in
adults (Supplementary Table 7). Riboflavin is found in human milk
and in meat and dairy products. We did not measure the levels of these
vitamins in mothers and in their breastmilk in the sampled popula-
tions, although it is tempting to speculate that the observed differences
in baby microbiomes may represent an adaptive response to vitamin
availability.

Studies in gnotobiotic mouse models indicate that the ability of
members of the microbiota to access host-derived glycans plays a
key part in establishing a gut microbial community23,24. As expected4,5,
compared with adults, baby microbiomes were enriched in ECs
involved in the foraging of glycans represented in breastmilk and
the intestinal mucosa (mannans, sialylated glycans, galactose and
fucosyloligosaccharides; Supplementary Table 7). Several genes
involved in using these host glycans are significantly overrepresented
in Amerindian and Malawian baby microbiomes compared with US
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Figure 3 | Differences in the functional profiles of fecal microbiomes in the
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baby microbiomes, most notably exo-a-sialidase and a-L-fucosidase
(Fig. 3a and Supplementary Table 8). These population-specific bio-
markers may reflect differences in the glycan content of breastmilk. In
fact, the representation of these glycoside hydrolases decreases as
Malawian and Amerindian babies mature and transition to a diet
dominated by maize, cassava and other plant-derived polysaccharides.
By contrast, a-fucosidase gene representation in the US infants
increases with age and as they become exposed to diets rich in readily
absorbed sugars (Supplementary Fig. 19d and Supplementary Table 9).

Another biomarker that distinguishes microbiomes based on age
and geography is urease (EC3.5.1.5). Urease gene representation is
significantly higher in Malawian and Amerindian baby microbiomes
and decreases with age in these two populations, unlike in the United
States, where it remains low from infancy to adulthood (Fig. 3a and
Supplementary Fig. 19e). Urea comprises up to 15% of the nitrogen
present in human breastmilk25. Urease releases ammonia that can be
used for microbial biosynthesis of essential and nonessential amino
acids26,27. Furthermore, urease has a crucial involvement in nitrogen
recycling, particularly when diets are deficient in protein28,29. Under
conditions in which dietary nitrogen is limiting, the ability of the micro-
biome to use urea would presumably be advantageous to both the
microbial community and host. Although urease is generally attributed
to Helicobacter and Proteus spp., the relative abundance of members of
these two genera was low (,0.05%) and not significantly different
between the three populations. Urease activity has been characterized
previously in Streptococcus thermophilus30. Our analysis of shotgun
reads that matched to the 126 reference gut genomes showed that
the representation of five species that possess EC3.5.1.5 (Bacteroides
cellulosilyticus WH2, Coprococcus comes, Roseburia intestinalis,
Streptococcus infantarius and S. thermophilus) was significantly higher
in Malawian and Amerindian baby microbiomes than in US baby
microbiomes (Supplementary Table 5).

Further support of the role of diet in shaping the infant gut micro-
biome comes from the differences detected between breastfed and
formula-fed babies who were part of the US infant twin cohort (see
Supplementary Results and Supplementary Figs 2c, 8 and 20).

Differences in adult fecal microbiomes
Annotation of the shotgun sequencing data sets yielded a total of
1,349 ECs in the 26 adults surveyed: ShotgunFunctionalizeR showed
that the representation of genes encoding 893 of these ECs was
significantly different in US versus Malawian/Amerindian fecal
microbiomes (P , 0.005 after multiple comparison correction; 433
overrepresented in US samples). By contrast, at this threshold only
445 ECs were identified as different between Malawian and
Amerindian adults (see Supplementary Table 10 for a complete list).
The Random Forests classifier revealed 52 ECs that were best at dis-
criminating US versus non-US adult fecal microbiomes. These ECs
were also identified by ShotgunFunctionalizeR as the most signifi-
cantly different (Supplementary Table 10).

