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Introduction

Particularly useful and important metric spaces are obtained
if we take a vector space and define on it a metric by means of a
norm . The resulting space is called a normed space. If it is a
complete metric space, it is called a Banach space. The theory
of normed spaces, in particular Banach spaces, and the theory of
linear operators defined on them are the most highly developed
parts of functional analysis.

Inner product spaces are special normed spaces, as we shall
see. Historically they are older than general normed spaces.
Their theory is richer and retains many features of Euclidean
spaces, a central concept being orthogonality. In fact, inner
product spaces are probably the most natural generalization of
Euclidean spaces, The whole theory was initiated by the work of
D. Hilbert (1912)on integral equations. The currently used
geometrical notation and terminology is analogous to that of
Euclidean geometry and was coined by E. Schmidt (1908), who
followed a suggestion of G. Kowalewski. These spaces have
been, up to now, the most useful spaces in practical applications
of functional analysis.
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CHAPTER 1

1.1 Metric Space

In calculus we study functions defined on real line R . A little
reflection shows that in limit processes and many other
considerations we use the fact that on R we have available a
distance function, call it d, which associates a distance
d(x,y)= | X—y | for every pair of point x,y € R

1.1-1 Definition (Metric space , metric).

A metric space is a pair (X,d),where X is a set and d is a metric
on X space (or distance function on X), that is, a function
defined on X x X such that, for all x, y,z e X we have:

(M1) disreal-valued, finite and nonnegative .

(M2) d(x,y)=0 ifandonlyif x=y.

M3)  d(x,y)=d(y,x) (symmetry).
M4) dx,y) <d(x,2)+d(z,y) (Triangle inequality)
Examples:

1.1-2 Real line R. This is the set of all real numbers, taken with
the usual metric defined by

d(X,y)=|X—y| , X, YER
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1.1-3 Euclidean plane R2 The metric space R2? ,space called
the Euclidean plane, is obtained if we take the set of ordered

pairs(&.¢,) of real numbers, Then d:R*XR*-R is defined by

d(x,y) =& -1)+ (& ~1,)

Where x :(fpfz), y =(771,772)

1.2 (Holder inequality).

1 1
Let P> 1, and define g€ R such that ; ;4’; =1 then,

"= {X = (&) f € C;Z‘é"p < OO}

l/q

Proof:
p ) q
Let (é)e lp’(n)e lq —I,ZUi =1
i=1
al’
Note that for any @, >0; of S7+§

So foreachi1=1,2,...
Zland =7

i

Putting &; = , we have ie N

=P
=|E|7 S‘é‘ 771 — foreach ie N
P q

Hence, for each i €[l and nel] we have,



= =z 1 1
7. =1Lth | <—+—=1
= | en;‘fn‘ P q

Now, let (é)e lp,(ﬂ,-)e [, and put

and 1, = Tl

Fo S -
(Z\cf [y Q] )™

We note that the definition of fl ) 771 are both satisfy the

condition.
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l/q

This 1nequa11ty is called Holder 1nequa11ty.
If p=2, then q =2. This inequality yields the Cauchy — Schwarz
inequality

1/2 1/2

i=1

1.3 (Minkowski inequality)
For any (5-),(77-) €l” ,p>1. We have:

l/p
Proof:
put @, =6, +17,,i€ N
P _ -1 p-1 < p-1
a)i _ a)i 7 _ a)l _( i

Then for each n€ N

n p n n n B
Z_; | < Z:; (|€: | Dleo,|” = Z:; & [leo,|” L+ Z:; n: || 1

Note that 2 [&]@]"™ < Q61N Q@) (From
[:1 l:1 l:1
Holder inequality)
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1 1
Where g€ R and ;+;: p

11 N
since —+—=1=4772
P 4 qp

=1:>q+p:qp:>(p_l)=p

we have

Z |§,~||C()i|1’_1 < (Z |éfi|1’)1/p(z |a)i|17)1/q

-1
Also, v . l/q » form Holder
i=1
inequality
C p-1 - p\1/ PA1/
This implies that 2771' @ S(Z ) Q @)
i=1 i=1
! N p P\l/p
<Q |l H"1 7, ]

i=l1

n p n "
foreachne N= X @ < QL |&[D"" + )"
=l i=1 i=1

n p n n
foreachne N= OQ_|&+m,| )" < Q&N +O Imi|H”
i=1 i=1 i=1

< o0;

> we have

o p
Since Z|‘fl |

l/p
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CHAPTER 2

2.1: Normed spaces, Banach Spaces.

We first introduce the concept of a norm (definition below),
which uses the algebraic operations of vector spaces. Then we
employ the norm to obtain a metric d that is of the desired kind

2.1-1.Definition:

A norm on a vector space X (over K)

a scalar field K is a real valued function, |[|: X = R which

satisfies the following properties:

nlx][z20,vxe X
2) ‘xH=O<:> x=0,Vxe X

3) x| = e

,Vx € X ;€ K be any scalar.

4 [l + vl < e+ ylve ye x
A Banach space is a complete normed space it is complete in the

metric defined by the norm d(x,y)= Hx -y H

2.1.2. Lemma: The norm is continuous function.

Let X be a norm space and note that for any x,ye X .

[l =Tyl < flx = 51



Proof: Let x,y € X ,then

[yl = lly = x+ x| < fly= x|+ x|

[¥ll= e =y + vl < e = ]+ >
Va,ye X xf[< flx = yf+ Iy

--------- = [l Iyl e - v

Replacing x by y we have
Iy I=lel<ly =x]=[x -]
e, [|¥][= [l < = ¥
= (= lyp <> -yl =
— @ xl= ¥z == ¥l=

=[x =yl =yl < e = ]

Hence H‘x |-y lf<lx =]

Examples:
1) Consider the space

=(r =)L G eCYE] <y l”

Define ||.||: " 2, R by

1

Il=(Ze v |

Then (£”,||.||) is a normed space.
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Proof:
first, we have to prove that (*) is well defined. So,

let X :(é:j)e ¢

=Y 1E P <oo
j=l

Since the sum of a convergent series is unique ,
(*) 1s well defined

@ =p
1) Since [E]|E[1E Lol € 1,20
= & +|E|H1E T+ 1 E T +...2 0
S e 20

1

2) Ox [bo@(im’j |P]p —0e & =0y

@(fj);l:O@x =0
3) Dax D:(imgj |"]p :(Ial” SIE |"]p Sl Dx [

4)Ox +y Dz(ilﬁj +17, I”]p S(ilﬁj I”]p+(ilﬂj I”jp

(by Minkowski inequality)
<UOx 0O+ Uy [



( ., )
(1)

2)Space ¢~ - This space is a Banach Space with norm given by
Ux C=suplg; |
j

We have to prove is well defined

0" ={x = (f} ) 16 €l ,(fj )is abounded .sequans}
is a bounded sequence = IM >031&; I M viel (&)

is a bounded subset of 0 A :{lgj lj e D}

SUpA exist =

SUF 1S 1 exist and is unige =
JE

To each X Z(fj )E 0=, suplg; lig uniqe

jel

Now, Let x =(&)€ ["then

1) [x|=0 since |&|=0= sup|&|=0

D)|x|=0 esup |£|=0]E]=0 Vi=12,..
E=0Vi=12,..x=0

3) Forany & € R

x| = sup|ad; | = sup|ef|£ | =|efsup|&; | =[x |

4)Let y=(n,)el”

e +3[=suplé, +7
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)
;

< sup(‘«fl. ‘ +\n.

