Interpolation \& Polynomial Approximation Divided Differences

Dr. Feras Fraige

Introduction to Divided Differences

A new algebraic representation for $P_{n}(x)$

- Suppose that $P_{n}(x)$ is the nth Lagrange polynomial that agrees with the function f at the distinct numbers $x_{0}, x_{1}, \ldots, x_{n}$.
- Although this polynomial is unique, there are alternate algebraic representations that are useful in certain situations.
- The divided differences of f with respect to $x_{0}, x_{1}, \ldots, x_{n}$ are used to express $P_{n}(x)$ in the form

$$
P_{n}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots+a_{n}\left(x-x_{0}\right) \cdots\left(x-x_{n-1}\right)
$$

for appropriate constants $a_{0}, a_{1}, \ldots, a_{n}$.

Introduction to Divided Differences

$$
P_{n}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots+a_{n}\left(x-x_{0}\right) \cdots\left(x-x_{n-1}\right)
$$

- To determine the first of these constants, a_{0}, note that if $P_{n}(x)$ is written in the form of the above equation, then evaluating $P_{n}(x)$ at x_{0} leaves only the constant term a_{0}; that is,

$$
a_{0}=P_{n}\left(x_{0}\right)=f\left(x_{0}\right)
$$

- Similarly, when $P(x)$ is evaluated at x_{1}, the only nonzero terms in the evaluation of $P_{n}\left(x_{1}\right)$ are the constant and linear terms,

$$
\begin{aligned}
f\left(x_{0}\right)+a_{1}\left(x_{1}-x_{0}\right) & =P_{n}\left(x_{1}\right)=f\left(x_{1}\right) \\
\Rightarrow a_{1} & =\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
\end{aligned}
$$

The Divided Difference Notation

- We now introduce the divided-difference notation, which is related to Aitken's Δ^{2} notation $\triangle \Delta$ Defintion
- The zeroth divided difference of the function f with respect to x_{i}, denoted $f\left[x_{i}\right]$, is simply the value of f at x_{i} :

$$
f\left[x_{i}\right]=f\left(x_{i}\right)
$$

- The remaining divided differences are defined recursively.

Forward Difference Operator Δ

For a given sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$, the forward difference Δp_{n} (read "delta $p_{n}{ }^{\prime \prime}$) is defined by

$$
\Delta p_{n}=p_{n+1}-p_{n}, \quad \text { for } n \geq 0
$$

Higher powers of the operator Δ are defined recursively by

$$
\Delta^{k} p_{n}=\Delta\left(\Delta^{k-1} p_{n}\right), \quad \text { for } k \geq 2 .
$$

The Divided Difference Notation

- The first divided difference of f with respect to x_{i} and x_{i+1} is denoted $f\left[x_{i}, x_{i+1}\right]$ and defined as

$$
f\left[x_{i}, x_{i+1}\right]=\frac{f\left[x_{i+1}\right]-f\left[x_{i}\right]}{x_{i+1}-x_{i}}
$$

- The second divided difference, $f\left[x_{i}, x_{i+1}, x_{i+2}\right]$, is defined as

$$
f\left[x_{i}, x_{i+1}, x_{i+2}\right]=\frac{f\left[x_{i+1}, x_{i+2}\right]-f\left[x_{i}, x_{i+1}\right]}{x_{i+2}-x_{i}}
$$

The Divided Difference Notation

- Similarly, after the $(k-1)$ st divided differences,

$$
f\left[x_{i}, x_{i+1}, x_{i+2}, \ldots, x_{i+k-1}\right] \quad \text { and } \quad f\left[x_{i+1}, x_{i+2}, \ldots, x_{i+k-1}, x_{i+k}\right]
$$

have been determined, the \boldsymbol{k} th divided difference relative to $x_{i}, x_{i+1}, x_{i+2}, \ldots, x_{i+k}$ is

$$
\begin{aligned}
& f\left[x_{i}, x_{i+1}, \ldots, x_{i+k-1}, x_{i+k}\right] \\
& \quad=\frac{f\left[x_{i+1}, x_{i+2}, \ldots, x_{i+k}\right]-f\left[x_{i}, x_{i+1}, \ldots, x_{i+k-1}\right]}{x_{i+k}-x_{i}}
\end{aligned}
$$

- The process ends with the single nth divided difference,

$$
f\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\frac{f\left[x_{1}, x_{2}, \ldots, x_{n}\right]-f\left[x_{0}, x_{1}, \ldots, x_{n-1}\right]}{x_{n}-x_{0}}
$$

