Logic and Computer Design Fundamentals

Chapter 7 - Registers and Register Transfers

Part 1 - Registers, Microoperations and Implementations

Charles Kime \& Thomas Kaminski
© 2008 Pearson Education, Inc.
(Hyperlinks are active in View Show mode)

Overview

- Part 1 - Registers, Microoperations and Implementations
- Registers and load enable
- Register transfer operations
- Microoperations - arithmetic, logic, and shift
- Microoperations on a single register
- Multiplexer-based transfers
- Shift registers
- Part 2 - Counters, Register Cells, Buses, \& Serial Operations
- Part 3 - Control of Register Transfers

Registers

- Register - a collection of binary storage elements
- In theory, a register is sequential logic which can be defined by a state table
- More often, think of a register as storing a vector of binary values
- Frequently used to perform simple data storage and data movement and processing operations

Registers

Example: 2-bit Register

- How many states are there? $2^{2}=4$
- How many input combinations? $2^{2}=4$
- How many output combinations? $2^{2}=4$
- What is the output function?

$$
\begin{aligned}
& \mathbf{Y}_{1}=\mathbf{A}_{1} \\
& \mathbf{Y}_{0}=\mathbf{A}_{0}
\end{aligned}
$$

- What is the next state function?

State Table

$$
\begin{aligned}
& \mathbf{A}_{1}(\mathbf{t}+\mathbf{1})=\mathbf{I} \mathbf{N}_{1} \\
& \mathbf{A}_{\mathbf{0}}(\mathbf{t}+\mathbf{1})=\mathbf{I} \mathbf{N}_{\mathbf{n}}
\end{aligned}
$$

- Moore or Mealy?

Moore

Current State	$\begin{gathered} \text { Next State } \\ \mathbf{A}_{1}(\mathbf{t}+1) \mathbf{A}_{0}(\mathbf{t}+1) \\ \text { For } \mathrm{In}_{1} \mathrm{In}_{0}= \end{gathered}$	Output $\left(=\mathbf{A}_{1} \mathbf{A}_{0}\right)$
$\mathrm{A}_{1} \mathbf{A}_{0}$	00011011	$\mathbf{Y}_{1} \mathbf{Y}_{0}$
00	00011011	00
01	00011011	01
10	00011011	10
11	00011011	11

- What are the quantities above for an n-bit register?

Register Design Models

- Due to the large numbers of states and input combinations as \boldsymbol{n} becomes large, the state diagram/state table model is not feasible!
- What are methods we can use to design registers?
- Add predefined combinational circuits to registers
- Example: To count up, connect the register flip-flops to an incrementer
- Design individual cells using the state diagram/state table model and combine them into a register
- A 1-bit cell has just two states
- Output is usually the state variable

Add Combinational Circuits to Registers

Design Individual Cells

Clock

Register Storage

- Expectations:
- A register can store information for multiple clock cycles
- To "store" or "load" information should be controlled by a signal
- Reality:
- A D flip-flop register loads information on every clock cycle
- Realizing expectations:

1. Use a signal to block the clock to the register,
2. Use a signal to control feedback of the output of the register back to its inputs, or
3. Use other SR or JK flip-flops, that for (0,0) applied, store their state

- Load is a frequent name for the signal that controls register storage and loading
- Load = 1: Loads input values (load new values)
- Load = 0: Loads register contents (hold current values)

Registers with Clock Gating

- The $\overline{L o a d}$ signal enables the clock signal to pass through if 1 and prevents the clock signal from passing through if 0 .
- Example: For Positive Edge-Triggered or Negative Pulse Master-Slave Flip-flop:

- What logic is needed for gating? Gated Clock = Clock + Load
- What is the problem? Clock Skew of gated clocks with respect to clock or each other