Ssup‘«fihsup

=[xl +1v]

Hence [~ is a normed space.

2.2. Some properties of normed spaces.
2.2-1 Definition:

A subspace Y of a normed space X is a subspace of X
considered as a vector space, with the norm obtained by
restricting norm on X to the subset Y.

If Y is closed in X , then Y is called a closed subspace of X.
2.2-2: Definition (convergence of sequences)

(i) A sequence (x,) in a normed space X is said to be convergent
if X contains an x such that

lim ||x” - x|| =0
Then we write (x,) — X and call X the limit of (x,).

(ii) A sequence (X, ) in a normed space X is Cauchy if for every
€ > 0 there is an N such that

< €&

for all m, n >NHXm — Xy



f ]
L =)
2.2-3: Definition (infinite series) .
A series ). X, = x, + X, + ... in normed space (X, ||.|)) is said

k=1

to be convergent if the sequence (S,) of the partial sums

n
convergent ,where S, = Zx i
i=1

In this case S = X, X, = X, + X, + ...
k=1

[e )

18 an

n=1

1s said to be absolutely convergent, if Z‘ Xn
n=1

convergent.

Lemma (2.2.4) Let X is a Banach space if > x, is absolutely
convergent then Z X, 1S convergent.

Proof:

Suppose D x, is absolutely convergent.

1s convergent = Z X,

the sequence (t,) of partial sums of >’ is convergent, =

xl‘t
where ¢, = ZHX,H
j=1

is a Cauchy sequence. = 1,

Let € > 0 be given
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Since (7, ) is a Cauchy sequence 3 N,e N »:Va,m =N, ,

hence

t,—1,|<¢€
,n>mvVnm<N

n
ij

j=m+1

> Jefl<es > Iy
j 1 1

j=N_,+ j=m+

n

< 2 Jul -

j=m+l1

n

ij—ixj

j=1 j=1

S, =S.l=

IA

is a Cauchy sequence in X= (S,)
Since X is complete

convergence in X= (S,)

1s convergence = Z X,

2.2.5. Definition:

Let X be a normed space. The space X is said to be complete if
every Cauchy sequence in X converges.

Remark:

If a normed space X contains a sequence (e,) with the property
that for every xe X there is a unique sequence of scalars (&, )
such that

as n —> oo Hx - (e +....00e,)

Then (e,) 1s called a Schuder basis for X

Then we write, X = Z ae;
i=1
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2.2.6. Definition : (Dense set, separable space)

A subset M of a normed space X is said to be dense in X if

M=X ,whereﬁ 18 the closure of M.

X 1s said to be separable if it is has a countable subset which is
dense in X.

2.2.7: Theorem (complete subspace):

A subspace M of a complete metric space X is itself complete if
and only if the set M is closed in X.

Proof:

Suppose M be complete = every Cauchy sequence in M is
Convergent

Let x € M = Ja sequence (x,)in M st x, —x
Since (x,) is convergent = X, is Cauchy sequence in M.

Since M is complete = (X,) converges in M, say (x,) = Yo
eM

By the uniqueness of the limit x = y, € M = McM (1)
——-(2) (Clearly by definition) M < M

From (1) and (2), we have M=M ,hence M is closed.

Conversely, suppose M is closed, and let (x,) be a Cauchy
sequence in M.

is a Cauchy sequence in X.= (x,)

Since X is complete = (x,) convergence to xo = X, € M
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Since M is closed = X, € M=M

every Cauchy sequences in M convergent in M=
M is complete=

2.2-8 Theorem (Completion).

Let x =(X ,1I)be a normed space. Then there is banach space

x and an isomerty . A from X onto a subspace W of X which is

dense in x . The spacex is unique, except for isometries.
2.3.Linear Operators

2.3-1 Definition (Linear Operators )

A linear operators T is an operator such that

(1) the domain D(T) of T is a vector space real or complex
and the range R(T) lies in a vector space over the same field

(11) for all x, y €D(T) and any scalars a,

T(x +y)=T x +Ty
T(ax)= aTx (1)

By definition , the null space of T is the set of all x e D(T) such
that Tx =0

Clearly , (1) is equivalent to

Tlax+PBy)= aTx+ BTy, Vx,y € D(T) and a, BeK (R or()
Examples:

2.3-2: Identity operator .

Let X be a vector space over K(R or C).

The identity operator I: X — X is defined by Ix = x for all xe X
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Forallx,y€ X,a,Lp € K
[lax+Py)=ax+Py
= o I(x)+B I(y)
Hence , Iis an operator
2.3-3:Zero operator.
The zero operator O:X — X is defined by Ox =0 for all x€ X
O(ax+pBy)=0
=0+0
=aOx+BO0y

Hence, O is an operator .

2.3-4: Integration.

The function space Cla, b], as a set X we take the set of all real-
valued functions X, y, ...which are functions of independent real
variable t and are defined and continuous on a given closed
bound interval J=[a, b]

Now, A linear operator T from C[a, b]into itself can be defined
by

Tx(t) = [ x(t) dt t€ [a, b]
Proof:

Since any continuous function on [a, b ] is integrable on [a, b ]

= T 1s well-defined



( .2 )
| 8]

T((ax +By)V) = [ (ax + fy)(t) dt
=T ax(t) + By(t) dt
= ax(t) dt+[ By(t) dt

=af x(t) dt+Bf y(t) dt
=a T x(t) +  Ty(t)

Hence , T is an operator

2.3-5: Multiplication by t.

Another linear operator T from Cl[a , b] into itself is defined by
(T x)(t)=T x(t) =t x(t) , Vt€E[a,Db] (*)
Proof:

I want proof (*) is well-defined
Letx,y Cla,b] s.tx=y
= x(t)=y(t) forallt€ [a,Db]
= tx(t) =t y(t)
= Tx() + Ty()
Hence , (*) is well defined
Now I want to prove (* )is an operator
T(a x +B y)(©) = t(a x +B y)(V)
= t(a x(t) + t (B y(V))
=0 (txX(1) + P (t y(1))
=a T x(t) +  Ty(t)
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Hence , T is an operator

2.3-5 Theorem ( range and null space ).
Let T be a linear operator .

Then:

(a)The range R(T) is a vector space .

