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Liver is a vital organ for the detoxification of toxic substances present in the body and hepatic injury is associated
with excessive exposure to toxicants. The present study was designed to evaluate the possible hepatoprotective
effects of riboflavin against carbon tetrachloride (CCl4) induced hepatic injury in rats. Rats were divided into six
groups. Hepatotoxicitywas induced by the administration of a single intraperitoneal dose of CCl4 in experimental
rats. Riboflavinwas administered at 30 and100 mg/kgby oral gavage to test its protective effect on hepatic injury
biochemically and histopathologically in the blood/liver and liver respectively. The administration of CCl4 result-
ed in marked alteration in serum hepatic enzymes (like AST, ALT and ALP), oxidant parameters (like GSH and
MDA) and pro-inflammatory cytokine TNF-α release from blood leukocytes indicative of hepatic injury. Changes
in serum hepatic enzymes, oxidant parameters and TNF-α production induced by CCl4 were reversed by ribofla-
vin treatment in a dose dependent manner. Treatment with standard drug, silymarin also reversed CCl4 induced
changes in biomarkers of liver function, oxidant parameters and inflammation. The biochemical observations
were paralleled by histopathological findings in rat liver both in the case of CCl4 and treatment groups. In conclu-
sion, riboflavin produced a protective effect against CCl4-induced liver damage. Our study suggests that riboflavin
may be used as a hepato-protective agent against toxic effects caused by CCl4 and other chemical agents in the
liver.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Liver is a vital organ that plays a key role in the conjugation and de-
toxification of many drugs [1]. However its function is generally im-
paired by xenobiotics or infections. Chronic or excessive exposure of
xenobiotics leads to cirrhosis or malignant lesions in untreated cases.
At present, millions of people suffer fromhepatic damage induced by al-
cohol, chemicals and infections. Thus, acute and chronic liver diseases
continue to be serious health problems in the world [2]. Chemicals
like paracetamol [3], carbon tetrachloride (CCl4) [4], nitrosamines, and
polycyclic aromatic hydrocarbons damage the liver significantly. There
is a need to develop newer drugs or safer options from current available
compounds which provide hepatoprotection. Options are limited in the
modernmedicine due to unreliability and limited efficiency of the avail-
able options [5].

Available literature evidence shows that extensive oxygen free radi-
cals such as superoxide anion radical ( 2

−) and hydroxyl radical (OH•) are
formed due to liver-toxic chemicals, ionizing radiations, environmental
ogy and Toxicology, College of
1451, Saudi Arabia.
pollutants, and drug exposure [3,4] which causes hepatotoxicity [6].
CCl4 is an extensively used chemical solvent in industry. It is a well-
established hepatotoxin and it is the best-characterized animal model
of xenobiotic induced free radical-mediated hepatotoxicity [7]. CCl4
causes hepatic injury through several pathways [8]. Elevated lipid per-
oxidation due to increased free radical formation generated from CCl4
is thought to be one of the mechanisms leading to hepatotoxicity [9].
CCl4 also causes the activation of immune systems through the infiltra-
tion of inflammatory cells to the site of injury. Thus immune cells may
be responsible for the release of pro-inflammatory cytokines such as
TNF-α and IL-6which further enhance hepatotoxicity through repeated
cycle of inflammation.

Riboflavin, also known as vitamin B2, is an easily absorbedmicronu-
trient with a key role in maintaining health in humans and animals. Vi-
tamin B2 is required for awide variety of cellular processes. It plays a key
role in energy metabolism and is required for the metabolism of fats,
carbohydrates, and proteins. It is the central component of the cofactors
flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN),
and is therefore required by all flavoproteins such as glutathione reduc-
tase which protects cells from harmful effect of ROS [10,11]. Riboflavin
deficiency causes protein and DNA damage, which leads to cell stress
and increased apoptosis [11–14]. Riboflavin also affects the immune
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system, through anti-inflammatory activities [15–17]. Riboflavin re-
duces the mortality of mice with septic shock [18], helps in protection
from bacterial infection and is involved in phagocytosis [19]. In addition
to being a central component of flavoprotein, riboflavin alsoworks as an
antioxidant by scavenging ROS [20]. In animals, riboflavin deficiency re-
sults in lack of growth, failure to thrive, and eventually death [21].