A typical US diet is rich in protein, whereas diets in Malawi and
Amerindian populations are dominated by corn and cassava (Sup-
plementary Table 1). The differences between US and Malawian/
Amerindian microbiomes can be related to these differences in diet.
The ECs that were the most significantly enriched in US fecal micro-
biomes parallel differences observed in carnivorous versus herbivorous
mammals31. ECs encoding glutamate synthase have higher propor-
tional representation in Malawian and Amerindian adult microbiomes
and are also higher in herbivorous mammalian microbiomes31

(Fig. 3b), whereas the degradation of glutamine was overrepresented
in US as well as carnivorous mammalian microbiomes. Several ECs
involved in the degradation of other amino acids were overrepresented
in adult US fecal microbiomes: aspartate (EC4.1.1.12), proline
(EC1.5.99.8), ornithine (EC2.6.1.13) and lysine (EC5.4.3.2) (Fig. 3b),
as were ECs involved in the catabolism of simple sugars (glucose-
6-phosphate dehydrogenase and 6-phosphofructokinase), sugar

substitutes (L-iditol 2-dehydrogenase, which degrades sorbitol), and
host glycans (a-mannosidase, b-mannosidase and a-fucosidase;
Fig. 3b). By contrast, a-amylase (EC3.2.1.1), which participates in
the degradation of starch, was overrepresented in the Malawian and
Amerindian microbiomes, reflecting their corn-rich diet.

US microbiomes also had significant overrepresentation of ECs
involved in vitamin biosynthesis (cobalamin (Fig. 3b and Supplemen-
tary Fig. 15), biotin and lipoic acid (Fig. 3b)), in the metabolism of
xenobiotics (phenylacetate CoA ligase (EC6.2.1.30), which participates
in the metabolism of aromatic compounds, and mercury reductase
(EC1.16.1.1)), and in bile salt metabolism (choloylglycine hydrolase
(EC3.5.1.24), perhaps reflecting a diet richer in fats (Fig. 3b)).

Effects of kinship on the microbiome across countries
Differences in social structures may influence the extent of vertical
transmission of the microbiota and the flow of microbes and micro-
bial genes among members of a household. Differences in cultural
traditions also affect food, exposure to pets and livestock, and many
other factors that could influence how and from where a gut micro-
biota/microbiome is acquired. We previously observed that adult
monozygotic twins are no more similar to one another in terms of
their gut bacterial community structure than are adult dizygotic
twins32. This result suggests that the overall heritability of the micro-
biome is low. We confirmed that the phylogenetic architecture of the
fecal microbiota of monozygotic Malawian co-twins #3 years of age is
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no more similar than the microbiota of similarly aged dizygotic co-
twins (n 5 15 monozygotic and 6 dizygotic twin pairs). We found that
this is also true for monozygotic and dizygotic twin pairs aged 1–12
months (n 5 16 twin pairs), as well as teenaged twins (13–17 years
old; n 5 50 pairs) living together in the United States (Fig. 4).

Although biological mothers are in a unique position to transmit an
initial inoculum of microbes to their infants during and after birth,
our analysis of mothers of teenage US twins showed that their fecal
microbiota were no more similar to their children than were those of
biological fathers, and that genetically unrelated but co-habiting
mothers and fathers were significantly more similar to one another
microbially than were members of different families (Fig. 4; note that
no fathers were sampled in Malawi and only four fathers in the
Amerindian cohort). These latter observations emphasize the import-
ance of a history of numerous common environmental exposures in
shaping gut microbial ecology. Moreover, the similarity in the overall
pattern of the effects of kinship on microbial community structure
suggests that despite the large influence of cultural factors on which
microbes are present in both children and adults in each population,
the bases for the degree of similarity among members of a family are
consistent across the three populations studied.

Prospectus
Our results emphasize that it is essential to sample a broad population of
healthy humans over time, both in terms of their age, geography and
cultural traditions, to discover features of gut microbiomes that are
unique to different locations and lifestyles. In addition, we need to
understand how the pressures of westernization are changing the micro-
bial parts of our genetic landscape—changes that potentially mediate the
suite of pathophysiological states correlated with westernization.
Finally, given the need for global policies about sustainable agriculture
and improved nutrition, it will be important to understand how we can
match these policies not only to our varying cultural traditions but also
to our varied gut microbiomes.