(b)If dim D(T) =n < o0, then dim R(T) <n..
(c)The null space N(T) 1s a vector space .
proof :

(a)We take any y;, y,ER(T) and show that ay,;+y,ER(T) for
any scalars a, f3

Since y;,y,€R(T), we have y,;=Tx; , y,=Tx, for some x; x,€D(T)
and ax;+Bx,€D(T) (since D(T) is a vector space).

The linearity of T yields

T(ox;+pxy) = a Tx; + B Tx,
=ay;+y2

Hence ay,+Py,ER(T). (since y;, y,ER(T) were arbitrary and so
were the scalar )

(b) We choose n+1 elements yy,y,,...,yn1 0f R(T) in an
arbitrary Fashion.

Then we have y; =Txy,...,yn =T X 41 for some xy, ...,X p41 10
D(T).

Since dim D(T) = n, this set {xq, ..., X,, ;1 } must be linearly
dependent. Hence a4 X 1+...+0,,1X,41 = 0 for some scalars
oy,...,0441 , NOt all zero.
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Since T is linear and TO = 0, application of T on both sides gives
T(oXi+. ..+ 1 Xpe1) = 01y 1+, . H0ne Yo 1=0

This shows that {y;, ..., V,+1} is a linearly dependent set .
(since the o s are not all zero ).

Remembering that this subset of R(T) was chosen in an arbitrary
fashion , we conclude that R(T) has no linearly independent
subsets of n+1 or elements .By the definition this means that
dim R(T) <n

(c)We take any x;,x,€ N(T) . then Tx; = Tx, =0.
Since T is linear , for any a,  we have
T(ox,Bxz) = aTx,fTx, =0
This shows that ax;+px,€ N(T).Hence N(T) is a vector space.
2.3-6 Theorem (Inverse operator).

Let X,Y be vector spaces, both domain D(T) complex. Let
T:D(T) — Y be a linear operator with domain D(T) X

and range R(T) Y. then:

(a)The inverse T! :R(T) — D(T) exists if and only if
Tx=0=x=0

(b)If T exist, it is a linear operator.

(o)If dim D(T) =n < o0 and T exists, then dim R(T) = dim
D(T)

Proof:
(< ) Iwantto prove T isexist ©Tis 1-1  (a)

Now , suppose T(x) =0 = x=0



[ 2)
Let T(x;) = T(x,)
= T(x) —T(xz) =0
= TX;—%x,)=0 ( since T 1s a linear operator )
—=X;-X,=0 ( from given )
=>X| =X,
Tisl-1=

T is an exist =
(=) I want to prove if T(x) =0 = x =0
Let T is an exist then, Tx) =T (x) = x;=X
Take x, =0, T(x;) = T(0) =x,=0
=>Tx;)=0=>x,=0 (since T(0)=0 )
This completes the proof of (a)
(b)We assume that T exists and show that T™ is linear.
T R(T) - D(T)
Y,-Tx;andy, =Tx,, where x;, x;,€D(T)
Then xlzT'lyl and x, = T! \B)
T is linear, so that for any scalars o and 3 we have
ay +Py> = aTx+ BTx,= T(ax;+Pxs,)
Since x;= T y». this implies
T'l(ay1+[3y2) = aX;+pX, - a T! yi+ P T! \B)
Hence, T 'is linear.

(c¢) we have dim R(T) < dim D(T) (1)( by theorem 2.3-5)
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And TH:R(T) = D(T)

= dim R(TH)=dim D(T) <dim D(T") =dim R(T) (2)
Then from (1), (2) dim R(T) = dim D(T)
2.3-7 Lemma ( inverse of product ).

Let T:X —» Y and S:Y — Z be bijective linear operators,
where X,Y,Z are vector spaces .Then the inverse STz - X
of the product ST exists, and (ST)'1=T'IS'1

Applications

Application(1):Let T:D(T) — Y be a linear operator whose
inverse exists. If {xi,..., X, } 1s a linearly independent set in
D(T), Then the set {Txy,...,T x,} is an linearly independent.

Suppose o, Tx;+...+a, T x,=0 for some scalars a,...q,
T(o ;X 1+...0 .X,)=T(0) =0 (since T is linear ) =

o X+...+0, X,=0 (since Tis 1-1)=

But x;,...,X, are linear independent

o=...=0,=0=

Hence the set {Txy,...,T x,}is linearly independent

Application(2):Let T:X =Y be a linear operator and
dimX=dimY=n<oo Show that R(T)=Y if and only if

T 'exist
Suppose T:X —Y is onto T(X)=Y, dim X=dim Y=n

E={e,,...,e,}is a basis for X
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Let yeY =T(X)
y=T x for some xeX
x€X=span{ey,...,e,}

—=>x=yr,a; e ,forsomeay,...,0,

=y=T x=T(XiZ; a; )=Xi=1 @; Te;

= {Tey,...,Te,}generates Y

— {Tey,...,Te,} is a basis for Y
Now, let x€ X 3: Tx = 0,writing Xx=).1-, &; €;
0=Tx=Y",a; Te;= o;=...=0,=0
Since {T e;: 1 =1,..,n}is linearly independent
= Tis1 1> T T(X)=Y—-X exists
Conversely, Suppose T":R(T)— X exists
We have to prove R(T)=Y
Since T:X-R(T), T :R(T)»X

— dim R(T)<dim X and dim X <dim R(T)
= dimR(T) = dimx=n=dimY
Hence, R(T)=Y
2.4 Bounded and continuous linear operators.

2.4-1. Definition: Let X and Y be normed spaces and T: X = Y
linear a operoter . The operator T is said to be bounded if there

is a number c such that for all xeX I Tx|| < cl|lx]| (D)
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sup
T T
He:nce,M <c,x#0= 7|
x| x€X x|
x+#0

<c

sup
The number Ir=| is denoted by ||T||

vex [
From (1) we have ||Tx]|| < ||T]|||x]|

2.4-2. Lemma (Norm)

Let T be abounded linear operator

sup
xe X
@ IT = I Tl
[l =1
SUP )| - .
(b) [|IT|| = xe X Tl Satisfies the properties of the norm
X #0

Proof:

(a)Let T: X — Y be abounded linear operator

=c>03:||Tx|| < cllx|]| vx e X

Sup
xe X ||Tx|

x#0 x|

ITIl =




( - )
\ )

we want to prove ||T|| = xes;(lp

x||=1

I 7]l

Let ||x||=a and y= (1/a)y , x#0 ||y||=1

sup

And since T is linear and (1) is given ||T|| = * € X @
x#z0

sup Sup
X
=< X lTCy| == 7 Tyl
x#0 @ Hﬂ=1

(b)1) since ITx]| = 0 and ¥ [ 20

sup sup
= ||7|| = e X Il ==X || Tx[= 0
B -
x#0 X

2 suppse [F[=0 = P1ms1_ g

x#0

17|
1|

=0=||Tx]| =0 VxeX,x+0

= Tx=0 Vx€X,x # 0, hence T=0
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vex x|
x #0

- fafsup 'ﬁx ”” |7

xiO

4)LetT;: X = Y and T,: X — Y are bounded linear Operator,

then :
| T+ ||_Sup||(T1+T2)(x)|| _ P o+
20 ex x| xEX x|
x*0 x#0
P, Plnm]|
= xex Jx]  xex |«
x+0 x#0
=[| T {|+[| T2 |
Examples:

2.4-3. ( Identity operator ) the identity operator I: X — Xon a

normed space X is bounded and has normed HI H =1

|| Ix || = % =1, Hence I1s bounded
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2.4-4. (zero operator ) :the zero operator O: X — Yon a normed

space X is bounded and has

norm||O|| = 0

2.4-5. (differentiation operator )

Let X be the normed space of all polynomials on J=[a, b] with

norm given HX H = max ‘X ®),ted .