Therefore, this study was undertaken to evaluate the hepatoprotec-
tive effect of riboflavin in CCl4-induced hepatic injury in rats through
biochemical and histological assessments. Our study shows for first
time that riboflavin reverses CCl4-induced changes in biochemical
markers of liver toxicity and inflammation.

2. Materials and methods

2.1. Animals

In this study male Wistar albino rats weighing 200–250 g
(10–12 weeks old) were used. The animals were obtained from the
Experimental Animal Care Center, College of Pharmacy at King
Saud University. They were housed under ideal laboratory conditions
(12 h light/12 h darkness cycle, 45–55% relative humidity and tempera-
ture 23–25 °C),maintained on standard pellet diet andwater ad libitum
throughout the experimental period. All experiments were carried out
according to the guidelines of the animal care and use committee at
King Saud University.

2.2. Drugs and chemicals

Riboflavin from Sigma-Aldrich (Switzerland) and silymarin from
Sigma-Aldrich (USA) were used in the study. Carbon tetrachloride, all
other solvents and chemicals used for experimental work were of ana-
lytical grade.

2.3. Experimental design

Rats were divided into six groups with six animals in each group.
Hepatic injury was induced in rats by intra-peritoneal (i.p.) administra-
tion of a single dose of 0.5 ml/kg CCl4 [22]. Silymarin (45 mg/kg, p.o.)
which is an antioxidant was used as a reference standard [23,24]. The
experimental design was as follows: Group-I rats served as control;
Group-II rats (CCl4) were exposed to CCl4 on day one; Group-III rats
(CCl4 + R30) were exposed to CCl4 (0.5 ml/kg on day one) and treated
with riboflavin 30 mg/kg, p.o. for seven days; Group-IV rats (CCl4 +
R100) were exposed to CCl4 on day one and treated with riboflavin
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Fig. 1. Effects of riboflavin on CCl4-induced changes on liver function parameters in serum of di
control group; #p b 0.05, vs CCl4 group. ANOVA followed by Tukey–Kramer multiple comparis
100 mg/kg, p.o., daily for 7 days; Group-V rats (CCl4 + S45) were ex-
posed to CCl4 on day one, followed by the administration of silymarin
(45 mg/kg, p.o.) for seven days and Group-VI rats (R 100) served as ri-
boflavin per se group and were treated with riboflavin 100 mg/kg, p.o.,
daily for 7 days. All the ratswere sacrificed at the endof the study by de-
capitation under light ether anesthesia, as per the protocol.

Blood sampleswere collected in heparinized tube followed by serum
separation at 3000 g for 10min. Sampleswere then kept at−20 °C until
the analysis of liver function parameters. Biochemical estimations were
done in serum by an autoanalyzer (Dimension® RXLMAXTM, Siemens,
USA) to assess hepatic function, whereas whole blood was used for
TNF-α estimation. Livers were isolated and washed in ice cold phys-
iological saline for the assessment of oxidative stress and histopatho-
logical changes.
2.4. Determination of lipid peroxides, measured as malondialdehyde
(MDA)

Level of MDA, a product of membrane lipid peroxidation, was esti-
mated in liver tissue by the method of Okhawa [25], using the standard
calibration curve prepared with tetraethoxy propane. MDA was
expressed as nmol of MDA per milligram of protein. Protein was esti-
mated by the method of Lowry [26].
2.5. Determination of reduced glutathione (GSH)

GSH content was estimated in liver tissue by the method of
Sedlack [27]. The absorbance of reaction mixture was read within
5 min of addition of dithiobis-2-nitrobenzoic acid at 412 nm using UV-
spectrophotometer, against a reagent blank.
2.6. Intracellular TNF-α estimation in whole blood

Following lysis of RBC in whole blood and centrifugation at 300 ×g
for 5 min, the supernatant was discarded and fixation/permeabilizing
solution (Miltenyi Biotec, Germany) was added to the pellet followed
by incubation for 10 min at room temperature in the dark. After wash-
ing, hamster anti-TNF-α monoclonal Ab conjugated to PE (BD Biosci-
ences, USA) was added to the cells and incubated for 30 min at room
temperature in the dark followed by analysis immediately on a
Cytomics FC 500 flow cytometer (Beckman Coulter, USA). The stained
cells were analyzed using CXP software (Beckman Coulter, USA) [28].
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Table 1
Effects of riboflavin on CCl4 induced changes in liver function in serum.

