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Boolean Functions

Boolean algebra provides the operations and the rules for working with the
set {0, 1}. Electronic and optical switches can be studied using this set
and the rules of Boolean algebra. The three operations in Boolean algebra
that we will use most are

The complement of an element, denoted with a bar, is defined by

0 = 1 and 1 = 0

The Boolean sum, denoted by + or by OR, has the following values:

1 + 1 = 1, 1 + 0 = 1, 0 + 1 = 1, 0 + 0 = 0.

The Boolean product, denoted by . or by AND, has the following
values:

1.1 = 1, 1.0 = 0, 0.1 = 0, 0.0 = 0.

When there is no danger of confusion, the symbol . can be deleted, just as
in writing algebraic products. Unless parentheses are used, the rules of
precedence for Boolean operators are: first, all complements are
computed, followed by all Boolean products, followed by all Boolean sums.
This is illustrated in Example 1.(King Saud University) Discrete Mathematics (151) 4 / 46



Boolean Functions

Example 1

Find the value of 1.0 + (0 + 1).
Solution: Using the definitions of complementation, the Boolean sum,
and the Boolean product, it follows that
1.0 + (0 + 1) = 0 + 1 = 0 + 0 = 0

The complement, Boolean sum, and Boolean product correspond to the
logical operators, ¬, ∨ and ∧, respectively, where 0 corresponds to F
(false) and 1 corresponds to T (true). Equalities in Boolean algebra can be
directly translated into equivalences of compound propositions. Conversely,
equivalences of compound propositions can be translated into equalities in
Boolean algebra.We will see later in this section why these translations
yield valid logical equivalences and identities in Boolean algebra. Example
2 illustrates the translation from Boolean algebra to propositional logic.
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Boolean Functions

Example 2

Translate 1.0 + (0 + 1), the equality found in Example 1, into a logical
equivalence.
Solution: We obtain a logical equivalence when we translate each 1 into a
T, each 0 into an F, each Boolean sum into a disjunction, each Boolean
product into a conjunction, and each complementation into a negation.We
obtain (T ∧ F ) ∨ ¬(T ∨ F ) ≡ F .

Example 3 illustrates the translation from propositional logic to Boolean
algebra.
Example 3

Translate the logical equivalence (T ∧ T ) ∨ ¬F ≡ T into an identity in
Boolean algebra.
Solution: We obtain an identity in Boolean algebra when we translate
each T into a 1, each F into a 0, each disjunction into a Boolean sum,
each conjunction into a Boolean product, and each negation into a
complementation.We obtain (1.1) + 0 = 1.
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Boolean Functions

Boolean Expressions and Boolean Functions
Let B = {0, 1}. Then Bn = {(x1, x2, . . . , xn)|xi ∈ B for 1 ≤ i ≤ n} is the
set of all possible n-tuples of 0s and 1s. The variable x is called a
Boolean variable if it assumes values only from B, that is, if its only
possible values are 0 and 1. A function from Bn to B is called a Boolean
function of degree n.

Example 4

The function F (x , y) = xy from the set of
ordered pairs of Boolean variables to the set
{0, 1} is a Boolean function of degree 2 with
F (1, 1) = 0,F (1, 0) = 1,F (0, 1) = 0, and
F (0, 0) = 0.
We display these values of F in Table 1.
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Boolean Functions

Boolean functions can be represented using expressions made up from
variables and Boolean operations. The Boolean expressions in the
variables x1, x2, . . . , xn are defined recursively as

0, 1, x1, x2, . . . , xn are Boolean expressions;

if E1 and E2 are Boolean expressions, then E1, (E1E2), and (E1 + E2)
are Boolean expressions.

Each Boolean expression represents a Boolean function. The values of this
function are obtained by substituting 0 and 1 for the variables in the
expression. In Section 2 we will show that every Boolean function can be
represented by a Boolean expression.