A differentiation operator T:X— Y is defined on x by
(Tx))(t)=x"(t) . T is well defined , since every polynomial x is

’
differentiable and the derivative is unique, and X 1is

polynomial on [0,1] , let x,y € X , then for any € [O, l],

(TGx+y) )(O=(x+y) (D=x"(D)+y (1)
=(Tx)(O+(Ty)(O=(Tx+Ty)(t)

Tx+ y)=Tx+ Ty ...(1).=>

Now, let @ € ] then

(aTx)(O=(ax) (H=a(x) (O=(aTx)(1)

(aTx)=a(TX)......(2)
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From(1) and (2)T is linear

Now ,Let x,(t) =t"

= x", ()=nt"" =0Tx_ 0=0x", J=max Int"" I=n

Tx
2, ]l = max|t?] = 1=> H —n, neN..(

Suppose that T is bounded

—=d some ¢ >0D>;

Orefgele]  wxex

Since ¢>0, by the Archimedes property 3n, € N
d:n, > ¢

From (*¥),yn € Nn = ||Tx, || < c||x.|| =n
= n, < ¢ < n, this contrary

= T is not bounded.



29

——
| —

2.4-6 Lemma (linear combinations).

Let {xi,...,X,} be a linearly independent set of vector in a
normed space X . then there is a number ¢>0 such that for every

choice of scalars a,,...,0, we have
||(x1x1+...+an xn" >c( | oy | +...+ | oy | )
2.4-7 Theorem (finite dimension ).

If a normed space X is finite dimensional , then every linear

operator on X is bounded.
Proof :

Let dim X=n, {ey,...,e,}a basis for X, let T:X— Y be linear

operator , Y is a normed space

Let x=)1",a;¢;,0,€K,i=1,..,n, and let M— ||Tel||

ITxll = 1Ty aier DIl = 1Xiz1 a; (Tl <

b

M
L laillTedl < Sleal (M Tedl) = MEE, |a;

1<i<n

Sincefe, ..., e, } Is linear independent ,then by lemma 2.4-6
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= dc>0 >

OxO=Oage, +...+ae, 0> | |
i=l1

SOTx (MY oyl <0+ +a,e, (= Ox [
i=1 C C

Hence, T 1s bounded.
Remark:

Let T : X —Y be any operator , not necessarily linear , where X

an Y are normed spaces , the operator. T is continuous at an

x,€ X if for every € > 0 thereis ad >0 such that

||T x—Tx0|| for all x € X satisfying HX _on <o

2.4-8.thearem (continuity and boundedness):

let 7 : X —Y be linear operator , where X,Y are normed spaces ,

then :

(a)T 1s continuous if and only if T is bounded . (a

(b) If T is continuous at a single point , it is continuous on X.
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Proof:

(a) suppose T is bounded

=3c>05  [Tx||<|r|x|vx € X

To show that T is continuous , we show that T is continuous at

every point X € X

So, let x, be arbitrary point in X, and let £ >0be given we need

to find 0 >0 >:
if Ux-x,J<0 then [Tx-Tx,[l<e ,xeX

Now,||Tx — Txgl| = [IT(x — x)|| ( since T is linear)

< |IT|l|lx = xoll (since T is bounded)
. S = 3
By taking ——2|P, ”

E

=0Tx-Tx, KT [T x-x, KIT[
20T0

<€
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Since X, € X was arbitrary , this shows that T is continuous.

Conversely , assume that T is continuous at an arbitrary x, € X

then :
forgivene > 036 =6,>0 3:if|lx —xoll < 6
then ||Tx — Tx,|| < €
We want to show T 1s bounded . So,

ie.I3c>0 o:||Tx|| < clx|]] VxeX

let x be any elementin X ,x # 0

o
Z=Xx,+ X
2|l
:>Hz —x,||= J X =éM<§
2l 2 |
= |z -Tx, | <e




(=)
that is
Fx0+ J T'x -Tx , |<E€&
2 x|
[rx|<e=|rx ||<—||x|
T '
take C:2_g
o

=T is bounded

(b) Continuity of T at a point implies boundedness of T by the
second part of the proof of (a), which in turn implies continuity

of T by (a) .

2.4-9. corollary ( continuity, null space)

let T be a bounded linear operator then :

a) x, = x where x,,x in X, implies Tx,,—Tx
b) the null space N(T)is closed subspace of X.
proof :

let T be a bounded linear operator , and let (x,,) = x ,Vne N

then:

”Txn —Tx ” = ”T (x, —x )” (since T is linear)
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< |\IT|llx,, — x| (*)(since T is bounded )

Now, let £ >0 be given , since (x,)—x , for

Hk eN 3: ”xn 2”T” n > ks (1)
Hence, where n = k, , from (*)
8
=UTx, -Tx[KITLIx, —
20TH 2

Therefore, Tx,, - Tx
(b)The null space N(T)={x € X :Tx =0} , we wantto  (b)
prove N(T) is closed, So let x € N(T)

xeNT)=4dx,) in NT)>x,—>x (by theorem)
=Tx, —»Tx by part (a)

But I'x, =0 (since x,e N (T))
= N() c N(T) ’TX:O = XE N(T)
since N(T)c N(T)

= N(T)= N(T)
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= N(T) i1s closed

2.4-10.theorem (bounded linear extension):

let T: D(T) — Ybe abounded linear operator , where D(T) C X

and Y are a Banach space , then T has an extension

T: ﬁ -Y

Where T is abounded linear operator of norm ||T|| = || T || :
Proof :

Let x € m — 3 sequence (x,;) in X 3: x,—Xx

=lUx, —x =0

Define : D(T) - Y(Tx,)_, is asequencein Y.