METHODS SUMMARY
Sample collection. Subjects were recruited for the present study using procedures
approved by Human Studies Committees from Washington University in St
Louis, Children’s Hospital of Philadelphia, the University of Colorado,
Boulder, the University of Malawi, the University of Puerto Rico, and the
Venezuelan Institute for Scientific Research. Each fecal sample was frozen within
30 min of donation.
Multiplex DNA sequencing. Extracted genomic DNA was subjected to multiplex
Illumina sequencing of the V4 region of bacterial 16S rRNA genes, as well as
multiplex 454 pyrosequencing of total community DNA. See Methods for further
details about the analysis.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Isolation of fecal DNA and multiplex sequencing. Each participant provided a
fecal specimen that was frozen within 30 min. All samples were stored at 280 uC
and subjected to a common protocol for DNA extraction. Fecal samples were
pulverized with a mortar and pestle at 280 uC. Genomic DNA was extracted from
400 mg aliquots of frozen pulverized samples. Methods for multiplex Illumina
sequencing of V4 amplicons have been described33.

For multiplex shotgun 454 Titanium FLX pyrosequencing, each fecal com-
munity DNA sample was randomly fragmented by nebulization (500–800 base
pairs) and then labelled with a distinct Multiplex IDentifier (MID; Roche) accord-
ing the manufacturer’s protocol (Rapid Library preparation for FLX Titanium,
Roche). Equivalent amounts of 12 MID-labelled samples were pooled before each
pyrosequencer run.
Data analysis. 16S rRNA OTUs were picked from the Illumina reads using a
closed-reference OTU picking protocol against the Greengenes database
clustered at 97% identity (that is, uclust_ref: sequences are clustered against a
reference database, and reads that do not match the database are excluded from
further analyses) with uclust using the QIIME suite of software tools10 version
1.3.0-dev (pick_otus.py parameters: –max_accepts 1 –max_rejects 8 –stepwords
8 –word_length 8). Of the 1,093,740,274 Illumina reads from the V4 region of
bacterial 16S rRNA genes that passed the QIIME quality filters, 87.1%
(952,115,802) matched a reference sequence at $97% nucleotide sequence
identity. Taxonomy assignments were associated with OTUs based on the tax-
onomy associated with the Greengenes reference sequence defining each OTU.
UniFrac distances between samples were calculated using the Greengenes ref-
erence tree. Greengenes reference sequences, trees and taxonomy data used in this
analysis can be found at: http://greengenes.lbl.gov/Download/Sequence_Data/
Fasta_data_files/Reference_OTUs_for_Pipelines/Caporaso_Reference_OTUs/
gg_otus_4feb2011.tgz.

A table of OTU counts per sample was generated and used in combination with
the tree to calculate a and b diversity. To generate unweighted UniFrac distance
matrices, all communities were rarefied to 290,609 V4 16S rRNA reads per
sample. Unweighted UniFrac rather than weighted UniFrac was used for analyses
owing to the large differences in taxonomic representation among the samples.
Nonetheless, the patterns were similar with weighted UniFrac (data not shown).
Rarefaction analysis was conducted using the QIIME scripts multiple_rarefaction.py,
alpha_diversity.py and collate_alpha.py. The QIIME metric ‘observed species’ was
used to estimate a diversity in the data set.
Clustering analysis. Testing for discrete clusters was performed on the rarefied
versions of the 16S rRNA OTU relative abundance tables. OTU counts were
binned into genus-level taxonomic groups according to the taxonomic assign-
ments described earlier. Several distance measures were considered, including
Jensen–Shannon divergence, Bray–Curtis and weighted/unweighted UniFrac
distances. Clustering was performed via partitioning around medoids in the R
package cluster34. The choice of number of clusters and quality of the resulting
clusters were assessed by maximizing the silhouette index35. Traditionally,
silhouette indices of 0.5 or above have been considered evidence of reasonable
clustering structure. Although some silhouette scores above 0.5 were found in this
data set (for example, for two clusters when clustering all adult populations with
Jensen–Shannon divergence), reclustering within different subpopulations (for
example, individual countries) introduced new cluster boundaries with silhouette
scores still near or above 0.5, indicating that silhouette index scores may need to
be substantially above 0.5 to claim clustering structure for microbial enterotype
testing. We also tested for discrete clusters using the prediction strength mea-
sure36, which showed negative results for all distances measures but unweighted
UniFrac (prediction strength 5 0.963 6 0.012 (mean 6 s.d.)). We estimated the
s.d. by tenfold jackknifing.
Shotgun sequences from fecal microbiomes. Shotgun reads were filtered using
custom Perl scripts and publicly available software to remove (1) all reads ,60
nucleotides; (2) Titanium pyrosequencing reads with two continuous and/or
three total degenerate bases (N); (3) all duplicates (a known artefact of pyrose-
quencing), defined as sequences in which the initial 20 nucleotides are identical
and that share an overall identity of .97% throughout the length of the shortest
read37; and (4) all sequences with significant similarity to human reference
genomes (Blastn E-value threshold # 1025, bitscore $ 50, percentage identity $