Generating the Divided Difference Table

Newton's Divided Difference Interpolating Polynomial

$$
P_{n}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots+a_{n}\left(x-x_{0}\right) \cdots\left(x-x_{n-1}\right)
$$

Using the Divided Difference Notation

- Returning to the interpolating polynomial, we can now use the divided difference notation to write:

$$
\begin{aligned}
a_{0}=f\left(x_{0}\right) & =f\left[x_{0}\right] \\
a_{1}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} & =f\left[x_{0}, x_{1}\right]
\end{aligned}
$$

- Hence, the interpolating polynomial is

$$
\begin{aligned}
P_{n}(x) & =f\left[x_{0}\right]+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& +\cdots+a_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)
\end{aligned}
$$

Newton's Divided Difference Interpolating Polynomial

$$
\begin{aligned}
P_{n}(x) & =f\left[x_{0}\right]+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& +\cdots+a_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)
\end{aligned}
$$

- As might be expected from the evaluation of a_{0} and a_{1}, the required constants are

$$
a_{k}=f\left[x_{0}, x_{1}, x_{2}, \ldots, x_{k}\right],
$$

for each $k=0,1, \ldots, n$.

- So $P_{n}(x)$ can be rewritten in a form called Newton's Divided-Difference:

$$
P_{n}(x)=f\left[x_{0}\right]+\sum_{k=1}^{n} f\left[x_{0}, x_{1}, \ldots, x_{k}\right]\left(x-x_{0}\right) \cdots\left(x-x_{k-1}\right)
$$

Example 1 Complete the divided difference table for the data in Table below, and construct the interpolating polynomial that uses all this data.

x	$f(x)$
1.0	0.7651977
1.3	0.6200860
1.6	0.4554022
1.9	0.2818186
2.2	0.1103623

Solution The first divided difference involving x_{0} and x_{1} is

$$
f\left[x_{0}, x_{1}\right]=\frac{f\left[x_{1}\right]-f\left[x_{0}\right]}{x_{1}-x_{0}}=\frac{0.6200860-0.7651977}{1.3-1.0}=-0.4837057 .
$$

The second divided difference involving x_{0}, x_{1}, and x_{2} is

$$
f\left[x_{0}, x_{1}, x_{2}\right]=\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}}=\frac{-0.5489460-(-0.4837057)}{1.6-1.0}=-0.1087339 .
$$

The third divided difference involving x_{0}, x_{1}, x_{2}, and x_{3} and the fourth divided difference involving all the data points are, respectively,

$$
\begin{aligned}
f\left[x_{0}, x_{1}, x_{2}, x_{3}\right] & =\frac{f\left[x_{1}, x_{2}, x_{3}\right]-f\left[x_{0}, x_{1}, x_{2}\right]}{x_{3}-x_{0}}=\frac{-0.0494433-(-0.1087339)}{1.9-1.0} \\
& =0.0658784
\end{aligned}
$$

and

$$
\begin{aligned}
f\left[x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right] & =\frac{f\left[x_{1}, x_{2}, x_{3}, x_{4}\right]-f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]}{x_{4}-x_{0}}=\frac{0.0680685-0.0658784}{2.2-1.0} \\
& =0.0018251 .
\end{aligned}
$$

i	x_{i}	$f\left[x_{i}\right]$	$f\left[x_{i-1}, x_{i}\right]$	$f\left[x_{i-2}, x_{i-1}, x_{i}\right]$	$f\left[x_{i-3}, \ldots, x_{i}\right]$	$f\left[x_{i-4}, \ldots, x_{i}\right]$
0	1.0	0.7651977				
1	1.3	0.6200860	-0.4837057		-0.1087339	
2	1.6	0.4554022	-0.5489460		-0.0494433	0.0658784
3	1.9	0.2818186	-0.5786120		0.0680685	0.0018251
4	2.2	0.1103623		0.5715210		

i	x_{i}	$f\left[x_{i}\right]$	$f\left[x_{i-1}, x_{i}\right]$	$f\left[x_{i-2}, x_{i-1}, x_{i}\right]$	$f\left[x_{i-3}, \ldots, x_{i}\right]$	$f\left[x_{i-4}, \ldots, x_{i}\right]$
0	1.0	0.765197 .7.				
			-0.4837057.			
1	1.3	0.6200860		-0.1087.33.9.		
			-0.5489460		0.06587.84	
2	1.6	0.4554022		-0.0494433		0.00.18251
			-0.5786120		0.0680685	
3	1.9	0.2818186		0.0118183		
			-0.5715210			
4	2.2	0.1103623				