Groups GGT (U/l) ALB (g/dl) TP (g/dl) DB (μmol/l)

Mean ± SEM Mean ± SEM Mean ± SEM Mean ± SEM

Control 5.80 ± 0.49 11.30 ± 0.19 65.52 ± 0.87 0.272 ± 0.08
CCl4 13.20 ± 0.80⁎ 7.14 ± 0.39⁎ 57.78 ± 1.54⁎ 2.32 ± 0.08⁎

CCl4 + R(30) 8.33 ± 0.67# 9.03 ± 0.88# 63.87 ± 2.34# 0.43 ± 0.10#

CCl4 + R(100) 7.80 ± 0.37# 11.06 ± 1.13# 69.50 ± 1.08# 0.41 ± 0.05#

CCl4 + S(45) 7.28 ± 0.37# 11.62 ± 0.24# 71.76 ± 1.83# 0.35 ± 0.09#

R(100) 6.17 ± 0.79 11.92 ± 0.40 68.30 ± 2.56 0.31 ± 0.06

GGT = Gamma glutamyl transferase, ALB = albumin, TP = total protein, DB = direct
bilirubin, CCl4 = carbon tetrachloride, R = riboflavin, S = silymarin, SEM = standard
error of mean. The data are expressed as mean ± SEM (n = 6). ANOVA followed by
Tukey–Kramer multiple comparison test.
⁎ p b 0.05 vs control group.
# p b 0.05 vs CCl4 group.
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2.7. Histopathology

Animals were killed by cervical decapitation and the livers fixed in
10% buffer formosaline. Paraffin sections of 3–4 μm thickness were pre-
pared and stainedwith hematoxylin and eosin (H&E) for histopatholog-
ical examination under light microscopy.

2.8. Statistical analysis

Results were expressed as mean ± SEM. One way analysis of vari-
ance (ANOVA) followed by Tukey–Kramer multiple comparisons test
was used to identify significance among groups. Valueswere considered
statistically significant when p b 0.05. Statistical analysis was carried
out using GraphPad Prism 3.0.

3. Results

3.1. Effects of riboflavin on CCl4-induced changes on liver function
parameters in serum

The activities of aspartate trans-aminase (AST), alanine trans-
aminase (ALT) and alkaline phosphatase (ALP), total protein (TP), albu-
min and gamma-glutamyl transferase (GGT) were estimated in serum
samples as biomarkers of liver function. In this study, single dose ad-
ministration of CCl4 to rats resulted in liver injury in rats as evidenced
by a marked increase in serum AST, ALT and ALP, compared to control
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Fig. 2. Effects of riboflavin on pro-inflammatory TNF-α production in whole blood of different e
group; #p b 0.05, vs CCl4 group. ANOVA followed by Tukey–Kramer multiple comparison test.
group. Changes in the serum liver function markers suggest increased
damage to the hepatic cells by CCl4. Treatment with riboflavin signifi-
cantly (p b 0.05) reversed CCl4-induced increase in AST, ALT and ALP
(Fig. 1). Albumin, GGT, TP and direct bilirubin (DB) levels were also al-
tered after the administration of CCl4 which was reversed by treatment
with riboflavin in a dose dependent manner (Table 1). Treatment with
standard drug, silymarin (S) also reversed CCl4 induced changes in bio-
markers of liver function. Riboflavin per se group had no significant
changes in any of the parameters compared to control group.

3.2. Effects of riboflavin on pro-inflammatory TNF-α production in whole
blood leukocytes

To study the role of riboflavin on CCl4 induced inflammation, tumor
necrosis factor-α (TNF-α) was measured in systemic circulation. The
administration of CCl4 resulted in a significant increase in the produc-
tion of TNF-α from blood leukocytes. In contrast, riboflavin and
silymarin reduced the production of TNF-α in blood leukocytes com-
pared with the CC14 group (Fig. 2). This data suggests that the hepato-
protective effect of riboflavin in this model may be due in part to the
inhibition of TNF-α. Riboflavin per se group had no significant change
in TNF-α production compared to control group.