T(x) =1im(Tx,,)%, , to show that T is will defined

Since (x,) >x = (x,,) 1s Cauchy sequence n X,

let € > 0 be given
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3k, e N |x, —xmu<%rH Vn,m 2K, (1)

now |Tx, =Tx, =[x, —x, )| <|T|

<|r ”%TH

X, =,

is Cauchy sequence in Y, since Y is a Banach space = Tx,)

converges — lim(T'x ) exist.= (Tx,,)

We show that this definition is independent of the particular

choice of a sequence in D(T) converging to x. suppose that

(x,),(z,) are two sequences in D(T) which convergence to x
and let (V,) sequence D(T) in defined by

(V)= (X102 ,5X 52 gseeeeenneanns ), let € > 0 be given
Since (x,),(z,) converges to x,

=3k, ,k,e Na:llx, —x[kgllz, —x kK€ Vn
Let k = max{ky, k,}= ||v, — x|| <

— (v,) asequence convergence in D(T)
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Since T is bounded linear operator

is converges= (I'v )

exist , since (Tx,)and (Tz,) are subsequence of = lim@v,)

(T'v,) = they are converges to the same limit= lim(Tx,) =

lim(Tz,) = lim(Tv,)

To show

~

N, =T, letx e D(T)

— The sequence (x, x, ..., X) convergence to x
T(x) =lim(Tx,Tx,..) =Tx =T\, =T
We want to show T is linear , let X,x,€ X, € K

= 3(x,),(x",) in D(T) 3:(x,) = x,,(X’,) > X,

T(ax,+x, )=limT(a(x, )+(x",))
=alimT(x )+limT(x", )=aT(x, )+T(x,)
0%Fx [ 0%y [

0F 0=su > su =0TO
prD prD

0Tx 0=0lim(Tx )0=01imT(x, )< im UT [Mx [
=0T Mx 0

0T [
x [

=T D=sup <T=0TEITO
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Applications

Application(1): let X and be normed spaces , a linear
operator T:X— Y is bounded if and only if T maps bounded

sets in X into bounded sets in Y
First recall that subset A of a metric space is said to be bounded

if its diameter 0(A)is finite number, where

O(A)= sup ||x -y ||

x,yeEA

O0(A)=supd(x,y)<oo

x,yeA

If A X ,X isnormed space, then

Suppose that T is a bounded linear operator , and A be bounded

subset of X

= sup ||x —y||:M <o
x,yEA

=>Vx,yeA claimT (A)is bounded
HTx —Ty || = ”T (x —y )|| < ”T ||||x -y ||(Since T is bounded)

<|rlm

= 0(A)= su% HTx Ty || SHT ||M
X,y€E

=T (A) is bounded

Conversely ,suppose that T maps bounded sets into bounded in



39

——
| —

set Y , note that A = {x €X: Hx H < 1} is bounded subset of X

=T (A)is bounded

xeX,x -‘/—'0:>L€A

, since T (A)1s bounded let Hx H

=3IM >0 [[x ~Ty|<M Vx,y €A since0 €

A, and T is linear = T(0) = 0,we have ||Tx|| = ||[Tx — TO|| <

M Vx € X

Now, let x be any non-zero element in X , then

X
Hx [

Hence, T 1s bounded

X

e A =T
x [

jDSM =Tx (KM Ve X

Application(2): Let T be a bounded linear operator from a
normed space X onto a normed space Y, if there is
appositive b such that || T x || >b || X || for all x € X, show

that the T:Y— X exists and is bounded.
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I want to prove T :Y— X exist

T ' is exists

& Tisone —to—one <= N(T) = {0},s0 let x € N(T)
= Tx =0 ,x €X, since ||Tx|| = b||x||= 0 = ||0]] =
ITx|l = [[bllllx]]l & 0<|lx]| <0 [lx]| =0 & x =
0 ,since x € N(T) was an arbitrary = N(T) = {0}

— T is one — to — one

hence T 'exist , To show T ' is bounded i.e.IM >
0,and Vy €Y ||IT Yy|| < M||y||. since T onto=Vy €

YIxeX 2:Tx=y,x=T 1y

Hence,[lx[| = IT~1yll < IITxll = £ llyll ~since [Tx[25]x

and b #0
take M= %>0 =T 'y [KMUOy[ VyeY

Therefore T ~1is bounded

9
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2.5.linear functional
2.5-1 definition ( linear functional )

A linear functional f is a linear operator with domain in a vector
space X and range in the scalar field K (U or U ) of X, thus

. X->K.
2.5-2 definition (Bounded linear functional)

A bounded linear functional f is a bounded linear operator with

range in the scalar field of the normed. Thus there exists a real

number c¢ such that for V (x )‘ sc HX H .

Furthermore , the norm of f is sup %, or

IfIl= Sup xex |f ()

x|[=1
This implies , |£ (x)| < [If Il ]|
2.5-3.Example:(define integral),
let f:Cla, b] » U ,f(x) = [ x(t)d¢ ,VxeCla, b], te[a, b] .Then:

f 1s a bounded linear functional on C[a, b].
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proof:

Let x ,yeC[a, b]land Let ael!l ,then
flax +y) = f;(ax +y) (t)dt = f;(ax(t) +y(t))dt

= a [ x(Odt+ [ y(t) dt = af () + f ()

— fis linear .

fool=

x (1)t sj'b max |x (¢ )|dr

<[,
-,

That is , ||fI| = Supyefap L2 < b —
0

ﬁxamz

e =] 6 -a)

xe[lab] | =
X+

note that, x,:[a,b] = Ll ,x,(t) = 1, |zl = 1

FOIl S f ol _ b —

Il = lixoll

IfIl = sup

From (1),2) | f| =b—a
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Examples:
2.5-4. Let ty€[a, b] be a fixed point, and define f:C[a, b]— R by
f(x) =x(ty) ,x€c|a,b].
Then f is a bounded linear functional on C|[a, b], and || f || =1
let x ,yeCla, b], a, Bel or U
f(ax+ B y)=(ax+py)to)
=0 X(to)+P y(to)=a. f (x)+p £ (y)
Hence, f is linear.

Now, I want to prove f;is bounded and has norm || f || =1

If(x) I=Ix(t,) < m[at))(] Ix(t) I=0x [

£l = sup L2 < 1 ..(1) =>f is bounded

lIxIl —

For x, = 1,x4:[a,b] = U ,x,(t) =1 V tela, b]

Il = lixoll

IfIl = sup

from (1) and (2) ||f||=1
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Applications

Application(1):let f # Obe any linear functional an a vector
space X, and

xpany fixed element of X—N(f) , where is the null space of
f . Then each x € X has a unique representationx = ax, +
y,where yeN (f).