Example 5

Find the values of the Boolean function represented by F (x , y , z) = xy + z .
Solution: The values of this function are displayed in Table 2.
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Boolean Functions
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Boolean Functions

Boolean functions F and G of n variables are equal if and only if
F (b1, b2, . . . , bn) = G (b1, b2, . . . , bn) whenever b1, b2, . . . , bn belong to B.
Two different Boolean expressions that represent the same function are
called equivalent. For instance, the Boolean expressions xy , xy + 0, and
xy .1 are equivalent. The complement of the Boolean function F is the
function F , where F (x1, · · · , xn) = F (x1, · · · , xn).
Let F and G be Boolean functions of degree n. The Boolean sum F + G
and the Boolean product FG are defined by
(F + G )(x1, · · · , xn) = F (x1, · · · , xn) + G (x1, · · · , xn), (FG )(x1, · · · , xn) =
F (x1, · · · , xn)G (x1, · · · , xn).
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Boolean Functions

Identities of Boolean Algebra
There are many identities in Boolean algebra. The most important of
these are displayed in Table 5. These identities are particularly useful in
simplifying the design of circuits. Each of the identities in Table 5 can be
proved using a table.We will prove one of the distributive laws in this way
in Example 6.
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Boolean Functions

Example 6 (8 in book)

Show that the distributive law x(y + z) = xy + xz is valid.
Solution: The verification of this identity is shown in Table 6. The
identity holds because the last two columns of the table agree.
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Boolean Functions

Example 7 (9 in book)

Translate the distributive law x + yz = (x + y)(x + z) in Table 5 into a
logical equivalence.
Solution: To translate a Boolean identity into a logical equivalence, we
change each Boolean variable into a propositional variable. Here we will
change the Boolean variables x, y, and z into the propositional variables p,
q, and r. Next, we change each Boolean sum into a disjunction and each
Boolean product into a conjunction. (Note that 0 and 1 do not appear in
this identity and complementation also does not appear.) This transforms
the Boolean identity into the logical equivalence.

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).

This logical equivalence is one of the distributive laws for propositional
logic of chapter 1.
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Boolean Functions

Identities in Boolean algebra can be used to prove further identities. We
demonstrate this in Example 8.

Example 8 (10 in book)

Prove the absorption law x(x + y) = x using the other identities of
Boolean algebra shown in Table 5. (This is called an absorption law
because absorbing x + y into x leaves x unchanged.)
Solution: We display steps used to derive this identity and the law used in
each step:
x(x + y) = (x + 0)(x + y) Identity law for the Boolean sum

= x + 0.y Distributive law of the Boolean sum over the
Boolean product

= x + y .0 Commutative law for the Boolean product
= x + 0 Domination law for the Boolean product
= x Identity law for the Boolean sum.
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Boolean Functions

Duality
The identities in Table 5 come in pairs (except for the law of the double
complement and the unit and zero properties). To explain the relationship
between the two identities in each pair we use the concept of a dual. The
dual of a Boolean expression is obtained by interchanging Boolean sums
and Boolean products and interchanging 0s and 1s.

Example 9 (11 in book)

Find the duals of x(y + 0) and x .1 + (y + z).
Solution: Interchanging . signs and + signs and interchanging 0s and 1s
in these expressions produces their duals. The duals are x + (y .1) and
(x + 0)(yz), respectively.
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Boolean Functions

The dual of a Boolean function F represented by a Boolean expression is
the function represented by the dual of this expression. This dual function,
denoted by F d , does not depend on the particular Boolean expression
used to represent F . An identity between functions represented by Boolean
expressions remains valid when the duals of both sides of the identity are
taken.

Example 10 (12 in book)

Construct an identity from the absorption law x(x + y) = x by taking
duals.
Solution: Taking the duals of both sides of this identity produces the
identity x + xy = x , which is also called an absorption law and is shown in
Table 5.
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Boolean Functions

The Abstract Definition of a Boolean Algebra

DEFINITION 1

A Boolean algebra is a set B with two binary operations ∨ and ∧,
elements 0 and 1, and a unary operation such that these properties hold
for all x , y , and z in B:
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6.2. Representing Boolean Functions (12.2 in book)
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Representing Boolean Functions

Two important problems of Boolean algebra will be studied in this section.