3.3. Effects of riboflavin on CCl4-induced changes on parameters of
oxidative stress in liver

The results are summarized in Fig. 3. The administration of CCl4 re-
sulted in a significant (p b 0.05) increase in liver MDA content com-
pared to the control group. Treatment with riboflavin showed a
significant (p b 0.05) reversal in CCl4-induced increase in liver MDA
levels (Fig. 3). Consequently, a significant (p b 0.05) decrease in liver
GSH level was found in CCl4 treated rats as compared to control group
whichwas reversed by riboflavin treatment (Fig. 3). Silymarin produced
effects similar to riboflavin. Riboflavin per se group had no significant
changes in oxidative stress parameters compared to control group.

3.4. Effects of riboflavin on CCl4-induced histopathological changes in liver

Normal morphological structures of liver tissue were observed in
the control group (Fig. 4a). The administration of CCl4 caused histopath-
ological changes in the liver such as severe centrilobular necrosis,
hepatocyte ballooning, and infiltration of inflammatory cells (such as
macrophages and lymphocytes) into the portal tract and sinusoid
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Fig. 3. Effects of riboflavin on CCl4-induced changes on parameters of oxidative stress in the liver of different experimental groups. The data are expressed as mean ± SEM (n = 6).
*p b 0.05, vs control group; #p b 0.05, vs CCl4 group. ANOVA followed by Tukey–Kramer multiple comparison test.
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(Fig. 4b). Treatment with riboflavin (30 and 100 mg/kg), dose-
dependently, reversed the hepatic lesions produced by CCl4 (Fig. 4c–d).
Hepatoprotection of riboflavinwas particularly evident from the absence
of cellular necrosis and inflammatory infiltrates in the liver section of rats
treated with the highest dose. The effect of riboflavin (100 mg/kg) was
almost comparable to that of the silymarin (Fig. 4e) treated group. Ribo-
flavin per se group was similar to control group (Fig. 4f).
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Fig. 4. Effects of riboflavin on CCl4-induced changes in liver histopathology of different experim
CCl4; and f) R(100). (n= 6 per group; magnification = 20×). Arrow, arrow head and double a
pericellular fibrosis in the liver parenchyma respectively.
4. Discussion

Our study showed for the first time that treatment with riboflavin
ameliorated CCl4-induced toxicity and showed the normalization of
serumhepatic enzymes (like AST, ALT and ALP) and oxidant parameters
(like GSH andMDA)whichwere further confirmed by histological find-
ings. There are various etiological factors such as hepatotoxins [29],
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rrow heads indicate hepatocyte ballooning, necrosis and inflammation of central vein, and
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drug/chemical exposure like paracetamol [3] or CCl4, metabolic dis-
eases [30] and alcoholism which contribute to the liver damage, often
leading to severe necrosis. It is difficult to treat hepatotoxicity with
the currently available drugs due to their side effects and inherent tox-
icities. Thus, there is a need to develop an efficient alternative for man-
aging the liver treatment with efficacy and safety. The hepatoprotective
drug should have the ability to restore the normal architecture of the
liver and preserve the normal physiological mechanisms which have
been distorted by the hepatotoxins [31]. Therefore, we tested riboflavin
for its protective effects in a hepatic injury model.

CCl4-induced liver injury is the preferred model as it causes the he-
patic changes identical to cirrhosis/hepatitis [32,33], mononuclear cell
infiltration, and steatotic foamy degeneration of hepatocytes [34]. Car-
bon tetrachloride induced toxicity is characterized by the generation
of reactive intermediate trichloromethyl radical and trichloromethyl
peroxy radicals [35] which alkylate cellular proteins and other macro-
molecules with a simultaneous attack on polyunsaturated fatty acids
[36]. They are believed to produce lipid peroxides in the form of conju-
gated dienes, lipid hydro-peroxides, malonaldehyde like substances,
and other short-chain hydrocarbons which eventually leads to hepato-
toxicity [37].