Proof:

)
Let x € X |, and note that (* f(xo)x” )E N(f)

. i) _ e _
Since f(x f(XO).xO) = f(x) f(xo).f(xo) 0

J &)

(x,)

=f(x - x,)=0

fe

N — X,
for some ye N (f) fx)

( for the uniqueness) = * =]]: ((; )) X, Ty — (%)

Let x € X, suppous

x:a]x0+y]:a2xo+y2 yl’yZEN(f)
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=fx)=af x,)=af (x,)

=0 =0, =Yy, =Y,

Hence , the representation in (*) is unique

Application(2): Let f: X — K be a linear function, then
either f=0onXor f(X) =K

Suppose f # 0 and suppose on the contrary that f(X) # K
= 3JaeK 3 a€ f(X)

Sincef#0 = yeX 3f(y)#0

Hence, ﬁy EXandf(f( )y) € f(X)

Buta === f() = f (757) ef (0

Our assumption that f (X) # K is false , and we must have

fX)=K
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Chapter (3)

3.1:Inner product spaces, Hilbert spaces:

The spaces to be considered in this chapter are defined as

follows.

3.1-1:Definition:

An inner product space on a vector space X(over U or U )isa

real-valued function, ¢,): X XX —1[,

Which is satisfies the following properties :

Let x,y and z be any vectors , and a scalar & .

(1)<x ,x)y=>0
(2)<x,x>:O(:)x =0
(3)<x +y7Z>:<x7Z>+<y7Z>

(4)(0{x,y>=0{(x,y>

(5)<x LY )=(y,x)
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The complete of inner product space with the metric induced

by inner product is called a Hilbert space.

We define a norm and a metric in an inner product space by,

Ox [=4{x,x), VxeX.

Sod(x,y)=+(x —y,x —y).

Hence inner product spaces are normed spaces, and Hilbert

spaces are Banach spaces.

3.1-2:Remarks:
1-{ax + By,z)=0ox,z)+ B(y.z)
2-(x,ay)=a{x,y)

3-(x,ay +Bzy=a (x,y) +B(x,z)

3.1-3:Defination: An element x of an inner product space X

is said to be orthogonal to an element y € X if (x,y)=0
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Examples:

3.1-4:The Unitary space

0" ={xx =(£.6,,...8,), & €0Vi =1,2,...,n}
is an inner product space with the inner product defined by

(x,y)= Z S; 77_,~,Wherex =(£.65,-08,) |

y = (771’772"""7771 )E D " .

n RN
Since Z S:7; is finite series, then it is convergent. Hence
i=1

(x,y)=2 &M, is well defined
=1

Now we show (XY ) = Zé:iﬂi 2X,y €[" is an inner
i=1

product .



( .0 )
L %)

1_(x,x>=[zn:|§i Izj >0

2
2_<X,X>=O<:>(Z|§i |2j =0<:>Z|§l >=0
i<l i=l
oIE P=0,Vi =1,2,....n

(z)fl =0,Vi =12,.....n
Sx =0

3letz = (B, )& +y,Z>:Z:,(§i 1 )E

:ié:iﬂ_i_i_niﬂ_i:iéﬁi—i_i 771”[71'
:<x’Z>+<y’Z>

o) =@l ) =Y alén)=aYén,

=o(x,y)

5-(y,x) :Znigi:iéﬂ_i:<x’y>
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2 _ 00 c 2
3.1-5:The Space * —{X =(5),,-6 €l ’Z,'ff | <°°} is

inner product space with an inner product

defined by ()1 £° %% =0

oy e =(E)y =(m ) (r) (X ¥ ) =2 i,
Proof

Let X,y €lx=(g).y=(1)

By Cauchy-Schwarz inequality

1

1
d — o 2 (&L — 2
Y1, |s(2|§. |2j .(Zmi |2j < oo
i=1 i=1 i=1
c 2 P 2 —
sincez_llfi | <°°’Z_1|77i F<°0and I, =Hn 1,V ell.

Then Zl 5’ i is absolutely convergent series in [ with
=

usual metric sincel! is complet, every absolutely convergent

series 1s convergent.



(=)
Hence, the map given by (*) wwell defined

Now we prove that (*) defines an inner product .

1_<x,x):(ilfi Izj >

o] 2 o]

o (x,x>=0<:>(2|§i|2] =0 > I1&EP=0
i=1 i=1

sl EP=0,Vi =1,2,....,n

& =0Vi=12,..n
< x =0

31etz = (fB,) (x +y’z>=i:(é:i +77i)ﬁz

:iéﬁ+7]iﬁ SEB+Y 1B =(x,2)+(y,2)

i=l1 i=1 i=1

sary) =Y (e =Y a(én)=axén

=o(x,y)

sy ) =2 = Em =y
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Note :

We can show by a simple straightforward calculation that a
norm on an inner product space satisfies the important

parallelogram equality.
OJx +y [P +0x —y D2:2(Dx F +0y D2)2

3.1-6: The (C la,b].0. D) with the norm defined by

Hx [(=max|x(@#)]

o] 1s not an inner product space. We prove
€la,

that by showing that the norm doesn't satisfy the important

parallelogram equality.
OJx +y P +0x —y D2:2(Dx F +0y D2)2

I—a
Let f,g eC[Clab],such that J (t):l,g (t):b

—d

aste[a,b],hearmf (= max |f (t)l,

te[a,b]

Where f€C [Cl,b] .
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t—a, b-a

= I E =10g [=max|g(z)]

max g m e e maxie (1)
t— b -

0f +gl=max 1+ L =1+2"% 2>
telab] b—a b—a

0f —gl=max 11— —% 14474
tefab] b—a b—a

Af +g P +0f —gP=4+1=5
and 2(Df F+lg Dz)zz2(1+1)=4¢5
Of +g P +0f —g P2 2(0f P +0g )

Hence (C [a,6].0.1) is not an inner product space.

Applications

Application(1):Let X be a real product space, the condition
Ux 0=y U implies {x +y,x —y)=09
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Proof:

(X +y,x =y)=,x)+(y,x)=x,y)=(y,y)
=x [ Hy,x)—{(x,y)»-0y [

Since X isreal =(y,x)={x,y) then;

(x+y,x—yy=(,x)=(y,y)=Ix F =0y [}

Since Ux [(H]y (= Ux D2=Dy 7 then (x +y,x —y)=0

Application(2):If an inner product space X, letu,v € X If
(x,uy={x,v) forallx € X and ,then u =v .

Proof :

If(x,u)y=(x,v) vxeX
=>{&x,u)y—{xyv)=0=&,u—v)=0
In particular when x =u —v .

Ju—v F=u—v,u—v)=0=2u—-v =0=u=v
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3.2 Further Properties of Inner Product Space.

3.2-1:Lemma(Schwarz inequality, triangle inequality).

An inner product X and the corresponding norm satisfy the

Schwarz inequality and triangle inequality as follows.

1- {x,y)Ix My LVx,y e X ... (*) (Schwarz
inequality)
Where the equality sign holds if and only if{x,y } is a

linearly dependent set.

