2/03/2016
CE435 - Railway Engineering
Tutorial \#4

Model Answer

Q1: What is the increase in the length of rail of 25.6 m when the rise of the temperature of the track is $30^{\circ} \mathrm{C}$ and given that $\boldsymbol{\alpha}=1.15 \times 10^{-5}$ per ${ }^{\circ} \mathrm{C}$

Answer:

The increase in length due to expansion is given by:

$$
\begin{gathered}
\delta l=l * \alpha * t \\
\therefore \delta l=25.6 * 1.15 \times 10^{-5} * 100 * 30 \\
\therefore \delta l=0.8832 \mathrm{~cm} \text { or } 8.8832 \mathrm{~mm}
\end{gathered}
$$

Q2: What should be the length of track to:
I. Overcome temperature stress if rise in temperature $t=25{ }^{\circ} \mathrm{C}$
II. Prevent creep for equilibrium

Assume 750 kg as resistance to track movement.
Given:
$A=70 \mathrm{~cm}^{2}, \boldsymbol{\alpha}=1.15 \times 10^{-5} \mathrm{per},{ }^{\circ} \mathrm{C}$ and $E=21.5 \times 10^{5} \mathrm{~kg} / \mathrm{cm}^{2}$

Answer:

The force required to expansion due to temperature is given by:

$$
\begin{gathered}
\boldsymbol{F}=\boldsymbol{\alpha} * t * \boldsymbol{A} * \boldsymbol{E} \\
\operatorname{Or} \boldsymbol{F}=(f) * t * A
\end{gathered}
$$

Where (f) is the stress in rail pre degree rise in temperature $=\alpha^{*} E$

$$
\text { So } F=1.15 \times 10^{-5} * 25 * 70 * 21.5 \times 10^{5}=43268.75 \mathrm{~kg}
$$

I. Length of track to overcome temperature stress.

$$
L_{t}=\frac{43268.75}{750}=57.7 \mathrm{~km}
$$

II. To prevent creep for equilibrium, the length of welded track.
$=2 * L_{t}$
$=2 * 57.7=115.4 \mathrm{~km}$

Q3: Explain three of rail functions?

Answer:

1. Rails provide a continuous and level surface for the movement of trains.
2. Rails carry out the function of transmitting the load to a large area of the formation through sleepers and the ballast.
3. Rails serve as a lateral guide for the wheels.

Q4: Why theoretically the longer rails are preferred?

Answer:

- Reduces number of joints, so less cost (construction \& maintenance)
- Provides smooth and comfortable rides.

Q5: Why the length of a rail is limited ?

Answer:

> Lack of facilities for transport of longer rails, particularly on curves.
> Difficulties in manufacturing very long rails.
> Difficulties in acquiring bigger expansion joints for long rails.
> Heavy internal thermal stresses in long rails

Equation sheet

The increase in length due to expansion is given by:

$$
\delta 1=1 * \boldsymbol{\alpha} * t
$$

Where:
Let, $l=$ length of the rail in cm .
$\alpha=$ co-efficient of expansion in per ${ }^{\circ} \mathrm{C}$.
$t=$ the rise in temperature above the temperature at which the track is laid.
$F . l=\delta l . A . E$.
$F . l=l . \alpha . t . A . E .($ Where $\delta l=l \times \alpha \times t)$
$F=\alpha, t . A . E$.
Where:
$A=$ Cross-sectional area of a rail in cm^{2}
$E=$ Modulus of elasticity of steel in $\mathrm{kg} / \mathrm{cm}^{2}$
$F=$ Force in kg. required to prevent likely expansion due to temperature.

