Ch 01-2: Errors
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Round-off Errors and Computer
Arithmetic

 The arithmetic performed by a calculator or
computer is different from the arithmetic in
algebra and calculus courses.

e 2+2 =4, 4-8 =32,and (V 3)° =3.
However, with computer arithmetic we expect
exact results for 242 =4 and 4 - 8 = 32, but we
will not have precisely (Vv 3)? =3

 To understand why this is true we must
explore the world of finite-digit arithmetic



Traditional mathematical world we permit numbers with an
infinite number of digits.

The arithmetic we use in this world defines Vv 3 as that unique
positive number that when multiplied by itself produces the
integer 3.

In the computational world, however, each representable
number has only a fixed and finite number of digits.

This means, for example, only most rational numbers can be
represented exactly.

V 3 is not rational, approximate representation, will not be
precisely 3, But sufficiently close to 3.

The error that is produced when a calculator or computer is
used to perform real number calculations is called round-off
error.



Binary Machine Numbers

A 64-bit (binary digit) representation is used for a real
number. The first bit is a sign indicator, denoted s. This is
followed by an 11-bit exponent, c, called the characteristic,
and a 52-bit binary fraction, f, called the mantissa. The
base for the exponent is 2.

Since 52 binary digits correspond to between 16 and 17
decimal digits, we can assume that a number represented
in this system has at least 16 decimal digits of precision.

The exponent of 11 binary digits gives a range of 0 to 2-1
=2047.

So for positive and negative numbers become -1023 to
1024.



Binary Machine Numbers
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Consider the machine number

0 10000000011 1011100100010000000000000000000000000000000000000000.

The leftmost bit is s = 0. which indicates that the number is positive. The next 11 bits,
10000000011, give the characteristic and are equivalent to the decimal number

c=1-2040.2"+...40-224+1-2" 1.2 =1024 +2+1 =1027.

The exponential part of the number is, therefore, 2'927-192* — 2% The final 52 bits specify
that the mantissa is
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As a consequence, this machine number precisely represents the decimal number
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However, the next smallest machine number is
0 10000000011 1011100100001 1010200022000,
and the next largest machine number is

0 10000000011 1011100100010000000000000000000000000000000000000001.

[27.5664062499999982236431605997495353221893310546873,
27.5664062500000017763568394002504646778106689453125).
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The smallest normalized positive number that can be represented has s = 0. ¢ = 1,
and f = 0 and is equivalent to

271922 (1 4+ 0) & 0.22251 x 1077,
and the largest has s = 0, ¢ = 2046, and f = 1 — 27°% and is equivalent to

2193 (2 - 27%) & 0.17977 x 10°”.
Numbers occurring in calculations that have a magnitude less than

=102 (1 4 ()
result in underflow and are generally set to zero. Numbers greater than
21023 (9 _ 952y

result in overflow and typically cause the computations to stop (unless the program has
been designed to detect this occurrence). Note that there are two representations for the

number zero: a positive 0 when s = 0, ¢ = O and f = 0. and a negative 0 when s = 1,
¢c=0and f = 0.



Decimal Machine Numbers

+0.dd,...d, x 10", 1=d; =9, and 0=d; =09,

foreachi =2, ..., k. Numbers of this form are called k-digit decimal machine numbers.
Any positive real number within the numerical range of the machine can be normalized
to the form

V= D.Efjifj “u e dﬁ-dﬁ-+[dﬁ-+j cox 107,

e The floating-point form of y, denoted f I(y), is obtained by
terminating the mantissa of y at k decimal digits.



Decimal Machine Numbers

 The floating-point form of y, denoted f I(y), is obtained by
terminating the mantissa of y at k decimal digits.

e There are two common ways of performing this termination.

1- chopping, is to simply chop off the digits dk+1dk+2. ... This
produces the floating-point form

fl(y) = 0.dyd> . . .d, x 10",

e 2-Rounding: adds 5 x 10"k*1) to y and then chops the result
to obtain a number of the form

FI(y) = 0.8182... 8¢ x 10",

For rounding, when d;,, = 5, we add 1 to d; to obtain fl(v); that is, we round up. When
diryy = 5, we simply chop off all but the first k digits; so we round down. If we round down,
then §; = d;, foreach i = 1.2,....k. However, if we round up. the digits (and even the
exponent) might change.



Example 1 Determine the five-digit (a) chopping
and (b) rounding values of the irrational number
It

e 1=3.14159265. . ..
e Written in normalized decimal form, we have
e m1=0.314159265... x 10"

* (a) The floating-point form of it using five-digit
chopping is

e fl(rt) =0.31415 x 10'= 3.1415.

e (b) The sixth digit of the decimal expansion of it
is a9, so the floating-point form of

e 1t using five-digit rounding is
e fl(m)=(0.31415 + 0.00001) x 10'= 3.1416.



Measuring approximation errors.

Suppose that p* is an approximation to p. The absolute error is |p — p*|, and the relative
ok

error is pT;U' provided that p == 0. O

Example 2 Determine the absolute and relative errors when approximating p by p* when
(a) p=0.3000 % 10! and p* = 0.3100 x 10';
(b) p =0.3000 x 1073 and p* = 0.3100 x 10~%;
(c) p=0.3000 x 10* and p* = 0.3100 x 10,

(a) Forp = 0.3000 x 10" and p* = 0.3100 x 10" the absolute error is 0.1, and the
relative error is 0.3333 x 101

(b) For p =0.3000 x 10~ and p* = 0.3100 x 107 the absolute error is 0.1 x 10,
and the relative error is 0.3333 x 107,

(¢c) Forp = 0.3000 x 10* and p* = 0.3100 x 10*, the absolute error is 0.1 x 10°, and

the relative error is again 0.3333 x 107",
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This example shows that the same relative error, 0.3333 x 10~!, occurs for widely varying
absolute errors. As a measure of accuracy, the absolute error can be misleading and the
relative error more meaningful, because the relative error takes into consideration the size
of the value. O
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