The first problem is: Given the values of a Boolean function, how can
a Boolean expression that represents this function be found? This
problem will be solved by showing that any Boolean function can be
represented by a Boolean sum of Boolean products of the variables
and their complements. The solution of this problem shows that every
Boolean function can be represented using the three Boolean
operators ., +, and .

The second problem is: Is there a smaller set of operators that can be
used to represent all Boolean functions? We will answer this question
by showing that all Boolean functions can be represented using only
one operator. Both of these problems have practical importance in
circuit design.
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Representing Boolean Functions

Sum-of-Products Expansions
We will use examples to illustrate one important way to find a Boolean
expression that represents a Boolean function.

Example 1

Find Boolean expressions that represent the functions F (x , y , z) and
G (x , y , z), which are given in Table 1.

Solution: An expression that has the value 1
when x = z = 1 and y = 0, and the value 0
otherwise, is needed to represent F . Such an
expression can be formed by taking the Boolean
product of x , y , and z . This product, xyz , has
the value 1 if and only if x = y = z = 1, which
holds if and only if x = z = 1 and y = 0.

(King Saud University) Discrete Mathematics (151) 20 / 46



Representing Boolean Functions

To represent G, we need an expression that
equals 1 when x = y = 1 and z = 0, or
x = z = 0 and y = 1. We can form an
expression with these values by taking the
Boolean sum of two different Boolean products.
The Boolean product xyz has the value 1 if and
only if x = y = 1 and z = 0. Similarly, the
product xyz has the value 1 if and only if
x = z = 0 and y = 1. The Boolean sum of
these two products, xyz + xyz , represents G,
because it has the value 1 if and only if
x = y = 1 and z = 0, or x = z = 0 and y = 1.
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Representing Boolean Functions

DEFINITION 1

A literal is a Boolean variable or its complement. A minterm of the
Boolean variables x1, x2, · · · , xn is a Boolean product y1y2 · · · yn, where
yi = xi or yi = xi . Hence, a minterm is a product of n literals, with one
literal for each variable.

A minterm has the value 1 for one and only one combination of values of
its variables. More precisely, the minterm y1y2 . . . yn is 1 if and only if each
yi is 1, and this occurs if and only if xi = 1 when yi = xi and xi = 0 when
yi = xi .

Example 2

Find a minterm that equals 1 if x1 = x3 = 0 and x2 = x4 = x5 = 1, and
equals 0 otherwise.
Solution: The minterm x1x2x3x4x5 has the correct set of values.
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Representing Boolean Functions

By taking Boolean sums of distinct minterms we can build up a Boolean
expression with a specified set of values. In particular, a Boolean sum of
minterms has the value 1 when exactly one of the minterms in the sum
has the value 1. It has the value 0 for all other combinations of values of
the variables. Consequently, given a Boolean function, a Boolean sum of
minterms can be formed that has the value 1 when this Boolean function
has the value 1, and has the value 0 when the function has the value 0.
The minterms in this Boolean sum correspond to those combinations of
values for which the function has the value 1. The sum of minterms that
represents the function is called the sum-of-products expansion or the
disjunctive normal form of the Boolean function.
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Representing Boolean Functions

Example 3

Find the sum-of-products expansion for the function F (x , y , z) = (x + y)z .
Solution: We will find the sum-of-products expansion of F(x, y, z) in two
ways. First, we will use Boolean identities to expand the product and
simplify. We find that
F (x , y , z) = (x + y)z

= xz + yz Distributive law
= x1z + 1yz Identity law
= x(y + y)z + (x + x)yz Unit property
= xyz + xy z + xyz + xyz Distributive law
= xyz + xy z + xyz . Idempotent law
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Representing Boolean Functions

Second, we can construct the sum-of-products expansion by determining
the values of F for all possible values of the variables x , y , and z . These
values are found in Table 2. The sum-of-products expansion of F is the
Boolean sum of three minterms corresponding to the three rows of this
table that give the value 1 for the function. This gives the result.
F (x , y , z) = xyz + xy z + xyz

(King Saud University) Discrete Mathematics (151) 25 / 46



Representing Boolean Functions

CSP, CPS

We denote by CSP form (Complete sum-of-product), is obtained
by the previous methods.