2-The norm also satisfies Ux +y [Kx U+Uy U (Tringle

inequality), where the equality sign holds if and only if
y=0o0rXx=¢cy (cell™)
Proof:

Note that (*) holds if ether x or y is zero. So suppose that nether

x or y is zero. Then for every scalar @ we have,
0<x —ay P={(x —ay.x —ay)

=(x,x)—(x,ay)—(ay,x)+{ay,ay)
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=(x,x)-ox,y)—aly,x)+aay,y)
= (x,x)—a(x,y)-al (y.x)+ay,y) |

&,y

oy ,We have,

In particular, when a=

_(xy) I xLy)F
0<(x,x) <y,y><x,y>:DxD2 3, 7

(0 [P -1 yDZ' by Uy [P
1y

So, multiplying two sides o
then we have 0<Ux [P0y [F —=I(x,y ) P=l(x,y ) P<x POy [F,
Hence| <)C Y > I<]x [Dy []

Now we show the equality in (*) holds if and only if X,y are

linearly dependent.

If y =ax for someac then,
LHS I{x,y)=alx,x) = alx [
RHS Ux My Hlx Max HalDx [F;

So l{x,y)I=lx [y [
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Conversely, showing if [{x,y ) |=Jx L1y [l  then x, y are

linearly dependent.

_xy)
Suppose that ¢ =X T2, forsome z € X
Uy U

<Z,Z>:<X—<x’y2>y,x_<x’y2>
Hy [ Hy [

y)

[ (x,y)F
Oy O

<x,y><x,y>_<x,y>

=(X,Xx)—
< ) Oy [F Oy 7

(y,x)+ ¥,y

I (x,y )P I, vy Hx,y)P
Lx [ - T DyD2+DyD4DD2

Ox POy O Ox OOy O L Ox POy [F

={x [ -
Oy 7 Oy [F Oy [F

Oy [F=0

(x,y) . _
Oy [ y =0

Hence Uz [(F=0=>z=0=x -

(x,
y2>y
Uy [

=X =

xLy)
We know - = Oy €U then x ,y are linearly dependent.
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3.2-2:Lemma: (continuity of inner product).

If in an inner product space, X, X and y, =y , then

(X,,y,)—=>{x,y)
Proof:

We want to prove{x,,y,) —>(x,y) sinceX, =X andy, 2y
. This implies x, —x —0andy, -y —0 .In inner product space

that means, Dxn -x =0 andDyn —y [>0,as 1 — 2 s0we have:

1€,y =L Y)Y XLy ) =,y )+, y ) =X, y) |

<Kx ¥, =y I+1Kx, —x,y) |
(by tringle inequality)
Jdix, Wy, —yU+lx, —x Wy [
(by Schwarz inequality)
—0

=X, Y, =X, y) =2 0=(x,,y,) =X, y)
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Applications

Application(1):Show thaty L x, and x, — x together imply

y Lx.

Let (x, ) be sequence in X such that (x, ) converges to an

element x € X . If yeX >y Lx, ,Vnel Theny Lx .Id

Sincey Lx, =<(x, ,y)=0,Vnell.

But (x, ) converges to x we have, by lemma 3.2-2,

=>(x,y)=0=y Lx.

Application(2): For a sequence (x, ) in an inner product space
the conditionx ,, [=tx [l and(x,,x) = (x,x) imply

convergencex, — x .

Proof :

Let (x,) be sequence in Xsuch that if Ux, [—x Uand

(x,,x)y—=>(x,x) ,then Ux, —x 1-0.

Note that since{x,,x) = {x,x) ,we have

(,x,) =00 = (x,x) =(x,x)
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Therefore, Ux, —x [F=(x, —x,x, —x)
=lx, [P ~(x ,x)—(x,x )+0x [P
—Ox [F =, x)={x,x ) +0x [F=0
Hence Ux, —x [=50,iex, —x

Application(3): Let X be an inner product space ,and let
x,y €X Then x Ly and only if we have

Ux +ay [(Hlx —ay U for all scalar@ .
Proof:

Letx Ly, then
(x,y)=0,(y,x)=0.Therfore,
Ox +ay P=(x +ay,x +ay)
=(x, ) +aly ) +alx,y)y+lal (y,y)
e /70 1 e —— (1)

Also, Ox —ay P={(x —ay,x —ay)
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=(x.x)y—ay.x)y—alx,y)y+lal (y,y)
Lx F+lalfOy [ —eeeeeeeeeeeev (2)
From (1) and (2) , we have
Ox —ay P=x P +lalPly P=x +ay [P
=lx +ay Hix —ay U

Conversely, letllx +ay [=lx —ay [ for any scalare , then

! 1
={x+ay,x+ay)>=(x —-ay,x —ay)?

= +ay,x+ay)=(x —-ay,x —ay) forany scalar.

=[x [ +Ot(y,x)+gt(x,y)+|a|2Dy 7
x [F —a(y,x)—&(x,y)ﬂalzﬂy [

= a(y,x)+a(x,y)=0
In particular when @ =i , we have

<y,x>+<xay>:():><y’x>:_<x’y>

Also; whena =i , we have
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i(y,x)—i(x,y):O
Hence i(y,x)—i(<y,x))=0=2i{y,x)=0
=>(y,x)=0=>x Ly,

3.3.Representation of Functional on Hilbert Spaces.
3.3-1 Theorem (Direct sum)

Let Y be any closed subspace of a Hilbert space H. Then
H=Y ®Z Z=Y".

3.3-2.Riesez Theorem (Functionals on Hilbert spaces).

Every bounded linear functional f on a Hilbert spaces H can be
represented in terms of the inner product , namely,

f=(x,2) (D

where z depends on f, is uniquely determined by f and has norm

|zl|=I £l 2).

Proof:

We proof that

(a) f has representations (1),

(b) zin (1) is unique

(c) formula (2) holds

if £=0 then (1) and (2) hold, (a) Let f # 0
since N(f) 1s a close subspace of H then

H=N(f) + N(f)~ (by theorem 3.3-1)



( - )
| 8 )

Since f0 implies N(f) # H so that N(f)~ #{0}
Hence N(f)l contains a zy#0 and let x be any elemant in H
v=1(X) zo-f(zp)x
applying f , we obtain
f(v)=1(x)f(z0)- £(zo)t(x) =0
This show that vé N(f) since zy-- N(f), we have
0=(v, z9) =(f (x)zo — f (20)%, 2p)
=f (X)(20, Zo)+f (2o){x, Zo)

We solve for f(x).the result is

f(zy)
f(x)= - <x,z0>
<z0,zo>
‘ ‘ ) f(zy)
this can be written in the (1),where z = zy ——

since x€EH was arbitrary, (1) is proved.

(b) To prove that z in (1) is unique,

Suppose that for all x€H, f(x)=(x, z;) = (X, z,)
Then (x, z; — z,)=0 for all x.