The coefficients of the Newton forward divided-difference form of the interpolating polynomial are along the diagonal in the table. This polynomial is

$$
\begin{aligned}
P_{4}(x)= & 0.7651977-0.4837057(x-1.0)-0.1087339(x-1.0)(x-1.3) \\
& +0.0658784(x-1.0)(x-1.3)(x-1.6) \\
& +0.0018251(x-1.0)(x-1.3)(x-1.6)(x-1.9) .
\end{aligned}
$$

Knowledge

- Forward Difference
- Backward Difference

Newton's divided-difference formula can be expressed in a simplified form when the nodes are arranged consecutively with equal spacing. In this case, we introduce the notation $h=x_{i+1}-x_{i}$, for each $i=0,1, \ldots, n-1$ and let $x=x_{0}+s h$. Then the difference $x-x_{i}$ is $x-x_{i}=(s-i) h$. So Eq. (3.10) becomes

$$
\begin{align*}
P_{n}(x)= & f\left[x_{0}\right]+\sum_{k=1}^{n} f\left[x_{0}, x_{1}, \ldots, x_{k}\right]\left(x-x_{0}\right) \cdots\left(x-x_{k-1}\right) \tag{3.10}\\
P_{n}(x)= & P_{n}\left(x_{0}+s h\right)=f\left[x_{0}\right]+\operatorname{sh} f\left[x_{0}, x_{1}\right]+s(s-1) h^{2} f\left[x_{0}, x_{1}, x_{2}\right] \\
& +\cdots+s(s-1) \cdots(s-n+1) h^{n} f\left[x_{0}, x_{1}, \ldots, x_{n}\right] \\
= & f\left[x_{0}\right]+\sum_{k=1}^{n} s(s-1) \cdots(s-k+1) h^{k} f\left[x_{0}, x_{1}, \ldots, x_{k}\right]
\end{align*}
$$

Using binomial-coefficient notation,

$$
\binom{s}{k}=\frac{s(s-1) \cdots(s-k+1)}{k!}
$$

we can express $P_{n}(x)$ compactly as

$$
\begin{equation*}
P_{n}(x)=P_{n}\left(x_{0}+s h\right)=f\left[x_{0}\right]+\sum_{k=1}^{n}\binom{s}{k} k!h^{k} f\left[x_{0}, x_{i}, \ldots, x_{k}\right] . \tag{3.11}
\end{equation*}
$$

Forward Difference

The Newton forward-difference formula, is constructed by making use of the forward difference notation Δ introduced in Aitken's Δ^{2} method. With this notation,

$$
\begin{aligned}
f\left[x_{0}, x_{1}\right] & =\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}=\frac{1}{h}\left(f\left(x_{1}\right)-f\left(x_{0}\right)\right)=\frac{1}{h} \Delta f\left(x_{0}\right) \\
f\left[x_{0}, x_{1}, x_{2}\right] & =\frac{1}{2 h}\left[\frac{\Delta f\left(x_{1}\right)-\Delta f\left(x_{0}\right)}{h}\right]=\frac{1}{2 h^{2}} \Delta^{2} f\left(x_{0}\right),
\end{aligned}
$$

and, in general,

$$
f\left[x_{0}, x_{1}, \ldots, x_{k}\right]=\frac{1}{k!h^{k}} \Delta^{k} f\left(x_{0}\right) .
$$

Since $f\left[x_{0}\right]=f\left(x_{0}\right)$, Eq. (3.11) has the following form.

Newton Forward-Difference Formula

$$
P_{n}(x)=f\left(x_{0}\right)+\sum_{k=1}^{n}\binom{s}{k} \Delta^{k} f\left(x_{0}\right)
$$

Backward Difference

If the interpolating nodes are reordered from last to first as $x_{n}, x_{n-1}, \ldots, x_{0}$, we can write the interpolatory formula as

$$
\begin{aligned}
P_{n}(x)= & f\left[x_{n}\right]+f\left[x_{n}, x_{n-1}\right]\left(x-x_{n}\right)+f\left[x_{n}, x_{n-1}, x_{n-2}\right]\left(x-x_{n}\right)\left(x-x_{n-1}\right) \\
& +\cdots+f\left[x_{n}, \ldots, x_{0}\right]\left(x-x_{n}\right)\left(x-x_{n-1}\right) \cdots\left(x-x_{1}\right) .
\end{aligned}
$$

If, in addition, the nodes are equally spaced with $x=x_{n}+s h$ and $x=x_{i}+(s+n-i) h$, then

$$
\begin{aligned}
P_{n}(x)= & P_{n}\left(x_{n}+s h\right) \\
= & f\left[x_{n}\right]+\operatorname{sh} f\left[x_{n}, x_{n-1}\right]+s(s+1) h^{2} f\left[x_{n}, x_{n-1}, x_{n-2}\right]+\cdots \\
& +s(s+1) \cdots(s+n-1) h^{n} f\left[x_{n}, \ldots, x_{0}\right] .
\end{aligned}
$$

Newton Backward-Difference Formula

$$
P_{n}(x)=f\left[x_{n}\right]+\sum_{k=1}^{n}(-1)^{k}\binom{-s}{k} \nabla^{k} f\left(x_{n}\right)
$$

Predict the value of $f(1.1)$ using Newton forward divided difference based on data points given.

