Estimation of Serum Bilirubin (Total & Direct)
Objective

To estimate the amount of bilirubin in serum.
Bilirubin

It is a by-product of the breakdown of hemoglobin.
Bilirubin

1. Senescent red cells are a major source of heme proteins.
2. Breakdown of heme to bilirubin occurs in macrophages of the reticulo-endothelial system (tissue macrophages, spleen, and liver).
3. Unconjugated bilirubin is transported through the blood (complexed to albumin) to the liver.
4. Bilirubin is taken up via facilitated diffusion by the liver and conjugated with glucuronic acid.
5. Conjugated bilirubin is actively secreted into bile and then the intestine.
6. In the intestine, glucuronic acid is removed by bacteria. The resulting bilirubin is converted to urobilinogen.
7. Some of the urobilinogen is reabsorbed from the gut and enters the portal blood.
8. A portion of this urobilinogen participates in the enterohepatic urobilinogen cycle.
9. The remainder of the urobilinogen is transported by the blood to the kidney, where it is converted to yellow urobilin and excreted, giving urine its characteristic color.
10. Urobilinogen is oxidized by intestinal bacteria to the brown stercobilin.
Types of Bilirubin

- **Direct bilirubin**: Conjugated with glucoronic acid
- **Indirect bilirubin**: unconjugated, insoluble in water
- **Total bilirubin**: sum of the direct and indirect of bilirubin.

Notes:
- About 200 mg per day of unconjugated bilirubin are transported to the liver
- Disturbances in the powers of conjugated and/or excretion of the liver of this yellow compound will lead to raised levels in serum.

Above about 2 mg/dl in the blood, leads to disease called Jaundice.
Bilirubin and jaundice

- **Jaundice** is caused by a build-up of **bilirubin (yellow color)** in the blood and tissues of the body.

- Jaundice is the discoloration of skin and sclera of the eye caused by high concentration of bilirubin.
The causes of jaundice may be classified as:

Types of jaundice

Pre-Hepatic Jaundice
- Hemolytic disease

Hepatic Jaundice
- Cirrhosis of the liver
- Infective Hepatitis
- Neonatal Jaundice

Post-Hepatic Jaundice
- Cholecystitis.
Hemolytic disease (excess hemolysis)

- The production of un-conjugated bilirubin may exceed the conjugating capacity of the liver and hence the serum levels of indirect (and of total) bilirubin will be raised and that of direct in the upper normal range or just a little elevated.

- The other liver function tests will usually give normal results.
2-Hepatic Jaundice

Cirrhosis (in the absence of infection)

- Destruction of liver cells will lead to a reduced conjugating capacity with a:
 - Raised serum level of indirect (and of total) bilirubin,
 - with a low level of direct bilirubin
 - and an abnormally high release, into the blood, of the enzymes: AST, ALT and ALP.
- Synthesizing power of liver will be diminished and hence low levels of total protein, albumin and cholesterol
2-Hepatic Jaundice

Hepatitis (in the presence of infection)

- The conjugative capacity of the liver is approximately normal, but there is the inability to transport the conjugated bilirubin from the liver cells to the biliary system, and it will be regurgitated back into the blood.

 → Hence:

 - The serum level of unconjugated bilirubin will be normal
 - and that of conjugated (and total) bilirubin will be raised.
 - Synthesizing power is diminished leading to low serum levels of proteins but the raising of antibodies to infection usually leads to raised total proteins level.
Neonatal Jaundice

- Conjugating enzymes in the liver are often absent at birth.

- Hence:
 - Raised serum level of indirect (and total) bilirubin is to be expected
 - Low level of direct bilirubin.
 - The other liver functions are normal.

- The indirect bilirubin level will rise for the first few days after birth until the conjugating enzymes begin to synthesize.

- If the conjugation process is delayed and the serum level of indirect bilirubin rises towards 20 mg/dl, an ultraviolet therapy or an exchange blood transfusion should be carried out owing to the danger of deposition of the insoluble unconjugated bilirubin in the basal ganglia of the brain leading permanent Brain Damage.
3-Post-Hepatic Jaundice

Cholecystitis

- The bile duct is blocked.

 Hence:

 - The indirect bilirubin level is normal but conjugated bilirubin is regurgitated into the blood and excreted into the urine (raised conjugated and total bilirubin).
 - Enzymes will be regurgitated into the blood giving raised levels.
 - The other liver function tests are normal.
Principle

- Bilirubin in serum is coupled with diazotized sulphanilic acid to form azobilirubin.
- The water soluble *conjugated bilirubin (direct bilirubin)* reacts easily with reagents such as diazotized sulphanilic acid.
- While the water insoluble *unconjugated bilirubin (indirect bilirubin)* requires a solubilizing reagent, such as Caffeine, in order to react with the diazotized sulphanilic acid.
- In this experiment, the direct bilirubin is estimated in the absence of the solubilizing agent and then further bilirubin estimation in the presence of the solubilizing agent will give the total bilirubin level.
- The indirect or unconjugated bilirubin is then found by difference.
Method

Label 4 tubes as TT (total test), TB (total Blank), DT (direct test), DB (direct Blank).

<table>
<thead>
<tr>
<th></th>
<th>TT</th>
<th>TB</th>
<th>DT</th>
<th>DB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution 1</td>
<td>0.20 ml</td>
<td>0.20 ml</td>
<td>0.20 ml</td>
<td>0.20 ml</td>
</tr>
<tr>
<td>(sulphanilic acid + HCl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solution 2</td>
<td></td>
<td></td>
<td>(0.05 ml)</td>
<td></td>
</tr>
<tr>
<td>(Sodium nitrate)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solution 3</td>
<td>1.00 ml</td>
<td>1.00 ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Caffeine + Sodium benzoate)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaCl solution 0.9%</td>
<td></td>
<td></td>
<td>2.00 ml</td>
<td>2.00 ml</td>
</tr>
<tr>
<td>Sample</td>
<td>0.20 ml</td>
<td>0.20 ml</td>
<td>0.20 ml</td>
<td>0.20 ml</td>
</tr>
</tbody>
</table>

Mix, let stand for 5 min. at 20-25°C. Read absorbance of test against blank (A_{DB}) for direct only at 546 nm.

FOR TOTAL stand for 30 min at 20-25°C.

For total bilirubin

| Solution 4 (NaOH + tartarate) | 1.00 ml | 1.00 ml | | |

Mix and let stand for 15 min and read the absorbance at 578 nm against blank (A_{TB}).
Calculation

Concentration of direct bilirubin = (abs. DT - abs. DB) X 14.4 = mg /dl

- **Normal range:** Up to: 0.25 mg/dl

Concentration of total bilirubin = (abs. TT - abs. TB) X 10.8 = mg /dl

- **Normal range:** Up to 1 mg/dl

Concentration of indirect bilirubin = Conc of total bilirubin – Conc of direct bilirubin = mg /dl

- **Normal range:** 0.1-0.4 mg/dl