Registers with Clock Gating

Registers with Load-Controlled Feedback

- A more reliable way to selectively load a register:
- Run the clock continuously, and
- Selectively use a load control to change the register contents.
- Example: 2-bit register with Load Control:
- For Load = 0, loads register contents (hold current values)
- For Load = 1, loads input values (load new values)
- Hardware more complex than clock gating, but free of timing problems

Registers with Load-Controlled Feedback

Clock

Registers with Load-Controlled Feedback

In_{0}	Register with Parallel Load	Q_{0}
In_{1}		Q_{1}
In_{2}		Q_{2}
In_{3}		Q_{3}
Load Clock		

Register Transfer Operations

- Register Transfer Operations - The movement and processing of data stored in registers
- Three basic components:
- Set of Registers
- Operations
- Control of Operations

- Elementary Operations:
- load, count, shift, add, bitwise 'OR', etc.
- Elementary operations called microoperations

Register Notation

76543210

- Letters and numbers - denotes a register (ex. R2, PC, IR)
- Parentheses () - denotes a range of register bits

Example: R1(1), PC(7:0), PC(L)

- Arrow (\leftarrow) - denotes data transfer

Example: $\mathbf{R} 1 \leftarrow \mathbf{R} 2, \quad \mathbf{P C}(\mathbf{L}) \leftarrow \mathbf{R} 0$

- Comma - separates parallel operations
- Brackets [] - Specifies a memory address

Example: $\mathbf{R} 0 \leftarrow \mathbf{M}[A R], \quad \mathbf{R} 3 \leftarrow \mathbf{M}[P C]$

Conditional Transfer

- If $\left(\mathrm{K}_{1}=1\right)$ then $(\mathbf{R} 2 \leftarrow \mathbf{R} 1)$ is shortened to

$$
\mathbf{K}_{1}:(\mathbf{R} \mathbf{2} \leftarrow \mathbf{R} \mathbf{1})
$$

Clock

where K_{1} is a control variable specifying a conditional execution of the microoperation.

Transfer Occurs Here
Clock

Microoperations

- Logical Groupings:
- Transfer - move data from one register to another
- Arithmetic - perform arithmetic on data in registers
- Logic - manipulate data or use bitwise logical operations
- Shift - shift data in registers

Arithmetic operations

+ Addition
- Subtraction
* Multiplication
/ Division

Logical operations
 \checkmark Logical OR
 \wedge Logical AND
 \oplus Logical Exclusive OR
 Not

Example Microoperations

- Add the content of R1 to the content of R2 and place the result in $\mathbf{R 1}$.

$$
\mathbf{R} 1 \leftarrow \mathbf{R} \mathbf{1}+\mathbf{R} \mathbf{2}
$$

- Multiply the content of R1 by the content of R6 and place the result in PC.

$$
\mathbf{P C} \leftarrow \mathbf{R} 1 * \mathbf{R} 6
$$

- Exclusive OR the content of R1 with the content of $R 2$ and place the result in $R 1$.

$$
\mathbf{R} \mathbf{1} \leftarrow \mathbf{R} \mathbf{1} \oplus \mathbf{R} \mathbf{2}
$$

Example Microoperations (Continued)

- Take the 1's Complement of the contents of R2 and place it in the PC.

$$
\mathbf{P C} \leftarrow \overline{\mathbf{R} 2}
$$

- On condition K_{1} OR K_{2}, the content of $R 1$ is Logic bitwise Ored with the content of R3 and the result placed in R1.

$$
(\mathbf{K} 1+\mathrm{K} 2): \mathbf{R} 1 \leftarrow \mathbf{R} 1 \vee \mathbf{R} 3
$$

- NOTES:
" + " (as in $\mathbf{K}_{1}+\mathrm{K}_{2}$) and means "OR." In R1 $\leftarrow \mathbf{R} 1+\mathbf{R} 3$, + means "plus."