		First divided differences	Second divided differences	Third divided differences	Fourth divided differences
1.0	$\underline{0.7651977}$				
1.3	0.6200860	$\underline{-0.4837057}$			
1.6	0.4554022	-0.5489460	$\underline{-0.1087339}$	$\underline{0.0658784}$	0.0018251
1.9	0.2818186	-0.5786120	-0.0494433	0.0680685	
2.2	$\underline{0.1103623}$	-0.5715210			

$$
\begin{aligned}
& h=x_{1}-x_{0}=1.3-1=0.3 \\
& S=\left(x-x_{0}\right) / h=(1.1-1) / 0.3 \\
& S=1 / 3
\end{aligned}
$$

- If an approximation to $f(1.1)$ is required, the reasonable choice for the nodes would be $x 0=$ $1.0, x 1=1.3, x 2=1.6, x 3=1.9$, and $x 4=2.2$ since this choice makes the earliest possible use of the data points closest to $x=1.1$, and also makes use of the fourth divided difference. This implies that $h=0.3$ and $s=1 / 3$, so the Newton forward divided difference formula is used with the divided differences that have a solid underline (___) in Table

1.0	$\underline{0.7651977}$				
1.3	0.6200860	$\underline{-0.4837057}$			
1.6	0.4554022	-0.5489460	$\underline{-0.1087339}$	$\underline{0.0658784}$	
1.9	0.2818186	-0.5786120	-0494433	0.00680685	$\underline{0.0018251}$
2.2	$\underline{0.1103623}$	-0.5715210			

$$
\begin{aligned}
P_{n}(x)= & P_{n}\left(x_{0}+s h\right)=f\left[x_{0}\right]+\operatorname{sh} f\left[x_{0}, x_{1}\right]+s(s-1) h^{2} f\left[x_{0}, x_{1}, x_{2}\right] \\
& +\cdots+s(s-1) \cdots(s-n+1) h^{n} f\left[x_{0}, x_{1}, \ldots, x_{n}\right] \\
= & f\left[x_{0}\right]+\sum_{k=1}^{n} s(s-1) \cdots(s-k+1) h^{k} f\left[x_{0}, x_{1}, \ldots, x_{k}\right] . \\
P_{4}(1.1)= & P_{4}\left(1.0+\frac{1}{3}(0.3)\right) \\
= & 0.7651977+\frac{1}{3}(0.3)(-0.4837057)+\frac{1}{3}\left(-\frac{2}{3}\right)(0.3)^{2}(-0.1087339) \\
& +\frac{1}{3}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)(0.3)^{3}(0.0658784) \\
& +\frac{1}{3}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)\left(-\frac{8}{3}\right)(0.3)^{4}(0.0018251) \\
= & 0.7196460 .
\end{aligned}
$$

Predict the value of $f(2)$ using Newton backward divided difference based on data points given.

- To approximate a value when x is close to the end of the tabulated values, say, $x=2.0$, we would again like to make the earliest use of the data points closest to x. This requires using the Newton backward divided-difference formula with $s=-2 / 3$ and the divided differences in Table that have a wavy underline (~~). Notice that the fourth divided difference is used in both formulas.

$$
\begin{aligned}
& h=x_{1}-x_{0}=1.3-1=0.3 \\
& S=\left(x-x_{n}\right) / h=(2-2.2) / 0.3 \\
& S=-2 / 3
\end{aligned}
$$

$$
\begin{aligned}
P_{4}(2.0)= & P_{4}\left(2.2-\frac{2}{3}(0.3)\right) \\
= & 0.1103623-\frac{2}{3}(0.3)(-0.5715210)-\frac{2}{3}\left(\frac{1}{3}\right)(0.3)^{2}(0.0118183) \\
& -\frac{2}{3}\left(\frac{1}{3}\right)\left(\frac{4}{3}\right)(0.3)^{3}(0.0680685)-\frac{2}{3}\left(\frac{1}{3}\right)\left(\frac{4}{3}\right)\left(\frac{7}{3}\right)(0.3)^{4}(0.0018251) \\
= & 0.2238754
\end{aligned}
$$