We denote by CPS form (Complete product-of-sum), is obtained
by giving the CSP for the complement of the function, and we take
the complement of the CSP give the CPS.

Example

Find the CSP form and the CPS form, for the functions
f (x , y , z) = x + y(x + z) and g(x , y , z) = x(x + y + yz).
Solution:
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6.3. Logic Gates (12.3 in book)
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Logic Gates

Boolean algebra is used to model the circuitry of electronic devices. Each
input and each output of such a device can be thought of as a member of
the set {0, 1}.A computer, or other electronic device, is made up of a
number of circuits. Each circuit can be designed using the rules of Boolean
algebra that were studied in Sections 6.1 and 6.2. The basic elements of
circuits are called gates. Each type of gate implements a Boolean
operation. In this section we define several types of gates. Using these
gates, we will apply the rules of Boolean algebra to design circuits that
perform a variety of tasks. The circuits that we will study in this chapter
give output that depends only on the input, and not on the current state
of the circuit. In other words, these circuits have no memory capabilities.
Such circuits are called combinational circuits or gating networks.

Figure 1: Basic Types of Gates.
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Logic Gates

Combinations of Gates Combinational circuits can be constructed using a
combination of inverters, OR gates, and AND gates. When combinations
of circuits are formed, some gates may share inputs. This is shown in one
of two ways in depictions of circuits. One method is to use branchings that
indicate all the gates that use a given input. The other method is to
indicate this input separately for each gate.

Example 1

Construct circuits that produce the following outputs: (a) (x + y)x ,
(b) x(y + z), and (c) (x + y + z)(x y z).
Solution: Circuits that produce these outputs are shown in Figure 2.
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Logic Gates
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Logic Gates

Figure 2: Circuits that Produce the Outputs Specified in Example 1.
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Logic Gates

Example 2

A committee of three individuals decides issues for an organization. Each
individual votes either yes or no for each proposal that arises. A proposal is
passed if it receives at least two yes votes. Design a circuit that
determines whether a proposal passes.
Solution: Let x = 1 if the first individual votes yes, and x = 0 if this
individual votes no; let y = 1 if the second individual votes yes, and y = 0
if this individual votes no; let z = 1 if the third individual votes yes, and
z = 0 if this individual votes no. Then a circuit must be designed that
produces the output 1 from the inputs x , y , and z when two or more of
x , y , and z are 1. One representation of the Boolean function that has
these output values is xy + xz + yz . The circuit that implements this
function is shown in Figure 3.
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Logic Gates

Figure 3: A Circuit for Majority Voting.
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6.4. Minimization of Circuits (12.4 in book)
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Minimization of Circuits

The efficiency of a combinational circuit depends on the number and
arrangement of its gates.The process of designing a combinational circuit
begins with the table specifying the output for each combination of input
values. We can always use the sum-of-products expansion of a circuit to
find a set of logic gates that will implement this circuit.
However, the sum-of-products expansion may contain many more terms
than are necessary. Terms in a sum-of-products expansion that differ in
just one variable, so that in one term this variable occurs and in the other
term the complement of this variable occurs, can be combined.
For instance, consider the circuit that has output 1 if and only if
x = y = z = 1 or x = z = 1 and y = 0. The sum-of-products expansion
of this circuit is xyz + xyz . The two products in this expansion differ in
exactly one variable, namely, y . They can be combined as
xyz + xyz = (y + y)(xz) = 1.(xz) = xz .
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Minimization of Circuits

For instance, consider the circuit that has output 1 if and only if
x = y = z = 1 or x = z = 1 and y = 0. The sum-of-products expansion
of this circuit is xyz + xyz . The two products in this expansion differ in
exactly one variable, namely, y . They can be combined as
xyz + xyz = (y + y)(xz) = 1.(xz) = xz .
Hence, xz is a Boolean expression with fewer operators that represents the
circuit. We show two different implementations of this circuit in Figure 4.
The second circuit uses only one gate, whereas the first circuit uses three
gates and an inverter.