75%) to ensure the continued de-identification of samples.

Searches against the database of 126 human gut bacterial genomes were con-
ducted with Blastn. A sequence read was annotated as the best hit in the database
if the E-value was #1025, the bit score was $50, and the alignment was at least
95% identical between query and subject. Relative abundances of reads mapped to
each of the 126 genomes were adjusted to genome sizes. Searches against the
protein-coding component of the KEGG database (v58) and against COG (v8.3)
were conducted with BLASTX. (Note that when we performed searches against a
separate KEGG database of intergenic regions alone, very few hits were observed.)
Counts were normalized to the mapped reads. In total, 40 6 8% reads were
mapped to KEGG KOs and 56 6 11% to COG; 44 6 16% of the reads mapped
to the 126 gut genomes using 95% sequence similarity cut-off. Unmapped reads
were excluded from the analyses shown in the main text, although repeating the
analyses including these reads had little effect on the results. To quantify the
differences in KEGG EC profiles among fecal microbiomes, evenly rarefied
matrices of EC counts were created with all samples, and Hellinger distances
were calculated using QIIME.

Spearman rank correlations were carried out using the R statistical software38.
To identify bacterial taxa that change with increasing age in each population, the
proportion of reads that map to each of the 126 reference sequenced human gut
genomes in each fecal microbiome was identified. The relative abundance of reads
from each genome was then correlated with age (years) for each geographic
region. To identify genes encoding ECs that change with age, the proportion of
reads annotated with each EC in each fecal microbiome was identified. The
relative abundance of each EC was subsequently correlated with age (years) for
each geographic region.
Random Forests analysis. Random Forests analysis was applied as described in
ref. 8, using the randomForest package in R39 with 500 trees and all default
settings. The generalization error was estimated using fivefold cross-validation
for all comparisons involving adults from the 16S rRNA data; leave-one-out
cross-validation was used for all other comparisons. For each comparison, the
relevant subset of samples was extracted from the table of OTU or EC counts, and
all singleton OTUs/ECs (or all OTUs/ECs present in fewer than 5 samples for the
16S rRNA comparisons involving adults) were subsequently removed. Random
Forests analysis was performed for each comparison on 100 rarefied versions of
the data, and the average cross-validation error estimates and OTU/EC import-
ance estimates were reported. Rarefaction depths were chosen manually to
include all samples without exceptionally low total sequences. The chosen depth
for each comparison and the resulting number of samples are shown in
Supplementary Tables 6–8 and Supplementary Fig. 6. For the analysis shown
in Supplementary Fig. 6a, we compared the generalization errors obtained when
using 16S rRNA-based OTUs from the Illumina V4 data sets at various sequen-
cing depths. For direct evaluation of the predictive strength of the Illumina-based
OTUs, we rarefied at the lowest observed depth of 305,631 sequences for each
classification task, as well as at sequencing depths of 100, 1,000, 10,000, 100,000
and 1,000,000 reads per sample. The mean and s.d. of the cross-validation error
were estimated for each classification tasking using ten independent
rarefactions of the data. We also included the expected ‘baseline’ error obtained
by a classifier that simply predicts the most common class label.
Data deposition. DNA sequences have been deposited in MG-RAST (http://
metagenomics.anl.gov/) under accession numbers ‘qiime:850’ for Illumina V4
16S rRNA data sets, and ‘qiime:621’ for fecal microbiome shotgun sequencing
data sets.
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