Control Expressions

- The control expression for an operation appears to the left of the operation and is separated from it by a colon
- Control expressions specify the logical condition for the operation to occur
- Control expression values of:
- Logic "1" -- the operation occurs.
- Logic " 0 " -- the operation is does not occur.
- Example:

$$
\begin{aligned}
& \overline{\mathbf{X}} \mathrm{K}_{1}: \mathbf{R} 1 \leftarrow \mathbf{R} \mathbf{2}+\mathrm{R} 1 \\
& \mathbf{X ~ K}_{1}: \mathbf{R} 1 \leftarrow \mathbf{R} 2+\overline{\mathrm{R}} 1+\mathbf{1}
\end{aligned}
$$

- Variable \mathbf{K}_{1} enables the add or subtract operation.
- If $\mathbf{X}=\mathbf{0}$, then $\overline{\mathbf{X}}=\mathbf{1}$ so $\bar{X} K_{1}=1$, activating the addition of R1 and R2.
- If $X=1$, then $X K_{1}=1$, activating the addition of R2 and the two's complement of R1 (subtract).

Arithmetic Microoperations

$$
\begin{array}{ll}
\overline{\mathrm{X}} \mathrm{~K}_{1}: & \mathrm{R} 1 \leftarrow \mathbf{R} 2+\mathrm{R} 1 \\
\mathbf{X ~ K}_{1}: & \mathrm{R} 1 \leftarrow \mathbf{R} 2+\overline{\mathrm{R}} 1+1
\end{array}
$$

Logic and Computer Design Fundamentals, 4e
PowerPoint ${ }^{\text {¹ }}$ Slides
© 2008 Pearson Education, Inc.

Arithmetic Microoperations

Logic and Computer Design Fundamentals, 4e

Arithmetic Microoperations

$\overline{\mathbf{X}}_{\mathbf{K}}^{1}: \quad \mathrm{R} 1 \leftarrow \mathrm{R} 2+\mathrm{R} 1$

Logic and Computer Design Fundamentals, 4e

Two's Complement Arithmetic

$\left.(9)_{10}=(0) 1001\right)_{2} \rightarrow(-9)_{10}=(10111)_{2}$
$(4)_{10}=(00100)_{2} \rightarrow(-4)_{10}=(11100)_{2}$
$9-4=9+(-4)=(01001)_{2}+(11100)_{2}$
11000
01001
11100
$00101 \rightarrow(5)_{10}$

Two's Complement Arithmetic

$\left.(9)_{10}=(0) 1001\right)_{2} \rightarrow(-9)_{10}=(10111)_{2}$
$(4)_{10}=(00100)_{2} \rightarrow(-4)_{10}=\left(\begin{array}{lll}11100\end{array}\right)_{2}$
$4-9=4+(-9)=(00100)_{2}+(10111)_{2}$
$\begin{array}{lllll}0 & 0 & 1 & 0 & 0\end{array}$
00100
10111 +
10111
$11011 \rightarrow(-5)_{10}$

Two's Complement Arithmetic

$(9)_{10}=(01001)_{2} \rightarrow(-9)_{10}=(10111)_{2}$
$(8)_{10}=(01000)_{2} \rightarrow(-8)_{10}=(11000)_{2}$
$9+8=(01001)_{2}+(01000)_{2}$
$\begin{array}{lllll}0 & 1 & 0 & 0 & 0\end{array}$
01001
01000
$10001 \rightarrow$ OVERFLOW
$-2^{4} \leq$ Number $\leq 2^{4}-1 \rightarrow \quad-16 \leq$ Number $\leq+15$
Logic and Computer Design Fundamentals, 4e

Two's Complement Arithmetic

$(9)_{10}=(01001)_{2} \rightarrow(-9)_{10}=(10111)_{2}$
$(8)_{10}=(01000)_{2} \rightarrow(-8)_{10}=(11000)_{2}$
$(-9)+(-8)=(10111)_{2}+(11000)_{2}$
10000
10111
11000

01111 - OVERFLOW

$-2^{4} \leq$ Number $\leq 2^{4}-1 \rightarrow \quad-16 \leq$ Number $\leq+15$

Arithmetic Microoperations

- From Table 7-3:

Symbolic Designation	Description
$\mathbf{R} 0 \leftarrow \mathbf{R} 1+\mathbf{R} \mathbf{2}$	Addition
$\mathbf{R} 0 \leftarrow \overline{\mathbf{R} 1}$	Ones Complement
$\mathbf{R} 0 \leftarrow \overline{\mathbf{R} 1}+\mathbf{1}$	Two's Complement
$\mathbf{R} 0 \leftarrow \mathbf{R} \mathbf{2}+\overline{\mathbf{R} 1}+\mathbf{1}$	$\mathbf{R} 2$ minus $\mathbf{R} 1$ (2's Comp)
$\mathbf{R} 1 \leftarrow \mathbf{R} 1+\mathbf{1}$	Increment (count up)
$\mathbf{R} 1 \leftarrow \mathbf{R} 1-\mathbf{1}$	Decrement (count down)

- Note that any register may be specified for source 1, source 2, or destination.
- These simple microoperations operate on the whole word

Logic and Computer Design Fundamentals, 4e
PowerPoint ${ }^{6}$ Slides
© 2008 Pearson Education, Inc.

Logical Microoperations

Symbolic Designation	Description
$\mathbf{R 0} \leftarrow \overline{\mathbf{R 1}}$	Bitwise NOT
$\mathbf{R 0} \leftarrow \mathbf{R 1} \vee \mathbf{R 2}$	Bitwise OR (sets bits)
$\mathbf{R 0} \leftarrow \mathbf{R 1} \wedge \mathbf{R 2}$	Bitwise AND (clears bits)
$\mathbf{R 0} \leftarrow \mathbf{R 1} \oplus \mathbf{R 2}$	Bitwise EXOR (complements bits)

Logical Microoperations

Example:
 - Let R1 = 10101010, and $\mathbf{R 2}=11110000$

- Then after the operation, R0 becomes:

R0	Operation
$\mathbf{0 1 0 1 0 1 0 1}$	$\mathbf{R 0} \leftarrow \overline{\mathbf{R} 1}$
$\mathbf{1 1 1 1 1 0 1 0}$	$\mathbf{R 0} \leftarrow \mathbf{R} 1 \vee \mathbf{R 2}$
$\mathbf{1 0 1 0 0 0 0 0}$	$\mathbf{R 0} \leftarrow \mathbf{R} 1 \wedge \mathbf{R} \mathbf{2}$
$\mathbf{0 1 0 1 1 0 1 0}$	$\mathbf{R 0} \leftarrow \mathbf{R} 1 \oplus \mathbf{R} \mathbf{2}$

Shift Microoperations

- From Table 7-5:
- Let R2 = 11001001
- Then after the operation, R1
becomes:

Symbolic Designation	Description
R1 \leftarrow sl R2	Shift Left
R1 \leftarrow sr R2	Shift Right

R1	Operation
$\mathbf{1 0 0 1 0 0 1 0}$	R1 \leftarrow sl R2
$\mathbf{0 1 1 0 0 1 0 0}$	R1 \leftarrow sr R2

- Note: These shifts 'zero fill'. Sometimes a separate flip-flop is used to provide the data shifted in, or to "catch" the data shifted out.
- Other shifts are possible (rotates, arithmetic) (see Chapter 10).

