Ch 01-3: Error Analysis

Dr. Feras Fraige

The number p^* is said to approximate p to t significant digits (or figures) if t is the largest nonnegative integer for which

$$\frac{|p-p^*|}{|p|} \le 5 \times 10^{-t}.$$

Table 1.1 illustrates the continuous nature of significant digits by listing, for the various values of p, the least upper bound of $|p-p^*|$, denoted max $|p-p^*|$, when p^* agrees with p to four significant digits.

Table 1.1

p	0.1	0.5	100	1000	5000	9990	10000
$\max p - p^* $	0.00005	0.00025	0.05	0.5	2.5	4.995	5.

Finite-Digit Arithmetic

• Symbols for machine operation \oplus , \ominus , \otimes , \ominus

$$\oplus$$
, \ominus , \otimes , \oplus

Assume that the floating-point representations f(x) and f(y) are given for the real numbers x and y and that the symbols \oplus , \ominus , \otimes , \oplus represent machine addition, subtraction, multiplication, and division operations, respectively. We will assume a finite-digit arithmetic given by

$$x \oplus y = fl(fl(x) + fl(y)), \quad x \otimes y = fl(fl(x) \times fl(y)),$$

 $x \ominus y = fl(fl(x) - fl(y)), \quad x \oplus y = fl(fl(x) \div fl(y)).$

This arithmetic corresponds to performing exact arithmetic on the floating-point representations of x and y and then converting the exact result to its finite-digit floating-point representation.

Rounding arithmetic is easily implemented in Maple. For example, the command

$$Digits := 5$$

causes all arithmetic to be rounded to 5 digits. To ensure that Maple uses approximate rather than exact arithmetic we use the *evalf*. For example, if $x = \pi$ and $y = \sqrt{2}$ then

$$evalf(x)$$
; $evalf(y)$

produces 3.1416 and 1.4142, respectively. Then fl(fl(x) + fl(y)) is performed using 5-digit rounding arithmetic with

$$evalf(evalf(x) + evalf(y))$$

which gives 4.5558. Implementing finite-digit chopping arithmetic is more difficult and requires a sequence of steps or a procedure. Exercise 27 explores this problem.

Example 3 Suppose that $x = \frac{5}{7}$ and $y = \frac{1}{3}$. Use five-digit chopping for calculating x + y, x - y, $x \times y$, and $x \div y$.

Solution Note that

$$x = \frac{5}{7} = 0.\overline{714285}$$
 and $y = \frac{1}{3} = 0.\overline{3}$

implies that the five-digit chopping values of x and y are

$$fl(x) = 0.71428 \times 10^0$$
 and $fl(y) = 0.33333 \times 10^0$.

Thus

$$x \oplus y = fl(fl(x) + fl(y)) = fl(0.71428 \times 10^{0} + 0.33333 \times 10^{0})$$
$$= fl(1.04761 \times 10^{0}) = 0.10476 \times 10^{1}.$$

The true value is $x + y = \frac{5}{7} + \frac{1}{3} = \frac{22}{21}$, so we have

Absolute Error =
$$\left| \frac{22}{21} - 0.10476 \times 10^1 \right| = 0.190 \times 10^{-4}$$

and

Relative Error =
$$\left| \frac{0.190 \times 10^{-4}}{22/21} \right| = 0.182 \times 10^{-4}$$
.

Table 1.2 lists the values of this and the other calculations.

Table 1.2

Operation	Result	Actual value	Absolute error	Relative error
$ \begin{array}{c} x \oplus y \\ x \ominus y \\ x \otimes y \\ x \oplus y \end{array} $	0.10476×10^{1}	22/21	0.190×10^{-4}	0.182×10^{-4}
	0.38095×10^{0}	8/21	0.238×10^{-5}	0.625×10^{-5}
	0.23809×10^{0}	5/21	0.524×10^{-5}	0.220×10^{-4}
	0.21428×10^{1}	15/7	0.571×10^{-4}	0.267×10^{-4}

The maximum relative error for the operations in Example 3 is 0.267×10^{-4} , so the arithmetic produces satisfactory five-digit results. This is not the case in the following example.

Example 4 Suppose that in addition to $x = \frac{5}{7}$ and $y = \frac{1}{3}$ we have

$$u = 0.714251$$
, $v = 98765.9$, and $w = 0.1111111 \times 10^{-4}$,

so that

$$fl(u) = 0.71425 \times 10^{0}$$
, $fl(v) = 0.98765 \times 10^{5}$, and $fl(w) = 0.11111 \times 10^{-4}$.

Determine the five-digit chopping values of $x \ominus u$, $(x \ominus u) \oplus w$, $(x \ominus u) \otimes v$, and $u \oplus v$.

Solution These numbers were chosen to illustrate some problems that can arise with finite-digit arithmetic. Because x and u are nearly the same, their difference is small. The absolute error for $x \ominus u$ is

$$\begin{aligned} |(x-u) - (x \ominus u)| &= |(x-u) - (fl(fl(x) - fl(u)))| \\ &= \left| \left(\frac{5}{7} - 0.714251 \right) - \left(fl\left(0.71428 \times 10^{0} - 0.71425 \times 10^{0} \right) \right) \right| \\ &= |0.347143 \times 10^{-4} - fl\left(0.00003 \times 10^{0} \right)| = 0.47143 \times 10^{-5}. \end{aligned}$$

This approximation has a small absolute error, but a large relative error

$$\left| \frac{0.47143 \times 10^{-5}}{0.347143 \times 10^{-4}} \right| \le 0.136.$$

The subsequent division by the small number w or multiplication by the large number v magnifies the absolute error without modifying the relative error. The addition of the large and small numbers u and v produces large absolute error but not large relative error. These calculations are shown in Table 1.3.

Table 1.3

Operation	Result	Actual value	Absolute error	Relative error	
$x \ominus u$	0.30000×10^{-4}	0.34714×10^{-4}	0.471×10^{-5}	0.136	
$(x \ominus u) \oplus w$	0.27000×10^{1}	0.31242×10^{1}	0.424	0.136	
$(x \ominus u) \otimes v$	0.29629×10^{1}	0.34285×10^{1}	0.465	0.136	
$u \oplus v$	0.98765×10^5	0.98766×10^5	0.161×10^{1}	0.163×10^{-4}	