In the present study, CCl4 induced severe hepatic injury which was
demonstrated by marked elevation of ALT and AST, ALP. These are usu-
ally considered as hepatic biomarkers. Damage to hepatic cells causes a
leakage of liver-specific enzymes, causing increased level of these en-
zymes in serum. The increased serum enzyme levels like ALT and AST
are indicators of cellular damage and functional integrity of liver cell
membrane [38]. Zimmerman et al. [39] stated that CCl4-induced in-
crease of serum ALT and AST levels are due to cell membrane and mi-
tochondrial damage of liver cells. Other studies have also reported
that these enzyme activities are significantly elevated after CCl4 treat-
ment [40–43]. Treatment of rats with riboflavin had a significant
protective effect against CCl4-induced hepatotoxicity in rats, as evi-
denced by decreased serum ALT, ALP, and AST levels (Fig. 1). Previous
studies have shown similar results on hepatoprotective agents in
CCl4-induced acute liver injury model [2,24,44]; however our study
has shown the effect of riboflavin on CCl4-induced liver damage for
the first time.

Albumin, gamma-glutaryl transferase (GGT), total protein (TP) and
direct bilirubin (DB) levels were also altered by the administration of
CCl4 whichwere reversed by treatmentwith riboflavin in a dose depen-
dent manner. Serum bilirubin level which is a dominant marker in liver
injury indicates secretory mechanism of hepatocytes. Animals treated
with riboflavin showed a decrease in serum bilirubin level suggesting
protection of hepatocytes from CCl4 mediated damage. Similar results
have been reported earlier [24,44].

It has already been shown through previous studies that one of the
main causes of CCl4-induced hepatotoxicity is the generation of lipid
peroxides by free radical derivatives of CCl4. Thus, the anti-oxidant ac-
tivity or the inhibition of the generation of free radicals could be one
of the mechanisms in the protection against CCl4-induced hepatoxicity.
The increased serum levels of hepatic biomarkers could be [45,46] due
to lipid peroxidation caused by free radical derivatives of CCl4 leading
to the leakage of these enzymes from hepatocytes [47,48]. Indeed,
CCl4-administration resulted in a significant increase in liver MDA con-
tents compared to the control group. Treatmentwith riboflavin showed
a significant reversal in CCl4-induced increase in liver MDA levels. The
reduction in MDA caused by riboflavin shows the free radical scaveng-
ing property of riboflavin. GSH is themain redox regulator of extracellu-
lar as well as intracellular compartment. It can detoxify ROS or free
radicals directly by scavenging free radicals or by being part of glutathi-
one redox system which include glutathione peroxidase and glutathi-
one reductase. A significant decrease in liver GSH level was found in
CCl4 treated rats as compared to control group which was reversed by
riboflavin treatment. Our results are in agreement with earlier studies
[2,24,44]. Our data suggest that direct free radical scavenging as well
as being a part of flavoproteins such as glutathione reductase may
have contributed to the antioxidant function of riboflavin.

Monocytes, lymphocytes, neutrophils and Kupffer cells are known to
be activated by different stimuli such as endotoxin and CCl4 [49]. In-
creased oxidative injury produced by derivatives of CCl4 also activates
Kupffer cells in the liver whichmay be responsible for increased release
of TNF-α from inflammatory cells recruited to the liver [50]. Riboflavin
prevented CCl4-induced liver injury by the inhibition of pro-
inflammatory cytokine TNF-α release from leukocytes. This data sug-
gests that the hepatoprotective effect of riboflavin in this model may
be due in part to the inhibition of TNF-α.

Biochemical improvements after riboflavin treatment were
paralleled by histopathological findings. Treatment with riboflavin re-
versed the hepatic lesions producedbyCCl4 in a dose dependentmanner.
It was evident from the absence of cellular necrosis, inflammatory infil-
trates and normalization of cellular structures in the liver section. Our re-
sults are in agreement with earlier reports showing hepatoprotection
against chemical induced liver damage [9,38,44]. Our data suggests
that antioxidant and anti-inflammatory actions of riboflavin are respon-
sible for the normalization of hepatic function at the biochemical and
structural level.

5. Conclusion

Current study shows that riboflavin prevents CCl4-induced hepatic
injury through a decrease in hepatic oxidative stress and pro-
inflammatory cytokine TNF-α release from leukocytes.
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