Choosing the particular x = z;-z,,we have

(X,21 — 23) =21 — 23,21 — Z3) = ||Z1 — 22 ”2:()
Hence z,-7,=0, so that z,=z,, the uniqueness.
(c)we finally prove (2).

From (1)with x=z and | f(x) | < || f|| || X || we obtain
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|z]|*= ¢z, 2)=t)<||£]| || 2|
|| zZ ||S ||f|| (1) (since || zZ || #0)=
Since f(x)=(x, z)

| f(x) | = | <X, 7> | < ||x|| || zZ || (by Schwarz inequality) =

sup

ja<xz>< |z @

This implies ||f|=

From (1)and (2) || f|| = || zZ ||

3.3-3lemma(Equlity).

if (v;, w) = (v,, w)for all w in an inner product space X , then
v1=V,. In particular, (v,, w)=0 for all weX implies v;=0

proof:
by assumption, for all w,
(V1 — Uy, W) = (v, W) — (v, w) = 0

. . 2
For w=v-v; this gives || Vi—V> || =0. Hence v;—v,=0, so that
Vi=Vo

In particular, (v, w) =0 with w=v,gives || Vi || *=0, so that v;=0
3.3-4Definition(Sesquiliner form).

let X and Y be vector spaces over the same field K(=R or C).
Then a sesquilinear form h on XX Y

1s mapping h: XX Y—K such that for all x,x;,X,EY
and all scalars a, 3

(a) h(X;+x2,y)=h(x;,y)+h(x2,y)

(b) h(x,y1+y2)=h(x,y1)+h(X,y>)
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(¢) h(ax,y)=oh(x,y)
(d) h(x,By)=ph(x,y)

Hence h is linear in the first argument and conjugate linear in
the second one. If X and Y are real then (d) 1s simply
h(x,py)=ph(x,y) ,Vx € X,y €Y, €R

h is called bilinear since it is linear in both argument .

If X and Y are normed spaces and if there 1s a real number ¢
such that for all x, y

h(x, y) | <c ||x[ ||y

then h 1s said to be bounded , and the number

Sup h(x,y) sup
Inl= pexorors2l =y | A y) | (D
(e B4l
yer—{0} Iy]=1

Is called the norm of h.

3.3-5 Theorm (Riesz represntation).

Let H;, H, be Hilbert spaces and h:H;xH,—K a bounded
sesquilinear form. Then h has a representation

h(x, y)=(Sx, y) (1)

where s:H;—H, is a bounded linear operator. S is uniquely
determined by h and has norm

Isli={Inl
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Proof: For each fixed x€ H; define f,: H, = C by

f(y) = h(x,y) . Then f,is a linear in H,, which is bounded
since h is bounded. Then by the previous theorem , Junique
element z€ H, such that

h(x, y) =(y, z)
Hence,

h(x, y)=(z,y) (*)
Define S:H;,—H, by z=Sx
Substituting z = S x in (*), we have

h(x, y)= (Sx,y)

S is linear. In fact, its domain is the vector space H;, and from
(1) (S(axy + Bx3),y) =h(ax; + Bx,,y)

= ah(xy,y) + Bh(xz,y)
=a(Sx1,y) +(Sx2,¥)
=(aSx; + Bx3,Y)
For all y in Hj, so that by Lemma 3.3-2,
S(axy + fx,)=aSx, + [Sx,

S is bounded. Indeed, leaving aside the trivial case S=0, we have
from (I)and(*)

[hf= kel o Phsmsal  Phse g
x#0 - 0 S
w05l = azlalTsel = g 1]

This proves boundednees. Moreover, ||h|| = |5
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Now, I want to prove || h || < || S || by an application of the Schwarz
inequality:

SUP | (sxy) | Sup
Inll = x0Ty <x¢o || ||||y|| = lIs]

S is unique. In fact, assuming that there is a linear operator T:H;—>H,
such that for all x€H,; and yEH, we have :

h(x, y)=(5x,y) = (Tx,y)

we see that S x=T x by lemma 3.3-2 for all x€ H;. Hence S=T by
definition

3.3-6 Definition(Dual space X*).

Let X be a normed space . Then the set of all bounded linear functional
on X constitutes a normed space with norm defined by

= @l 2o
cex [lx] =

Which is called the dual space of X is denoted by X'

sup

3.3-7 Theorem:
The dual space X of a normed space X is a Banach space .

Applications

Application(1):1f z any fixed element of an inner product space X, show
that f(x)=(x, z)defines a bounded linear functional f on X,

of norm || zZ || :
proof:
To prove f is well defined, let x;=x,

- <x1t2> = (XZ,Z>
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= f(x1)=f(x2)
Now, we have to prove
flax; + Bx,)=af (x) + Bf(x,) Vxy, x, €EXa,BEC
flax, + Bxy)=(ax, + fx,, z)=(axq, z) x4, Z)
=a(xq,z) + [{x,, 2)
=af (x1) + Bf (x2)

Now, we prove f is bounded

|| = |x2)| < x| || z]
p X
Iel=_ L9l ez,

xeX ||«

— f 1s bounded

Plwa| o] _ 2] _
Itl=_ 2 er ==l @

Then from (1)and (2) || f|| = || zZ ||

Application(2):show that the dual space H of a Hilbert space H, Then
H' is a Hilbert space with inner product(.,.); defined by

Foforn = BY) =2,
Proof:

By the Riezs theorem for each f € H* 3unique zr =z € H

such that f(x) ={(x,z)Vx € H

Hence, for f € H*is of the form f=f, for some unique element z € H
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= (*)is well-defined
Now, I want to prove (a) {f,f) = 0

O({(f.f)=0=f=0

©(f,9) = (&f)
d) (f +g,h) =(f,h)+(g,h)

@)= ) = (22) = [z]*> 0

OO=(f, ) = {f. ) = (2:2) = ||2|?

& 7220 & £,=0 & £,(x)=(x, 0) =0 < =0

©) (f, 9) = (£, gu)={2:V)=(g, v)

(AXf + g, h)y ={f, + gu hs) = (z+v.5) =(s,z+ V)

=(5,2) + (s, v) = (2.5) + (v.5)

=(f,h) + (g, h)
Application(3):Let M#@ be a subset of Hilbert space H, and let

M*={fe H*: f(x) = 0 Vx € M} CH" . let M ={y€ H:(y,x) = 0 Vx €
M}CH

The relation between M*and M can be explained as a follows:
Let f€ M® & H* = 3 unique element z; € H 3:
(x,z¢) = f(x),Vx €EH

Hence Vx € M, (x,zf) = f(x)

:>sz—M —Zf € MJ'
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Given any f €
M® the uniqe element z; exists by Riesz Theorem belongs to M

Conversely, let y, € M™ 3 a bounded linear functional f, € H* 3:
fyo(x) =(X,y0), VX EH

In particular, Vx € M, f;, (x) ={x,y0) =0

:>fy0 € M?%
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