Shift Registers

Chapter 7 - Part 133

Bidirectional Shift Register with Parallel Load

$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{0}}$	Register Operation
0	0	No Change
0	1	Shift Left
1	0	Shift Right
1	1	Parallel Load

Logic and Computer Design Fundamentals, 4e

Bidirectional Shift Register with Parallel Load

$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{0}}$	Register Operation
0	0	No Change
0	1	Shift Left
1	0	Shift Right
1	1	Parallel Load

Bidirectional Shift Register with Parallel Load

$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{0}}$	Register Operation
0	0	No Change
0	1	Shift Left
1	0	Shift Right
1	1	Parallel Load

Bidirectional Shift Register with Parallel Load

Case 1: Shift Right

$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{0}}$	Register Operation
0	0	No Change
0	1	Shift Left
1	0	Shift Right
1	1	Parallel Load

Case 3: Parallel Load

Case 2: Shift Left

Shift Register with Parallel Load

Logic and Computer Design Fundamentals, 4e

Register Transfer Structures

- Multiplexer-Based Transfers - Multiple inputs are selected by a multiplexer dedicated to the register
- Bus-Based Transfers - Multiple inputs are selected by a shared multiplexer driving a bus that feeds inputs to multiple registers
- Three-State Bus - Multiple inputs are selected by 3-state drivers with outputs connected to a bus that feeds multiple registers
- Other Transfer Structures - Use multiple multiplexers, multiple buses, and combinations of all the above

Multiplexer-Based Transfers

- Multiplexers connected to register inputs produce flexible transfer structures (Note: Clocks are omitted for clarity)

Example:

- The transfers are:

$$
\begin{gathered}
\mathbf{K}_{1}: \mathbf{R} 0 \leftarrow \mathbf{R} \mathbf{1} \\
\overline{\mathbf{K}}_{1} \cdot \mathbf{K} 2: \mathbf{R} \mathbf{0} \leftarrow \mathbf{R} \mathbf{2} \\
\mathbf{K}_{1}+\overline{\mathbf{K}}_{1} \mathbf{K}_{2}=\mathbf{K}_{1}+\mathbf{K}_{2}
\end{gathered}
$$

Multiplexer-Based Transfer Example: Two 4-bit registers

(b) Detailed logic

Bus Transfers

Bus Transfer

Example:

For register R0 to R3 in a 4 bit system

S1	S0	Register selected
$\mathbf{0}$	$\mathbf{0}$	A
$\mathbf{0}$	$\mathbf{1}$	\mathbf{B}
$\mathbf{1}$	$\mathbf{0}$	C
$\mathbf{1}$	$\mathbf{1}$	\mathbf{D}

Bus Transfer

- For register R0 to R63 in a 16 bit system:
- What is the MUX size we use? 64×1 mux
- How many MUX we need? 16 muxs
- How many select bit? 6 bits

Tri-State Buffers

- Tri-state buffer gate:
- When control input $=1$: The output is nabled (output $Y=$ input A)
- When control input $=0$: The output is disabled (output $Y=$ high-impedance)

$$
\text { If } \mathrm{C}=1, \text { Output } \mathrm{Y}=\mathrm{A}
$$

$$
\text { If } \mathbf{C =}=0 \text {, Output = High-impedance }
$$

Bus system with tri-state buffer

S1	S0	Register selected
$\mathbf{0}$	$\mathbf{0}$	A
$\mathbf{0}$	$\mathbf{1}$	B
$\mathbf{1}$	$\mathbf{0}$	C
$\mathbf{1}$	$\mathbf{1}$	D

Multiplexer Approach

- Uses an n-input multiplexer with a variety of transfer sources and functions

Multiplexer Approach

- Load enable by OR of control signals $K_{\mathbf{0}}, K_{1}, \ldots K_{n-1}$
- Assumes no load for 00...0
- Use:
- Encoder + Multiplexer (shown) or
- nx 2 AND-OR to select sources and/or transfer functions

Multiplexer and Bus-Based Transfers for Multiple Registers

- Multiplexer dedicated to each register
- Shared transfer paths for registers
- A shared transfer object is a called a bus (Plural: buses)
- Bus implementation using:
- multiplexers
- three-state nodes and drivers
- In most cases, the number of bits is the length of the receiving register

Dedicated MUX-Based Transfers

- Multiplexer connected to each register input produces a very flexible transfer structure =>
- Characterize the simultaneous transfers possible with this structure.