(King Saud University) Discrete Mathematics (151) 36 / 46



Minimization of Circuits

Figure 4: Two Circuits with the Same Output.
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Minimization of Circuits

Karnaugh Maps

To reduce the number of terms in a Boolean expression representing a
circuit, it is necessary to find terms to combine. There is a graphical
method, called a Karnaugh map or K-map, for finding terms to
combine for Boolean functions involving a relatively small number of
variables.

We will first illustrate how K-maps are used to simplify expansions of
Boolean functions in two variables.

We will continue by showing how K-maps can be used to minimize
Boolean functions in three variables and then in four variables.
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Minimization of Circuits

There are four possible minterms in the sum-of-products expansion of
a Boolean function in the two variables x and y. A K-map for a
Boolean function in these two variables consists of four cells, where a
1 is placed in the cell representing a minterm if this minterm is present
in the expansion. Cells are said to be adjacent if the minterms that
they represent differ in exactly one literal. For instance, the cell
representing xy is adjacent to the cells representing xy and xy . The
four cells and the terms that they represent are shown in Figure 5.

Figure 5: K-maps in Two Variables.
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Minimization of Circuits

Example 1

Find the K-maps for (a) xy + xy , (b) xy + xy , and (c) xy + xy + x y .
Solution: We include a 1 in a cell when the minterm represented by this
cell is present in the sum-of-products expansion. The three K-maps are
shown in Figure 6.

Figure 6: K-maps for the Sum-of-Products Expansions in Example 1.
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Minimization of Circuits

Example 2

Simplify the sum-of-products expansions given in Example 1.
Solution: The grouping of minterms is shown in Figure 7 using the
K-maps for these expansions. Minimal expansions for these
sums-of-products are (a) y , (b) xy + xy , and (c) x + y

Figure 7: Simplifying the Sum-of-Products Expansions from Example 2.

(King Saud University) Discrete Mathematics (151) 41 / 46



Minimization of Circuits

A K-map in three variables is a rectangle divided into eight cells. The cells
represent the eight possible minterms in three variables. Two cells are said
to be adjacent if the minterms that they represent differ in exactly one
literal. One of the ways to form a K-map in three variables is shown in
Figure 8.

Figure 8: K-maps in Three Variables.
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Minimization of Circuits

Example 3

Use K-maps to minimize these sum-of-products expansions.

(a) xyz + xy z + xyz + x y z

(b) xyz + xy z + x yz + xyz + x y z

(c) xyz + xyz + xyz + xy z + xyz + x yz + x y z

(d) xyz + xy z + x yz + x y z

Solution: The K-maps for these sum-of-products expansions are shown in
Figure 7. The grouping of blocks shows that minimal expansions into
Boolean sums of Boolean products are (a) xz + y z + xyz , (b) y + xz , (c)
x + y + z , and (d)xz + x y . In part (d) note that the prime implicants xz
and x y are essential prime implicants, but the prime implicant y z is a
prime implicant that is not essential, because the cells it covers are
covered by the other two prime implicants.
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Minimization of Circuits

Figure 9: Using K-maps in Three Variables.
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Minimization of Circuits

MSP, MPS

We denote by MSP form (Minimal sum-of-product), is obtained
using K-maps method.

We denote by CPS form (Minimal product-of-sum), is obtained by
giving the CSP for the complement of the function, and we take the
complement of the CSP give the CPS.

Example

Find the MSP form and the MPS form, for the functions
f (x , y , z) = x + y(x + z) and g(x , y , z) = x(x + y + yz).
Solution:
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Exercices

Exercice

Let

zw zw’ z’w’ z’w

xy 1 1

xy’ 1 1 1 1

x’y’ 1 1

x’y

Be the Karnaugh -map for f (x , y , z ,w).

1 Find MSP(f) and MPS(f).

2 Construct a minimal circuit using (AND-OR) gates, with f (x , y , z ,w)
output.

3 Use NAND gates to construct circuits with f (x , y , z ,w) output.

4 Use NOR gates to construct circuits with f (x , y , z ,w) output.
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