Multiplexer Bus

- A single bus driven by a multiplexer lowers cost, but limits the available transfers.
- Characterize the simultaneous transfers possible with this structure.
- Characterize the cost savings compared to dedicated multiplexers

Three-State Bus

- The 3-input MUX can be replaced by a 3 -state node (bus) and 3-state buffers.
- Cost is further reduced, but transfers are limited
- Characterize the simultaneous transfers possible with this structure.
- Characterize the cost savings and compare
- Other advantages?

E2

Shift Registers

- Shift Registers move data laterally within the register toward its MSB or LSB position
- In the simplest case, the shift register is simply a set of D flipflops connected in a row like this:

- Data input, In, is called a serial input or the shift right input.
- Data output, Out, is often called the serial output.
- The vector (A, B, C, Out) is called the parallel output.

Shift Registers (continued)

- The behavior of the serial shift register is given in the listing on the lower right

- T0 is the register state just before the first clock pulse occurs
- T1 is after the first pulse and before the second.
- Initially unknown

CP	In	A	B	C	Out
T0	0	$?$	$?$	$?$	$?$
T1	1	0	$?$	$?$	$?$
T2	1	1	0	$?$	$?$
T3	0	1	1	0	$?$
T4	1	0	1	1	0
T5	1	1	0	1	1
T6	1	1	1	0	1

Parallel Load Shift Registers

- By adding a mux between each shift register stage, data can be shifted or loaded
- If SHIFT is low, A and B are
 replaced by the data on D_{A} and D_{B} lines, else data shifts right on each clock.
- By adding more bits, we can make n-bit parallel load shift registers.

Note:

- A parallel load shift register with an added "hold" operation that stores data unchanged is given in Figure 7-10 of the text.

Shift Registers with Additional Functions

- By placing a 4-input multiplexer in front of each D flipflop in a shift register, we can implement a circuit with shifts right, shifts left, parallel load, hold.
- Shift registers can also be designed to shift more than a single bit position right or left
- Shift registers can be designed to shift a variable number of bit positions specified by a variable called a shift amount.

Serial Transfers and Microoperations

- Serial Transfers
- Used for "narrow" transfer paths
- Example 1: Telephone or cable line
- Parallel-to-Serial conversion at source
- Serial-to-Parallel conversion at destination
- Example 2: Initialization and Capture of the contents of many flip-flops for test purposes
- Add shift function to all flip-flops and form large shift register
- Use shifting for simultaneous Initialization and Capture operations
- Serial microoperations
- Example 1: Addition
- Example 2: Error-Correction for CDs

Parallel-to-Serial / Serial-to-Parallel

Serial Microoperations

- By using two shift registers for operands, a full adder, and a flip flop (for the carry), we can add two numbers serially, starting at the least significant bit.
- Serial addition is a low cost way to add large numbers of operands, since a "tree" of full adder cells can be made to any depth, and each new level doubles the number of operands.
- Other operations can be performed serially as well, such as parity generation/checking or more complex error-check codes.
- Shifting a binary number left is equivalent to multiplying by 2.
- Shifting a binary number right is equivalent to dividing by 2.

Serial Adder

- The circuit shown uses two shift registers for operands $\mathbf{A}(3: 0)$ and $B(3: 0)$.
- A full adder, and one more flip flop (for the carry) is used to compute the sum.
- The result is stored in the A register and the final carry in the flip-flop

- With the operands and the result in shift registers, a tree of full adders can be used to add a large number of operands. Used as a common digital signal processing technique.

Terms of Use

- All (or portions) of this material © 2008 by Pearson Education, Inc.
- Permission is given to incorporate this material or adaptations thereof into classroom presentations and handouts to instructors in courses adopting the latest edition of Logic and Computer Design Fundamentals as the course textbook.
- These materials or adaptations thereof are not to be sold or otherwise offered for consideration.
- This Terms of Use slide or page is to be included within the original materials or any adaptations thereof.

